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Abstract

Clinical trial data are typically collected through multiple systems developed by different

vendors using different technologies and data standards. That data need to be integrated,

standardized and transformed for a variety of monitoring and reporting purposes. The

need to process large volumes of often inconsistent data in the presence of ever-changing

requirements poses a significant technical challenge. As part of a comprehensive clinical

data repository, we have developed a data warehouse that integrates patient data from

any source, standardizes it and makes it accessible to study teams in a timely manner

to support a wide range of analytic tasks for both in-flight and completed studies. Our

solution combines Apache HBase, a NoSQL column store, Apache Phoenix, a massively

parallel relational query engine and a user-friendly interface to facilitate efficient loading

of large volumes of data under incomplete or ambiguous specifications, utilizing an

extract–load–transform design pattern that defers data mapping until query time. This

approach allows us to maintain a single copy of the data and transform it dynamically

into any desirable format without requiring additional storage. Changes to the mapping

specifications can be easily introduced and multiple representations of the data can be

made available concurrently. Further, by versioning the data and the transformations

separately, we can apply historical maps to current data or current maps to historical

data, which simplifies the maintenance of data cuts and facilitates interim analyses

for adaptive trials. The result is a highly scalable, secure and redundant solution that

combines the flexibility of a NoSQL store with the robustness of a relational query engine

to support a broad range of applications, including clinical data management, medical

review, risk-based monitoring, safety signal detection, post hoc analysis of completed

studies and many others.
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Introduction

Drug development is becoming significantly more complex
and data intensive. Advances in imaging, ‘omics and other
technologies have enabled scientists to generate enormous
amounts of data and apply them in a clinical trial setting.
At the same time, there is a growing need to integrate
patient data from non-traditional sources such as electronic
health records, biosensors, remote monitoring and fitness
devices, social media and other modalities and make it
available to study teams using intuitive and actionable
visualizations to enhance operational, scientific and medical
decision-making. In addition to the difficulty of integrating
diverse data sources, there are also operational challenges in
determining how to transform data for different use cases,
such as medical and safety monitoring, site performance,
statistical anomaly detection and submission to regulatory
bodies. Particularly, in an environment where these require-
ments are changing over time and across studies, novel tech-
nological solutions are required to manage the complexity
of data ingestion and transformation while maintaining
performance.

Drawing from our previous work in discovery (1),
clinical (2, 3) and outcomes research (4), we have
recently introduced an integrated application suite that
combines convenient access to data, advanced analytics
and seamless integration with established technology to
enable comprehensive assessment and mitigation of risk at
the study, site and patient level (5, 6). Underpinning these
applications is a clinical data repository that supports near
real-time acquisition, mapping and integration of clinical
trial data from any germane source, comprised of two
data warehouses: (i) an operational data warehouse that
stores all the operational data and derived metrics and key
performance indicators and (ii) a clinical data warehouse
(CDW) that stores all the subject-level data. The former is
described in the preceding companion article (7). The latter
is the focus of the present work.

One of the primary objectives for creating a data ware-
house is to provide a consistent and standardized pipeline
for data analysis (8). The conceptual model of a data ware-
house is to take data from multiple source systems, stan-
dardize it, combine it and make it available to a broad range
of users through standardized reports, dynamic dashboards
and ad hoc querying tools to support data exploration and
decision-making.

The most challenging aspect of building a data ware-
house is the canonicalization of the source data (9). Data
from different source systems often have different represen-
tations and granularity depending on the design of these sys-
tems. In general, the process of designing a data warehouse
involves developing a canonical data model, a database
schema that best fits that model and the appropriate loading

processes to populate it with the source data. Conventional
data warehouses work best when the source systems tend
to be static with respect to their underlying schemas. By
contrast, clinical data are highly variable given the non-
standardized nature of clinical trials (10), raising the com-
plexity of the task to the extreme (11). Indeed, the normally
difficult work of canonicalizing disparate source data is not
a one-time event but needs to be repeated for every trial, and
sometimes over time within the same trial (12).

There are two primary approaches that have been used
to address this problem. The first is the use of data stan-
dards, such as Study Data Tabulation Model (SDTM) or
Biomedical Research Integrated Domain Group (BRIDG)
(13), for capturing the original data at the source. The sec-
ond is the adoption of a flexible way of ingesting arbitrary
data either via an entity–attribute–value (EAV) model for
relational databases or via a NoSQL document store like
CouchDB or MongoDB (14). While both methods have had
some success, there are important drawbacks that prevent
their broader adoption and use.

The first approach suffers from the fact that data stan-
dards lag behind biological and medical science that tends
to advance at a faster pace, or they get so unwieldy that
become impractical to use and maintain. For instance, the
SDTM standard developed by Clinical Data Interchange
Standards Consortium (CDISC) (15) organizes the data
into a set of ‘domains’ that capture different aspects of
a trial. While this model captures the majority of data
types encountered in a clinical trial, there is always a
small subset of data types, such as exploratory endpoints
or measurements, which do not map directly into those
predefined domains. To handle these cases, SDTM offers a
mechanism for extending the core model via so-called sup-
plemental domains. However, these supplemental domains
are essentially an EAV representation of the data, which
can dramatically impact performance for many common
query patterns, such as when multiple columns need to be
returned at once (12). The issue of complexity is exemplified
by the BRIDG model that aims to be so comprehensive, that
it becomes too convoluted to use in practice (Figure 1).

The second approach of using EAV tables or a NoSQL
document framework may offer flexibility in storing
arbitrary clinical data but introduces other complications.
As mentioned above, EAV models hosted on relational
databases suffer significant performance penalties when
a wide tabular dataset is requested by the consuming
application. On the other hand, NoSQL databases generally
do not support relational joins and thus are not as flexible
as traditional relational databases in supporting different
query patterns. What is desired is a system that offers the
flexibility of a NoSQL store for ingesting arbitrary data
with the querying efficiency of a relational database.
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Figure 1. Schematic diagram of the BRIDG model. While this is a comprehensive model for biomedical research, the sheer number of tables and

relations between the tables make it difficult to work with in practice. Data managers responsible for the mapping would need to determine for each

data source how a row of data would need to be decomposed into this model, putting an inordinate burden on the data standardization process.

