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Heavy metal(loid)s exert selective pressure on microbial communities and evolution of metal resistance
determinants.Despite increasingknowledgeconcerningthe impactofmetalpollutiononmicrobialcommu-
nity and ecological function, it is still a challenge to identify a consistent pattern of microbial community
composition along gradients of elevatedmetal(loid)s in natural environments. Further, our current knowl-
edgeof themicrobialmetal resistomeat thecommunity levelhasbeenlaggingbehindcomparedtothestate-
of-the-art genetic profiling of bacterial metal resistance mechanisms in a pure culture system. This review
provides an overview of the core metal resistant microbiome, development of metal resistance strategies,
andpotential factors driving thediversity anddistribution ofmetal resistance determinants innatural envi-
ronments. The impacts of biotic factors regulating the bacterial metal resistome are highlighted.We finally
discuss the advances in multiple technologies, research challenges, and future directions to better under-
standthe interfaceof theenvironmentalmicrobiomewith themetal resistome.This reviewaimstohighlight
the diversity andwide distribution of heavymetal(loid)s and their corresponding resistance determinants,
helping to better understand the resistance strategy at the community level.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Heavy metal(loid)s are natural constituents of the earth’s crust
and persistent in the environment. Release of heavy metal(loid)s
naturally occurs through weathering, geothermal activities, forest
fires, and microbial activities. However, this process has been
accelerated rapidly by anthropogenic activities, causing the
increased global dispersion of heavy metal(loid)s thereby consti-
tuting a great threat for human and ecosystem health [1,2]. The
widespread heavy metal(loid) pollution is highly coincident with
increasingly advanced civilizations in human history [2]. For
instance, changes of lead in dated deposits were coincident with
the prosperity and eclipse of the Roman Empire (over 2000 years
ago), the Industrial Revolution (over 200 years ago), as well as
the promotion and phase-out of leaded gasoline (over 50 years
ago) [3,4]. Similarly, elevated copper deposition in Greenland ice
could be correlated to ancient mining and smelting activities dur-
ing Roman and medieval times in Europe and China [5]. Nowadays,
anthropogenic heavy metal(loid) emissions into the environment
has exceeded the tolerable baseline of natural cycling in many
ecosystems. Not surprisingly, urbanized areas with intensive min-
ing and industrial activities are typical hot spots of heavy metal
(loid) contamination. The antimicrobial properties of heavy metal
(loid)s, such as silver, mercury, copper, zinc and arsenic, have long
been appreciated before the discovery and widespread use of
antibiotics [6,7]. Some useful products, such as copper alloy, exhi-
bit a high biocidal efficacy against a range of nosocomial patho-
gens, including methicillin-resistant Staphylococcus aureus,
vancomycin-resistant Enterococci, Escherichia coli O157: H7, Pseu-
domonas aeruginosa and SARS-CoV-2 [8–12]. Due to the high
antimicrobial efficacy, heavy metal(loid)s-based antimicrobial
agents or commercial products are broadly applied in public
health, medical treatments, agriculture and livestock industry.
Additionally, metal(loid)s are supplemented in feed for growth
promotion and disease prevention. Over the last decades, elevated
copper and zinc contents have been reported in livestock manures
and sewage sludge worldwide [13–16]. With manure/sewage-
sludge application and irrigation with wastewater, thousands tons
of heavy metal(loid)s enter and accumulate in soils, sediments and
aquatic ecosystems, posing a global threat to agriculture products,
ecosystems and human health [6,17,18].

Enriched heavy metal(loid)s in the environment, either released
from natural sources or anthropogenic activities, constitute a great
selective pressure for the development and spread of heavy metal
(loid) resistance determinants. As a side effect, increased abun-
dance and selection for heavy metal(loid) resistance also boosts
the spread of antibiotic resistance through co-selection [19].
Antimicrobial heavy metal(loid)s target multiple cellular processes
by inducing oxidative stress, destabilizing protein function, impair-
ing the integrity of membranes, interfering with nutrient assimila-
tion, and causing DNA damage [6]. The mechanisms leading to
toxicity might differ and depend on the intrinsic properties of
the individual metal. In some circumstances, different mixtures
of metals can have joint toxic effects. To defend themselves from
metal toxicity, microbes have evolved sophisticated mechanisms
of adaption and resistance. To date, the genetic basis of microbial
heavy metal(loid) resistance has been elucidated in detail from dif-
ferent perspectives [20–24]. Essentially, the diverse determinants
maintaining heavy metal(loid) homeostasis can be divided into
four categories: energy-dependent efflux (ATPase, RND, CDF fam-
ily), enzymatic detoxification (redox and (de)methylation), intra-
cellular sequestration, and reduction of uptake. Other unspecific
mechanisms enhancing bacterial resistance to heavy metal(loid)s
are also well documented. For example, biofilm formation protects
microorganisms from toxic heavy metal(loid)s [25,26]. Bacteria
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secret extracellular polymers or siderophores to trap heavy metal
(loid)s, reduce the bioavailability, and alleviate stress [25,27].
Today, studies of metal resistance mechanisms have facilitated
the development of many fields such as bioremediation of metal-
contaminated environments [28–30], and bio-mining of minerals
from ores or effluents from industrial operations [31]. Additionally,
it is beneficial to elucidate the increasing development of microbial
resistance to heavy metal(loid)s and antibiotics, and to prevent
failure when using antimicrobial products [32,33].