Here we present a new CDW that combines HBase, a
NoSQL column store, with Apache Phoenix, a relational
engine built on top of HBase and a user-friendly transforma-
tion engine that enables efficient loading of large volumes
of incomplete or ambiguous data and defers data mapping
until query time. We also discuss how this system facilitates
a variety of monitoring, analysis and reporting activities.

Methods

Logical architecture

There are two key architectural choices that distinguish
our solution. The first is the abandonment of the tradi-
tional extract–transform–load (ETL) pattern in favor of
an extract–load–transform (ELT) approach (16), and the
second is the adoption of Apache HBase and Phoenix as the
underlying data store. Depending on the specific use case,
it may be sufficient to only utilize one aspect of the design.
For example, when the data volumes are not expected to
be massive, a traditional relational back end that supports
Javascript Simple Object Notation (JSON) or Extensible
Markup Language (XML) columns coupled with a dynamic
transformation engine could suffice. On the other end,
when the incoming data are large but highly standardized,
then a distributed NoSQL store with a relational query

engine could be used without a transformation engine. The
complexity comes from the cases in between, where one has
to deal with large incoming volumes of data and multiple
(and often evolving) standards, a situation all too familiar to
contract research organizations (CROs) like Covance, who
must work with multiple clients with divergent needs and
operational processes.

The primary driver for adopting an ELT versus an ETL
approach stems from the need to coordinate the activi-
ties of many different functional groups across multiple
organizations and address the gaps in knowledge transfer
that arise as a result. This is particularly acute in func-
tional outsourcing, a trial delivery model that is growing
in popularity in an effort to curtail costs. For example,
while Covance may be contracted to conduct and monitor
a clinical trial, the data management activities and the
preparation of the submission dataset may be contracted
to a third party. In many cases, the transformations from
the raw dataset to the target format required to drive
downstream analysis and reporting are not communicated
to us at the start of the study, and if they are, they may
not be sufficient for certain activities like safety monitoring.
For instance, the appearance of a particular safety signal
may prompt medical monitors to request additional pieces
of information, which would require additional data to be
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queried, transformed and displayed––data for which the
transformation rules were not part of the initial contract
negotiations between the various parties.

With a standard ETL approach, such changes would
require extensive revalidation of the entire process that
could lead to production downtime as configurations are
migrated or would require two parallel systems to be main-
tained, one to serve production data and the other to vali-
date the new ETL pipeline before moving into production
(17). In an ELT model, the data are ingested in a form as
close to raw as possible, and transformations are applied
to the data at query time. The obvious advantage of this
approach is that multiple sets of transformations (maps) can
remain active at any given time, which obviates the need to
maintain separate test and production database instances.
With an ELT system, it is possible to maintain a test and a
production set of transformations within a single database
instance. Another advantage is that changes to transforma-
tions can be previewed easily and thus the transformation
process can be driven by a read–eval–print loop, which
allows transformations to be built and tested incrementally.
This iterative development process can enable less technical
staff to take on many of the tasks currently performed by
ETL engineers (18).

As mentioned earlier, the ELT approach does not pre-
clude the use of a relational database. For smaller volumes
of data, any relational database management system that
supports JSON or XML columns would allow the ingestion
of arbitrary data and the transformation of that data at
query time. Our decision not to use a relational database is
related to scalability. While modern relational databases do
have sharding capabilities to help distribute the data across
multiple servers, they do not seamlessly handle the addition
of new nodes and, when relational joins are desired, most
sharded relational databases require additional application-
side code to handle joins that span multiple shards.

By contrast, most NoSQL systems scale very well hori-
zontally. When more computational resources are required,
one can simply increase the number of nodes rather than
buy more powerful hardware. The availability of cloud
providers like Amazon Web Services makes scale-up a rel-
atively straightforward and painless task. However, most
NoSQL systems traditionally achieved their scalability by
not supporting relational joins and instead relying on denor-
malized schemas (19).

Given the temporal inconsistency in which clinical trial
data arrive (i.e. some data streams may be real time while
others may arrive at longer time intervals), it is difficult
to write an ETL process that can build a fully denormal-
ized representation of the data. Consider, for example, the
calculation of ‘study day’, which may require a feed from
the interactive voice response system (IVRS) to provide

the randomization date for the patient and the visit date
that comes from the electronic data capture (EDC) system.
Because these systems are typically provided by different
vendors, the sponsor or CRO may have different service-
level agreements that dictate the frequency of data updates.
This process gets even more complicated when these sys-
tems use different primary keys, e.g. when the IVRS and
EDC use different subject identifiers, and the translation
between the two is provided by the sponsor. Some NoSQL-
based CDWs have circumvented this problem by focusing
only on data from completed trials or ones where all
the appropriate denormalizations have occurred prior to
loading. The aspirations of the present system were much
higher: our goal was to be able to handle all transformations
in an online manner and deal with data as they arrive.

Had we utilized a traditional NoSQL system that did not
support joins, the data required for this particular study
day calculation would need to be pre-joined, and trying
to resolve the dependencies would pose a significant chal-
lenge. For example, each incoming data point would need
to be assessed to determine which derived values would
need to be updated. This would greatly hinder the ability
to load data in bulk and create a significant bottleneck
in the loading process. A system that supports relational
logic makes it possible to load the IVRS and EDC data
separately in bulk without pre-joining and use the relational
engine to combine the two data streams at query time.
While this is not impossible to do in a traditional NoSQL
database, the problem has already been solved via relational
algebra. Given the nature of our incoming data, our goal
was to leverage the scalability of a NoSQL system without
sacrificing the ability to perform relational joins.

At the time of project initiation, we felt that the only
mature solution that satisfied all the requirements was
Apache HBase coupled with Apache Phoenix. Briefly,
HBase is a column store modeled on Google’s BigTable
technology, and Phoenix is a Structured Query Language
(SQL) translation engine that converts ANSI SQL into
HBase table scans that can be executed in parallel across the
cluster. While other SQL-on-Hadoop tools such as Apache
Hive or Apache Spark were available, we saw significant
performance, ease of use and functionality benefits in favor
of Phoenix.

To implement a flexible schema, a user-defined function
was developed so that one of the HBase columns would be a
JSON column. While HBase and Phoenix natively support
dynamic columns, the interplay between secondary indices
and these dynamic columns was suboptimal in terms of per-
formance. The key difference is that having a specific JSON
column allows the secondary index mechanism to store the
row of data directly thus yielding a single lookup, whereas
native dynamic columns require a secondary lookup when
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Figure 2. CDW logical architecture. The system consists of an ingest layer that takes raw data files and flattens them into rows of data (records) that

can be persisted within HBase. A mapping UI allows transformations to be specified that transform the data upon request. Downstream systems

are then able to utilize the data directly or persist them in application-specific data marts to maximize performance.

utilizing secondary indices. This is the only extension that
we had to add to the system, and it is compliant with SQL
semantics making it possible to select and join columns
within this JSON column.

The ELT process is illustrated in Figure 2 and described
in greater detail in the sections below.

Data preprocessing

CDW ingests the raw data and writes ‘records’ of data to
HBase. Here the term ‘record’ refers to a set of related key–
value pairs, like a row of data in a Comma Separated Values
(CSV) file. Clinical trial data are typically exchanged using a
finite number of formats, such as CDISC Operational Data
Model (ODM), CDISC Laboratory Data Model (LAB), SAS
and CSV. To meet our design objectives, incoming data
must first be converted into records. For tabular data this is
trivial, but for hierarchical XML representations we must
flatten the data before persisting them to the database.

Some file types do not send entire records together; in
these cases, we assemble the records during the ingestion
process. For example, for ODM data, we consider each
ItemGroup to be a record. Unfortunately, the individual
elements of an ItemGroup may arrive separately, so dur-
ing ingestion we assemble records as the ODM data are
streamed in. This automation is introduced to make the
mapping process easier and more intuitive for the end user.
Following the SDTM terminology that divides different
types of data into different ‘domains’, the incoming records
are grouped into ‘input domains’ that can be thought of
as separate tables of data in which the column names are
identical for all records (e.g. adverse events and concomi-
tant medications are organized in separate domains).

In addition to being hierarchical, ODM data are transac-
tional, meaning that data from prior files may be referenced
in update/delete/restore operations in subsequent files. This
means that ingesting ODM data into a data warehouse
is not a simple one-way process; it needs to be able to
both read and update prior records. We support these kinds
of transactional operations in the core of our data ingest
engine, making it easy to handle any incremental data
formats.

Since the only transformation that we seek to accomplish
at the ingestion stage is to either extract rows of data or
flatten hierarchical structures into individual rows, the code
can be easily extended to handle new data formats as they
emerge. This need is infrequent and does not impose a
significant operational burden. Once the data have been
flattened, we can ingest it into HBase and query it in its
raw form using standard ANSI-SQL syntax. Then the raw
data must be mapped using a set of transformations.

Data mapping

Because our input file handlers reduce all of the data into
a tabular format, we have been able to reduce the number
of mapping transformations into four basic types: column
renames, functional transformations, pivoting/de-pivoting
transformations and joins.

Column renaming transformations change the name of
a column (e.g. from ‘Id’ to ‘SUBJID’). Pivoting/depivoting
transformations are structural transformations that convert
an EAV table to one where each column represents a dif-
ferent observation, or do the reverse. Join transformations
are relational transformations that allow to join data from
two different tables. Finally, functional transformations use
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arbitrary JavaScript functions that operate on individual
rows of data. Examples include converting text to upper
case, date conversions, code list transformations (e.g. con-
verting gender values from {0,1} to {Male, Female}) and
other basic operations like the ones typically implemented
through Excel formulas. We also provide the ability to filter
data in these transformations.

To illustrate how mapping works, consider two hypo-
thetical data sources, one containing laboratory data from
a vendor in the form of a CSV file and the other containing
demographic information about the patients in the form of
an ODM file.

Lab data (LB) in CSV format containing AST and ALT
measurements at visit 1 for subject 1 would come in as
follows:

subject,site,visit,testcd,value,dat
0001,1,1,AST,5,2017-10-07
0001,1,1,ALT,6,2017-10-07.

EDC data in ODM format containing age and sex for
subject 1, recorded at visit 1 along with the date at which
the visit occurred would come in as shown above.

Ingesting these files into CDW would produce four
records in HBase:

{
"domain": "LB",
"data": {
"subject": "0001",

"site": "1",
"visit": "1",
"testcd": "AST",
"value": "5",
"dat": "10/07/2017"
}

}
{

"domain": "LB",
"data": {
"subject": "0001",
"site": "1",
"visit": "1",
"testcd": "ALT",
"value": "6",
"dat": "10/07/2017"
}

}
{

"domain": "DM",
"data": {
"StudyOID": "MyStudy",
"MetaDataVersionOID": "1",
"SubjectKey": "1",
"LocationOID": "1",
"StudyEventOID": "V1",
"FormOID": "DM",
"ItemGroupOID": "DM",
"SEX": "M",
"AGE": "31"
}

}
{
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"domain": "SV",
"data": {
"StudyOID": "MyStudy",
"MetaDataVersionOID": "1",
"SubjectKey": "1",
"LocationOID": "1",
"StudyEventOID": "V1",
"FormOID": "SV",
"ItemGroupOID": "SV",
"VISITDATE": "2017-10-05"
}

}.

The ‘data’ object in each record comes straight from the raw
data files. There would be several problems for someone
looking at these data directly:

(i) Different file types use different identifiers, like the
subject id being either ‘1’ or ‘0001’ and the visit id
being either ‘1’ or ‘V1’. These identifiers need to be
reconciled.

(ii) Different file types (and sometimes even the same file
types) use different field names for the same concept.
In the lab file the visit date is labeled ‘dat’, but in
ODM it is labeled ‘VISITDATE’. Field names need to
be standardized.

(iii) The contents of these records are determined by the
structure of the raw data, but that is not always the
structure an end user wants to see. For example, in
SDTM, the DM domain should have a RFSTDTC
variable containing the date of first drug exposure,
but due to the EDC design, that information currently
appears in SV.

(iv) Continuing the SDTM example, records in LB should
contain not only the date of measurement but also
the number of days between DM.RFSTDTC and the
date of measurement. This requires doing a join to SV,
getting the VISITDATE from the first visit and com-
puting the number of days between SV.VISITDATE
and LB.dat.