Metal(loid)s are of importance for many biological functions
such as respiration, photosynthesis, carbon and nitrogen cycling
[34–36]; however, most microorganisms and ecological processes
in the environment are vulnerable to heavy metal(loid) pollution
[37]. The resistance and resilience of environmental microorgan-
isms to heavy metal(loid) perturbation rely on many factors. For
example, microbial intrinsic detoxification systems largely deter-
mine their survival in heavy metal(loid) polluted environment.
Other (a)biotic factors influencing heavy metal(loid) toxicity and
microbial fitness may also play a vital role in complex environ-
ments. Despite increasing concerns on the ecological effect of
heavy metal(loid) exposure on the microbial community and
function, several crucial questions on the core metal resistant
microbiome are still not solved. The term ‘‘heavy metal(loid)
resistant microbiome” contains the resistant microbiota, metal
resistome, and their interactions with surrounding biotic and abi-
otic environments. The core heavy metal(loid) resistant micro-
biota is a suite of members shared among microbial consortia
from an individual or a multiple-metal polluted environment.
They are not necessarily found in every environment and resis-
tant to all heavy metal(loid)s, but are fairly constant regardless
of geographical region. Heavy metal(loid) resistome is termed as
‘‘the collection of all genes conferring metal resistance in a given
environment, including both intrinsic genes and acquired resis-
tance genes via horizontal gene transfer (HGT). This review
chronicles the discovery and development of major microbial
heavy metal(loid) resistance determinants, and discuss the pre-
vailing knowledge gap between resistome studies based on indi-
vidual isolates and the microbial community. By investigating
previously published sequencing data, we summarized the profile
of metal-resistant microbiota and resistome distributed in natu-
ral/managed ecosystems, and further interpreted the major biotic
and abiotic factors driving the structure of the core metal resis-
tant microbiome. The influence of heavy metal(loid)s on the
animal-related microbiome is not included. Finally, we discussed
methodological challenges and the future direction of heavy
metal(loid) resistome.
2. Bacterial heavy metal(loid) resistome: From pure culture to
microbiome

Investigation of bacterial heavy metal(loid) resistance mecha-
nisms, which began using several prominent isolates, has been car-
ried out for decades. To date, substantial efforts have been devoted
to identify the genetic basis of heavy metal(loid) resistance, elabo-
rate relevant biochemical pathways, and characterize the struc-
tural basis of critical components in heavy metal(loid) resistance
determinants. Another related goal has been the elucidation of
the evolution, distribution and biological function of these heavy
metal(loid) resistance determinants across prokaryotes. These
studies laid a solid foundation for the systemic understanding on
how bacteria deal with toxic heavy metal(loid)s and maintain
homeostasis. Here, we summarize the discovery of several crucial
heavy metal(loid) resistance systems, including mercury, arsenic,
copper, silver, zinc, cobalt, nickel and chromate (Fig. 1).