All of these problems, and more, can be solved during
mapping. In this specific example, we would apply several
different transformations: (i) rename all the fields according
to SDTM; (ii) add the STUDYID to the lab records; (iii)
perform joins to make SV.VISITDATE available in other
records where it is needed; (iv) use a functional (program-
matic) transformation to convert dates to International
Standards Organization (ISO) format; and (v) use a func-
tional transformation to calculate LB.DY, the number of
days between DM.RFSTDTC and the lab measurement.

The end result looks as follows:

{
"STUDYID": "MyStudy",
"DOMAIN": "LB",

"SUBJID": "1",
"SITEID": "1",
"VISITNUM": "1",
"TESTCD": "AST",
"ORRES": "5",
"DTC": "2017-10-07",
"DY": "3"

}
{

"STUDYID": "MyStudy",
"DOMAIN": "LB",
"SUBJID": "1",
"SITEID": "1",
"VISITNUM": "1",
"TESTCD": "ALT",
"ORRES": "6",
"DTC": "2017-10-07",
"DY": "3"

}
{

"STUDYID": "MyStudy",
"DOMAIN": "DM",
"SUBJID": "1",
"SITEID": "1",
"VISITNUM": "1",
"SEX": "M",
"AGE": "31",
"RFSTDTC": "2017-10-05"

}
{

"STUDYID": "MyStudy",
"DOMAIN": "SV",
"SUBJID": "1",
"SITEID": "1",
"VISITNUM": "1",
"DTC": "2017-10-05"

}.

Mapping clinical trial data to a standardized format neces-
sitates both precision and repetition.

(i) Within a single trial, there is often repetition in form
design, such as one different yet structurally similar
form for each of a predefined list of important con-
comitant medications.

(ii) When the same drug is tested in multiple trials, data
are often produced in nearly identical formats.

(iii) When the same organization designs multiple trials,
they often reuse parts of existing trials (forms, code
lists, file formats, etc.), resulting in data that is similar
across trials.

(iv) Even across completely unrelated trials, there are sim-
ilarities. Body mass index is always the ratio between
weight and height∧2, regardless of the units or the
frequency of collection. Race is almost always col-
lected as a series of Boolean values that need to be
reduced into either a single race or an indication that
the subject has multiple races.
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Figure 3. Data mapping user interface. This application allows data managers to view the raw data as it is persisted in the NoSQL store, specify

individual transformations to map the raw data to the desired output, execute those transformations sequentially and view the output. Errors

identified in the transformation process often highlight ambiguities or missing elements in the specifications.

For all of these reasons, transformation of clinical trial
data can be done most efficiently by leveraging concepts
from programming. Variables, loops, functions and mod-
ules allow for more concise and less error-prone mapping.

In most organizations today, mapping clinical data into
analysis or submission-ready formats such as SDTM is done
by biostatistical programmers using the SAS programming
environment. While this is a well-established community
within the biopharmaceutical industry, these experts are
more scarce and more expensive compared to conventional
programmers, and SAS licenses are notoriously costly. As
stated above, clinical data mapping involves mundane data
transformations (renaming, joins, pivoting, etc.) that do not
require any statistical expertise. Parallel to developing a
more powerful data warehousing technology, we wanted to
create a paradigm shift that would allow us to reduce the
cost of clinical data mapping by providing more accessible
tools and expanding the pool of qualified candidates for
this type of activity. We sought to accomplish this goal both
through a graphical user interface (GUI) and an application
programming interface (API).

Mapping GUI. A representative screenshot of the mapping
UI is illustrated in Figure 3. The user starts by selecting
a given input domain (as mentioned previously, an input
domain is a collection of related data, like a database table)
and displaying the raw data associated with that domain.
The user then creates an output domain that is a collec-
tion of maps (transformations). Each input domain can be

associated with multiple output domains either because
the data need to be mapped into different forms that are
appropriate for different applications or to create multiple
output tables for SDTM consumption. One example of
the latter is the transformation of data expressed as an
EAV table, where different sets of attributes are mapped to
different output tables. After an output domain has been
defined, a series of individual maps of the five basic types
mentioned above are specified one by one and executed
in order. The user has the option to preview the data as
it has been transformed by the mapping rules at any time.
Depending on the results, the user can elect to edit the rules,
reorder them or add new ones.

We have found that breaking down the mapping process
into these atomic steps and providing a preview window
where the results can be examined in real time makes the
process easy to follow by clinical data managers who have a
good understanding of the data but are not expert program-
mers. For functional transformations that require some
code to be written (e.g. unit conversions, conditional checks,
etc.), we have found that basic programming experience is
sufficient for writing the majority of the functions required,
and individuals who have experience writing formulas in
Excel can be retrained to write simple JavaScript functions
that operate on a single row of data.

Mapping API. While our mapping GUI supports many of
these sophisticated operations, we also provide a com-
prehensive API that, in certain circumstances, can lead
to further efficiency gains. Every piece of functionality
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available to the user in the mapping GUI can alternatively
be performed programmatically through our API. The main
advantage of this approach is that the tools of modern
software development can be used out of the box. Version
control manages revision history and collaboration. Unit
testing ensures reliability of complex maps. Modules con-
tain reusable functions and variables, allowing very efficient
updating of one or more trials simultaneously. Types allow
for automatic code completion and prevent invalid maps,
which is particularly efficient inside an integrated develop-
ment environment.

Below we provide an example from the mapping code
written in JavaScript for the adverse events domain of a
study that we recently mapped, broken down into multiple
sections with descriptions.