Fig. 1. Summary of heavy metal(loid) resistance mechanisms. A. A timeline for highlighting the discovery of several important heavy metal(loid) resistance determinants.
Related references are cited when elaborating resistance mechanism of each heavy metal(loid) below. B-E. Schematic diagram showing heavy metal(loid) resistance
mechanisms in Gram-negative bacteria. All proteins are colored by operon. B. Mercury and arsenic resistance mechanism. The mer operon, which is regulated by MerR or
MerD, confers bacterial mercury resistance [40,48–50,52]. Hg(II) enters the cell through transporters MerP, MerT and MerC [45–47], and is reduced by a mercuric reductase
MerA [41,42]. Methylation and demethylation of Hg(II) are mediated by HgcAB [53] and MerB [43,198], respectively. As (III) combined with ArsR (repressor protein) triggers
expression of the ars operon, which contributes to bacterial arsenic resistance [59,61–65,199,200]. As(V) is reduced to As(III) by arsenate reductase ArsC/Acr2 [62]. As(III) is
either pumped out directly via ArsB/Acr3/ArsK, or bound to the ArsD chaperone and delivered to the ArsAB ATP-dependent efflux pump. ArsM and ArsI are responsible for As
(III) methylation and demethylation, respectively [69,70]. Detoxification of MAs(III) includes oxidation of MAs(III) to less toxic MAs(V) by ArsH [71], or efflux via ArsP and
ArsK [66,67,72]. ArsJ is responsible for organoarsenical efflux [68]. C. Copper and silver resistance mechanisms. The cut operon involves in copper uptake (CutA), delivery
(CutC), intracellular storage (CutE), and efflux (CutF) [201–203]. Several mechanisms handle periplasmic copper detoxification, including the CusCFBA efflux system
[83,86,87,166,204–206], a multicopper oxidase CueO, as well as two homologous CopABCDRS [73–75,207–210] and the plasmid-borne PcoABCDERS systems [77,79,80]. The
P-type ATPase CopA is responsible for cytoplasmic Cu(I) efflux. The sil operon, which is regulated by a two-component regulator SilRS, mediates bacterial silver resistance
[91]. D. Zinc, lead, cadmium and cobalt resistance mechanisms. Three types of transporters involves in Zn(II)/Cd(II)/Pb(II)/Co(II) efflux, including the RND transporter CzcCBA
[92,93], cation-translocating P-type ATPases ZntA, ZiaA and CadA [95,96,98], and CDF transporters ZitB or CzcD. SmtA and ZraP serve as metallothioneins involving in
cytoplasmic and periplasmic Zn(II) binding, respectively [99,211,212]. The Znu system is a high-affinity Zn(II) uptake system. The pbr operon confers bacterial lead resistance
[213,214]. E. Nickel, cobalt, cadmium and chromium resistance mechanisms. The cnr operon and ncc operon export Ni(II)/Co(II)/Cd(II) out of the cell [94,215]. A permease
NreB and efflux protein RcnA mediate Ni(II) or Co(II) export [216,217]. The nik operon is responsible for Ni(II) uptake [218,219]. Cr detoxification includes Cr(VI) efflux via the
ChrA transporter [103–105], and Cr(VI) reduction to less toxic Cr(III) through several reductases such as ChrR, YieF and NsfA [101,102].
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Mercury resistance was the first thoroughly studied bacterial
heavy metal(loid) resistance system, which started from discover-
ing mercurial resistance R-factors in clinical isolates and followed
with the generation of mercury hypersensitivity mutants in the
late 1960s-1970s [38–40]. Later, genes involved in mercury resis-
tance were gradually elucidated, including mercuric reduction
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(merA) [41,42], organomercurical cleavage (merB) [43,44], mer-
curic ion transport (merP, merT, merC) [45–47], regulator (merR
and merD) [40,48–52], and mercury methylation (hgcA and hgcB)
[53]. Fig. 1B shows the schematic representation of mercury resis-
tance mechanism. Detailed information on mercury resistance was
discussed in other excellent reviews [54,55].
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Arsenic biotransformation and transport is another well-
studied resistance system, which was mainly conducted by Rosen
and colleagues since 1981/1982 [56,57]. The ars operon with many
diverse variants is widely distributed in nearly all Prokaryotes to
defend against ubiquitous arsenic in the environment [58]. Arsenic
resistance mechanisms can be divided into inorganic and organic
arsenic detoxification systems (Fig. 1B). The molecular mechanism
of inorganic arsenic detoxification, including the typical arsRDABC
operon [59–64] and acr3 [65], was initially studied in several
pioneer R plasmids. With the massive application of
organoarsenic-containing herbicides and pesticides worldwide
[1], organoarsenical detoxification pathways were soon identified
in bacteria isolated from organoarsenic contaminated environ-
ments. The detoxification system is composed of ArsP responsible
for Roxasone (Rox) and Monomethylarsonous acid (MMA(III))
efflux [66,67], ArsJ conferring 1-arseno-3-phosphoglycerate
(1As3PG) efflux [68], and enzymes responsible for biotransforma-
tions of organic arsenicals encoded by arsM, arsH and arsI
[69–71]. The newly reported efflux transporter ArsK is responsible
for As(III), Methylarsenite (MAs(III)) and Rox(III) resistance [72].