First, we define the ‘inputDomain’ (the ItemGroupOID
from ODM files from an EDC system, in this case) and the
‘outputDomain’ (a short name, like an SDTM domain):

{
inputDomain: ’CORE DED AE3001 V1 LOG LINE’,
outputDomain: ’AE’,

Then we supply a list of maps. The first maps in the list
are simply renaming fields from EDC to more accessible
names, done with the ‘field()’ function, which returns a map
defining a field:

maps: [
field(’CORE DED AE3001 V1.I AETERM’,

’TERM’),
field(’CORE DED AE3001 V1.I AEGRPID’,

’GRPID’),
field(’CORE DED AE3001 V1.I AESTDAT’,

’STDAT’),
field(’CORE DED AE3001 V1.I AESTTIM’,

’STTIM’),
field(’CORE DED AE3001 V1.I AEENDAT’,

’ENDAT’),
field(’CORE DED AE3001 V1.I AEENTIM’,

’ENTIM’),
field(’CORE DED AE3001 V1.I AEONGO’,

’ONGO’),
field(’CORE DED AE3001 V1.I AETOXGR’,

’SEV’),
field(’CORE DED AE3001 V1.I AECTCV4’,

’CTCV4’),
field(’CORE DED AE3001 V1.I AEREL’,

’REL’),
field(’CORE DED AE3001 V1.I AEREL1’,

’REL1’),
field(’CORE DED AE3001 V1.I AERELDVC’,

’RELDVC’),
field(’CORE DED AE3001 V1.I AERELNST’,

’RELNST’),
field(’CORE DED AE3001 V1.I AERELNSTCM’,

’RELNSTCM’),

field(’CORE DED AE3001 V1.I AERELNSTDIS’,
’RELNSTDIS’),

field(’CORE DED AE3001 V1.I AERELNSTOMC’,
’RELNSTOMC’),

field(’CORE DED AE3001 V1.I AERELNSTPROC’,
’RELNSTPROC’),

field(’CORE DED AE3001 V1.I AERELNSTNONE’,
’RELNSTNONE’),

field(’CORE DED AE3001 V1.I AESER’,
’SER’),

field(’CORE DED AE3001 V1.I AESDTH’,
’SDTH’),

field(’CORE DED AE3001 V1.I AESLIFE’,
’SLIFE’),

field(’CORE DED AE3001 V1.I AESHOSP’,
’SHOSP’),

field(’CORE DED AE3001 V1.I AESDISAB’,
’SDISAB’),

field(’CORE DED AE3001 V1.I AESCONG’,
’SCONG’),

field(’CORE DED AE3001 V1.I AESMIE’,
’SMIE’),

field(’CORE DED AE3001 V1.I AEACN’,
’ACN’),

field(’CORE DED AE3001 V1.I AEOUT’,
’OUT’),

This study includes many entries in the AE form without
any data, which we want to filter out since they are not
actually adverse events. This is done with the ‘filter()’
function, which returns a map that will filter out any rows
where AE.TERM is not defined:

filter(’r.TERM != null’),

Arbitrary joins are supported, similar to a relational
database. In this case, we need to convert the TERM field
to upper case and trim any starting/ending whitespace and
then use that processed value as a join key to link to another
file containing coded terms (AE.DECOD and AE.BODSYS).
‘copyCol()’, ‘upperCaseTrim()’ and ‘join()’ are all reusable
functions that return maps

copyCol(’TERM’, ’TERM FOR JOIN’),
upperCaseTrim(’TERM FOR JOIN’),
join({

selectedDomain: ’AECoding’,
joinCols: [’AETERM’],
colNameTranslations: {
AETERM: ’TERM FOR JOIN’,
},
selectedColumn: [’I AETERM PT’,

’I AETERM SOC’],
outputColumn: [’DECOD’, ’BODSYS’],

}),

A short dictionary is applied with the ‘dict()’ function to
convert some values recorded as numbers in EDC to human
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readable (if a study uses code lists defined in EDC, we can
pick them up automatically from the ODM metadata):

dict(’SEV’, {
1: ’mild’,
2: ’moderate’,
3: ’severe’,
4: ’life-threatening’,
5: ’death’,

}),

The list of maps can also be a ‘list of lists of maps’,
nested arbitrarily deeply. This allows us to define a vari-
able containing multiple maps and reuse it easily. ‘map-
sOdmMetadata’ contains some standard fields from ODM
files (subject ID, visit ID, site ID, etc.). ‘mapsStdatEndat’
contains a list of maps that convert the AE start and end
dates to ISO format, join in the reference start date and
compute the study days for the start and end of the adverse
event.

mapsOdmMetadata,
mapsStdatEndat,

],
}

This is just a small example of the power of our mapping
API, which offers the full capabilities of the CDW map-
ping engine, including pivoting, unpivoting, arbitrary joins,
arbitrary code, reusable functions and more. Furthermore,
when another study comes in with a similar AE domain, we
are able to quickly abstract the common parts of the above
code into a function, ensuring identical and highly efficient
mapping.

All of this is also possible through the mapping GUI. The
difference is that a skilled user will almost always be more
efficient through a programmatic interface, and providing
both options offers additional possibilities for increased
efficiency and cost reduction.

One challenge in providing both a GUI and API for map-
ping is interoperability between the two methods. Maps
defined with the API can be viewed in the GUI, which is
useful for debugging. However, changes made to these maps
in the GUI cannot automatically propagate back to the
script that created them. When multiple people are working
together to map an individual study, communication is
important to ensure that either the GUI or the API is the
primary tool for mapping that study.

Data lineage and snapshotting

One particularly powerful feature of HBase is that it main-
tains data versions for every insert, delete or update trans-
parently and offers a simple mechanism to get the state of

the database at any given point in time. Each write to HBase
is specified by three pieces of information: a row key, a
column name and a timestamp. Any piece of data can be
retrieved by this information at any time. Phoenix, through
its JDBC connector, can use a CurrentSCN property to spec-
ify a timestamp and run queries against prior row values.
This allows us to readily access the database state at any
point in time without a significant performance penalty and
provide data snapshots of the raw data without requiring a
separate archival system. This is important because with our
ELT framework it is possible to also recreate the mapped
data at any time (past or present) without requiring a
separate materialization step, a capability that is extremely
useful in adaptive trials or other studies involving interim
analyses.

Consider the scenario where a data snapshot is gener-
ated containing data from patient visits prior to a specific
date. An interim analysis for an adaptive trial will often
utilize its own special set of transformations, such as the
treatment status. However, data errors could still be present
when the snapshot was originally taken, and the corrected
data may arrive after this cut date. If the snapshots were
materialized, updating them would have been an involved
process because for all newly corrected data, one would
have to update all the snapshots that contained the original
erroneous data. Further, because these data arrive as a
stream of updates, if one wanted to assess the impact of
data changes on the results of the interim analysis over time,
multiple time snapshots would need to be generated and
persisted. With our ELT approach it is possible to recreate
the data state of the interim analysis at any level of temporal
granularity.

Regulatory compliance presents another scenario in
which it is useful to have a full lineage of both the data and
mapping configuration. For example, a regulatory authority
may require reproduction of a prior report, even after both
the data and mappings have changed. CDW’s ability to
recreate the historical state of mapped data makes it trivial
to respond to such a request.

To make this possible, it is also necessary to maintain a
versioned database of the mapping rules, and we provide
such a mechanism in the CDW application database. Every
map upon editing creates a new map, and the old version is
invalidated. From this audit trail, we can recreate the set of
mapping rules that were active at a given time. While storing
the full history of mapping rules in a relational database
could potentially lead to performance issues if maps are
repeatedly edited, we find that after the initial set-up, the
maps tend to change relatively infrequently. Given the lim-
ited number of maps per domain (<50), the performance
hit of fully versioning the maps is not detectable by the end
user or any associated ELT processes.
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Data blinding

As described above, the NoSQL framework enables the
raw data to be captured as is and presented to down-
stream applications after going through a series of mapping
transformations. One of the maps that we provide is a
functional transformation in which a user’s role is used to
apply an appropriate blinding transformation. For many
applications (see below), data that are mapped from the
HBase source record store are written to an application
mart, which stores multiple copies of the mapped data, with
independent user access rights granted to each of them.

The following is an example of a blinding transforma-
tion that can be applied to a single column of data:

if (user.role == ’Blinded’ && (Date.now()
< new Date(’01-01-2019’)) {

r[’columnToBlind’] = Math.floor
(Math.random() * 3)

}
return r;

In this example, if the ‘user.role’ is ‘Blinded’ and the current
date is before a date in which blinding should end, a specific
column will be fuzzed to contain a random number rather
than showing the actual data. This transformation can be
extended to also do it on a per-cell basis by altering the ‘if’
statement to take into account other values within that row
of data.

The advantage of this approach compared to other
methods, such as blinding in the underlying HBase tables
through technologies like Apache Ranger, is that more
complex rules can be implemented in a manner that is
understandable by anyone with basic programming skills,
and it also enables automatic unblinding of the data when
external conditions change, such as when the database is
locked. This allows for seamless transition of the user from
blinded to unblinded data for interim database locks.

Data access and APIs

Following best practices for service-oriented software
design, we have developed a set of RESTful web services
APIs to facilitate most common data access needs. RESTful
APIs ensure secure data transmissions via Hyper Text
Transfer Protocol Secure (HTTPS) and bring additional
benefits to guarantee performance, scalability, simplicity,
modifiability, visibility, portability and reliability of
reporting applications. We offer two sets of APIs: one
designed to support standard reporting needs and one to
support incremental and cumulative data extracts. Both
sets of APIs can be utilized for ad hoc reporting and could
be readily consumed by many commercial reporting tools,
such as Power BI, Spotfire, Tableau, Qlik, etc.

Data marts

As stated earlier, mapping is done dynamically upon data
request from an external application or process. The
actual mapping process itself is relatively fast, adding only
∼10–20% overhead compared to retrieving the raw data
directly out of HBase/Phoenix. However, the primary search
pattern enabled by this architecture is to retrieve a fully
mapped domain, with little support for more general
queries. For instance, in the example discussed in the
Data mapping section, we would not be able to query
for all records where the domain is LB and the DY value
(the number of days since randomization) was less than
3 because DY needs to be dynamically computed and
with the presence of arbitrary functional transforms, we
cannot do the inverse lookups to make relational searches
efficient.

For performance reasons, it is often desirable to create
application-specific data marts whose schemas are tuned to
the particular query patterns of these applications. While
these data marts offer significant performance benefits,
mapped data from HBase can still be retrieved at a rate
of ∼10 000 rows per second. For example, our Xcellerate
Medical Review application utilizes a data mart to enable
server-side filtering of the data and intelligent transferring
of the desired subset of columns on demand, thus greatly
improving performance. Consider, for example, the scatter
plot illustrated in Figure 4. This dynamic viewer displays
two simultaneous columns of data (in this case, ALT and
AST) and uses two additional columns for filtering and
categorization. The Medical Review application allows the
user to dynamically change which columns are displayed
on the X- and Y-axes and which are used for filtering and
categorization using the dropdown boxes highlighted by the
red arrows. When a different column is selected using these
dropdown boxes (e.g. a different lab value for the X-axis),
the viewer only needs to retrieve that subset of data from the
data mart and not the entire domain, thus greatly reducing
the volume of data that is being transmitted through the
network. This approach speeds up retrieval rates by an
order of magnitude (∼100 000 rows per second) and makes
this application very fast and responsive.

It is worth reiterating that the mapping engine in the
underlying HBase NoSQL store remains sufficiently per-
formant for use cases that do not require highly dynamic
and responsive UIs, such as statistical analysis and report
generation. Fundamentally, there are trade-offs to be made.
Data marts do add additional technical complexity and
rigidity, and even a frequently updating data mart will
exist at some lag relative to the underlying data ware-
house; however, data marts facilitate the construction of
fast interactive applications that otherwise would not be
feasible.
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Figure 4. Representative dynamic scatter plot in the Xcellerate Medical Review application. The interface provides four dropdown boxes to allow

the use to interactively select which columns of data to use for the X- and Y-axes, as well as for filtering and categorization. In the example shown

here, the user has selected RCT4 (ALT) and RCT5 (ALT) for the X- and Y-axes, respectively, country for categorization (so that data points are color

coded differently for each country) and the baseline visit as a filter (so that only lab values collected during the baseline visit are displayed). When

a different column is selected using these dropdown boxes (e.g. a different lab value for the X-axis), the viewer only needs to retrieve that subset of

data from the application-specific data mart and not the entire domain, thus greatly reducing the volume of data that is being transmitted through

the network and therefore increasing the responsiveness of the application.

Physical architecture

The physical architecture of CDW is illustrated in Figure 5.
Every component of the system was designed to be highly
scalable. The ingest layer can be expanded by having
multiple ingest servers. If the number of ingest processes
overwhelms the current HBase configuration, additional
nodes (both master and slave) can be added seamlessly
to increase throughput. Similarly, query throughput can
be expanded by introducing additional transformation
servers. In our current implementation, we dedicate a single
transformation server to support the mapping UI and use
additional load-balanced transformation servers for any
downstream systems that request data from the CDW. This
allows our transformation UI to be responsive even under
heavy request load from those downstream systems.

The loading layer consists of one or more Node.js ingest
servers to parse the incoming files and persist them to
HBase. Ingest servers operate in a master/slave configura-
tion where the master node reads a list of loading jobs
and distributes them to the slave nodes for execution. This
server writes to HBase through Apache Phoenix’s JDBC
driver.

One of the main functions of the ingest engine is to
maintain proper versioning of the data and ensure that any

updates are bumped to a new version. For large amounts
of historical data provided in tabular format such as CSV
and not event feeds like ODM, the system provides an
alternative loader that uses map-reduce to load the data
directly in HBase. While this method is significantly faster,
it does not maintain proper versioning. Thus, if the same
file is ingested N times, there will be N versions of the data
within HBase. For one-time import of historical trials, this
alternative loader represents a viable option.

Once the data are inside HBase, we can operate on it
with standard SQL statements. The underlying schema of
our HBase store consists of a series of columns that function
as metadata. These include references to the study id, the
record id, the id of the ingest job that uploaded the data, the
id of the configuration of the ingest job, a flag for soft delete
and a timestamp. It also includes a domain column that is

akin to a worksheet name in a spreadsheet to handle data
streams that contain multiple schemas such as spreadsheets

and EDC data feeds. The study id provides a link to an
application database that provides additional information.

The record id is a hash that represents the primary key

of the record. This key is important because it allows us to

determine whether a given record has been updated. HBase

automatically maintains versions based upon this primary
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Figure 5. CDW physical architecture.

key and allows the end user to easily query for data that
was current at a given date. Therefore, the following query:

SELECT * FROM "sources" WHERE "StudyRef" = 1;

can be made to return data that reflect the database at a
given date. This provides a simple mechanism to audit the
raw data and show how it changed as data errors were
identified and corrected by data managers during the course
of the trial.

At this point, the data are at rest in their raw form.
However, for these data to be useful in downstream appli-
cations, they need to be mapped to a predefined standard
or to a client’s specification. As described above, there
is a separate web-based mapping application that allows
data managers to specify the transformations and preview
the results (Figure 3). Though not shown here, one of the
advantages of our ELT approach is that it makes it simple
for data managers to copy the transformation configuration
from another trial and preview the results without having to
fully transform all the data. This preview and validation are
integral parts of the system and do not require a separate
code path. In theory, as the number of trials increases,
the likelihood that an appropriate set of transformations
already exists increases. These transformations can serve as
the foundation for additional automation based on artificial
intelligence to assist the data manager by recommending
appropriate maps for a new trial (see below). The trans-
formation layer communicates with downstream systems

through a RESTful API which, aside from the description
of the data requested and the transformations that need
to be applied, also includes a parameter to indicate which
version of the data (by date) and which version of the
transformations should be used.

In the data access layer, upon request, separate Node.js
transformation servers query HBase for the desired raw
data. With the exception of joins, the transformation servers
apply all other data transformations in a streaming man-
ner to take full advantage of the asynchronous nature of
Node.js and minimize the amount of memory required to
process all the records.

To control the ingest and transformation process, we
utilize a central Postgres database that maintains the appli-
cation state for the transformation UI, along with all the
mapping transformations and configurations. Because this
database only maintains configuration information (rather
than the clinical data itself), the volume of data in it is
miniscule. This component is not currently parallelized. The
number of writes to this system is minimal, and while the
number of reads is higher, it is not of a scale that would
require a clustered instance. If that need ever arises, we can
utilize the built-in master/slave replication of Postgres to
achieve the desired performance.

Machine learning for semi-automated mapping

In order to simplify the data mapping process, machine
learning techniques can be used to suggest possible
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matches from the canonical data dictionary. In the current
implementation of our CDW, the mapping transformation
consists of both the field name and the encoding of the
underlying data, and thus the use of machine learning could
assist in determining which mapping transformation should
be applied to a specific column and its content.

Our approach leverages the two primary pieces of infor-
mation available for a given measurement (the field name
and the underlying data itself) to construct a feature vec-
tor for each column which, in turn, serves as input to
a machine learning algorithm to suggest potential encod-
ings. What complicates this process is the fact that data
often come encoded as non-informative codes. For example,
we have found that in many cases laboratory measure-
ments are encoded using lab codes that do not provide
any hint as to the nature of the test and/or the underly-
ing values [e.g. Covance uses test code 001099 to repre-
sent bilirubin (https://www.labcorp.com/test-menu/21111/
bilirubin-total)]. Although the data dictionary is eventually
provided by the vendor, in many cases it is received at
the end of the study, making data canonicalization difficult
while the trial is in flight. However, even in those cases, the
data values themselves can still be informative.

More specifically, we calculate statistical features of the
data both by itself as well as by comparison to a reference
dataset. We combine univariate statistics of a given vari-
able such as the mean, standard deviation, skewness and
kurtosis along with comparative statistical tests against a
curated reference dataset such as t-test, F-test, interquartile
range, Kolmogorov–Smirnov test, etc. These features are
combined with text-based information encoded via Bloom
filters to construct a feature vector that can be used as input
for supervised classification.

We have found that encoding the data into this fea-
ture vector represents the most important step and that,
given this input, even relatively simplistic machine learning
approaches can predict a potential match with a high degree
of accuracy. To test this approach, we ran a pilot where
we tried to identify our internal Covance lab code from
laboratory values received from external labs for three sep-
arate trials, each in a different clinical indication (diabetes,
HIV and oncology) using a k-nearest neighbors (KNN)
classifier along with the feature vector described above. In
this experiment, we did not utilize the field names because
both Covance and the external labs used non-informative
codes. We chose KNN because of its simplicity and the fact
that, in addition to the most probable match, it can also
suggest other likely alternatives if the primary suggestion is
incorrect.

The results revealed that the correct matching code was
included in the five nearest neighbors in 75–89% of the
cases (89% for the diabetes trial, 88% for the HIV trial and

77% for the oncology trial). Again, this was based on the
lab values alone without utilizing any textual information.
In many of the cases where the correct match was not in the
top 5 hits, there were either multiple highly correlated lab
tests having similar ranges and distributions or too many
missing data.

We expect that the addition of informative field names
in conjunction with more sophisticated machine learning,
feature selection and dimensionality reduction algorithms
such as neural networks (20), artificial ants (21, 22, 23),
particle swarms (24, 25), stochastic proximity embedding
(26, 27) and other related algorithms should increase pre-
diction accuracy significantly. This work is currently in
progress, and the results will be presented in a subsequent
publication.

Discussion

Given the rate of growth of biological and medical knowl-
edge, data warehouses designed to store clinical trial data
must be inherently flexible. Most NoSQL document stores
are able to accommodate flexible schemas but are gen-
erally designed around fixed query patterns. In clinical
trials, the inconsistent cadence of interdependent data feeds
and the exploratory nature of many downstream analyses
limit the utility of predefined query patterns. As mentioned
above, not all of the data will arrive at the same time
or in a guaranteed order. Data such as patient identi-
fiers and translation lists may arrive sporadically, making
it difficult to maintain all the relationships between dif-
ferent pieces of data in a generalizable and performant
manner.

A second imperative is the need for horizontal scalability.
As data volumes explode through the use of mobile health,
biosensor and other technologies, the ability to expand
storage and throughput with minimal effort and disruption
becomes an essential requirement. In recent years, tradi-
tional relational database management systems, such as
Postgres, SQL Server and Oracle, have expanded their capa-
bilities to support data that do not fit within a traditional
schema, such as JSON or XML columns. For moderate
data volumes, these schema–agnostic columns may indeed
suffice. Since our system was intended to manage data for
multiple clients and handle data flows from continuous
monitoring devices and other emergent sources, we needed
a solution that could scale horizontally and redistribute
data transparently in order to meet the expected load.
Our architecture allows us to start with a small clus-
ter and scale up as data volumes or data access requests
increase without having to incur any downtime. Given
these two key requirements (flexibility and scalability),
we felt that Apache HBase and Phoenix represented the

https://www.labcorp.com/test-menu/21111/bilirubin-total
https://www.labcorp.com/test-menu/21111/bilirubin-total
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best solution when the project was initiated. By separating
the ingestion, transformation and application layers and
by utilizing an architecture where each of them could be
parallelized in response to load, we were able to meet our
objectives.

One of the consequences of adopting an ELT approach is
that the raw data and the transformations can be versioned
separately. This enables one of the most powerful features of
our system, namely, the ability to apply old transformations
to new data and new transformations to old data, and
recreate the mapped data at any given time point, past or
present, without requiring materialized snapshots. Besides
the obvious storage benefits, this feature enables use cases
that a traditional ETL approach cannot easily meet. For
example, in adaptive trials there is often a need to look at
data that have been recorded prior to a certain date. How-
ever, these data may be erroneous or incomplete for various
operational reasons. What is really needed is the ability
to see data points that were originally captured prior to a
certain date but where cleaned after that date. Additionally,
it is often desirable to see how the data change over time in
this intermediate state as errors are resolved. With an ELT
approach, we can create a set of transformations that filters
data by visit date and apply it to the latest version of that
data or the version that was current at a given time without
having to formally materialize the results.

From an operational perspective, it is also important
to be able to transform the data before the final mapping
specifications are complete. These specifications tend to
evolve over time as errors, oversights or unexpected needs
are discovered during the course of the trial. It is much
easier to address these problems and communicate between
organizations if the output of the transformations can
be seen and iterated on in real time. Whether it is due
to incomplete or ambiguous specifications, unanticipated
signals discovered in downstream applications that require
additional transformations or any other reason, being able
to accommodate these requests and cascade changes to
downstream systems in an agile manner make the process
far less frustrating for all parties involved.

The initial version of CDW was based on an ETL
approach where the transformed data were persisted in
the NoSQL store, rather than being generated on the
fly upon data request from a consuming application or
process. This design was based on the incorrect assumption
that all specifications and data sources would be available
prior to the start of the trial. As a result, this version
proved of limited value; the need to pre-specify all the
transformations was too restrictive and, without live data
flowing through the system, it was difficult to resolve
ambiguities and issues with data quality. Further, when
issues arose during the course of the trial, changing the

ETL process was too cumbersome and time-consuming.
Finally, we discovered that by analyzing one portion of the
data, other questions invariably arose, requiring additional
transformations, and we needed a system that was nimble
enough to deal with these unforeseen situations. This led
to the current design where mappings can be refined in
an iterative manner without having to re-materialize old
snapshots with updated transformation configurations.

This is perhaps the most important takeaway lesson
in our four-year journey that brought us to the current
solution. Aside from the specific technology choices, data
warehouses intended to support real-time decision-making
for ongoing clinical trials must be flexible, scalable and,
above all, operationally viable.

Conclusion

CDW offers a highly scalable, secure and redundant solu-
tion that combines the flexibility of a NoSQL column store
(Apache HBase) with the robustness and expressive power
of a relational query engine (Apache Phoenix). The system
enables powerful and flexible mapping of all key data in a
repeatable way, allowing for reuse of templates from previ-
ous work to minimize manual effort for trial configuration.
The NoSQL back end provides scalability and flexibility,
allowing seamless parallelization and redundancy for per-
formance and disaster recovery. In addition, new types of
records that are expected during the life of the system can
be incorporated with only trivial configuration changes.
A particularly powerful feature of CDW is the ability to
perform data mapping dynamically upon request from an
external application or process, which obviates the need to
maintain multiple copies or configurations of the data and
enables continuous refinement of the mapping specifica-
tions as the study is ongoing. By decoupling the versioning
of the data and the transformations, we can apply historical
maps to current data and current maps to historical data,
which greatly simplifies interim data locks and analyses,
particularly for adaptive trials. By intelligently automating
the data mapping process, the software minimizes the delay
in mapping data generated by investigational sites; enables
timely review and intervention by monitoring staff; reduces
the workload for data management, biostatistics, program-
ming and clinical teams; and brings important practical
benefits across a wide range of clinical and translational
applications.
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