Copper is one of the essential but also toxic metal(loid)s for
microorganisms. The intracellular copper homeostasis is strictly
controlled via delicate mechanisms (Fig. 1C). The plasmid-born
cop operon was initially identified in Pseudomonas syringae isolated
from Californian tomato fields using copper as an antifungal agent.
CopABCDRS in P. syringae is the first identified plasmid-encoded
system involving the sequestration of copper in the periplasm
and outer membrane [73–75]. Chromosomal homologs of copABCD
were also identified in P. syringae, conferring an enhanced copper
resistance [76]. Meanwhile, another plasmid-encoded pco operon
was identified in E. coli strain isolated from the piggery, where cop-
per was used as a feed additive in Australia [77]. The pco operon is
co-located with the sil operon, constituting a larger operon with a
high copper resistance [78]. The basic pco operon pcoABCDRS in
E. coli is homologous to cop operon in P. syringae [77,79,80]. Addi-
tional cop genes, assembled as copVTMKNSRABCDIJGFLQHE, were
later identified in Cupravidus metallidurans CH34 megaplasmid
pMoL30, handling both periplasmic and cytoplasmic copper detox-
ification [81]. In addition to plasmid-encoded pco systems, there
are three major chromosomal determinants responsible for copper
resistance in E. coli. Copper-translocating P-type ATPase, named as
CopA, is essential transporter for cytoplasmic Cu(I) efflux in E. coli
[82]. Other independent copper resistant systems, including cueO
and cus operon, are responsible for periplasmic copper detoxifica-
tion. The multicopper oxidase CueO contains similar methionine-
rich regions as present in PcoA in E. coli and CopA in P. syringae,
and could oxidate the toxic Cu(I) into less toxic Cu(II) in the peri-
plasm [83–85]. CusCFBARS is another important system for
periplasmic copper detoxification under both aerobic and anaero-
bic conditions [83,86–88]. Microorganisms lacking CusCFBA homo-
logs, such as many strains of Salmonella and Yersinia, possess
alternative CueP as functional substitutes [89,90]. In the case of sil-
ver, the molecular basis of silver resistance, the sil operon, was well
studied in Salmonella [91]. The sil operon is regulated by a two-
component membrane sensor and regulator SilRS. It consists of
two parallel efflux pumps: a specific Ag(I)-translocating P-type
ATPase (SilP) and a cation/proton antiporter (SilCBA) with SilE
serving as silver-specific periplasmic binding protein (Fig. 1C).

As is the case with copper, zinc, cobalt and nickel are also essen-
tial micronutrients required for microorganisms, but are toxic
when in excess. CzcCBA (for cadmium, zinc and cobalt resistance)
and CnrCBA (Co and Ni resistance) are two homologous divalent
cation efflux systems, which were initially reported in Alcaligenes
eutrophus (today Cupriavidus metallidurans CH34 plasmid pMOL30
[92,93]. Ncc is the third divergent divalent cation resistance system
for nickel, cadmium, and cobalt resistance [94]. Additionally, ZntA
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from E. coli and CadA from Staphylococcus aureus are two important
cation-translocating P-type ATPases catalyzing the efflux of zinc,
lead and cadmium [95–97]. Other systems, such as zinc exporter
ZiaA in Synechocystis [98] and metallothionein SmtA [99], also con-
tribute to zinc homeostasis (Fig. 1D).

Chromate is a highly toxic metal widespread in the environ-
ment. Bacterial chromate reduction could convert the soluble and
toxic Cr(VI) to insoluble and less toxic Cr(III), which is vital for
environmental bioremediation [100]. Chromate reduction is con-
ducted by several reductases, such as ChrR, YieF, NfsA, and lipoyl
dehydrogenase (LpDH) [101,102] (Fig. 1E). ChrA is a chromate
efflux transporter found in plasmids of P. aeruginosa [103] and C.
metallidurans (formerly known as Ralstonia metallidurans, or A.
eutrophus) [104,105]. Additional chr determinants, including chrI-
BACEF on plasmid pMOL28 and chrBAF on the chromosome, were
further identified in C. metallidurans [106]. These determinants
are widespread on both plasmids and chromosomes.

The natural environment is composed of an enormous abun-
dance and diversity of microorganisms with various physiological
properties and differing tolerance to pollutants. When encounter-
ing heavy metal(loid) stress, the discrepancy in species adaption
to heavy metal(loid)s may lead to a dramatic shift within natural
populations and their ecological function. The interference and
re-construction of the population will not only be accompanied
with a succession of the microbiome, but will also affect the distri-
bution and longevity of specific resistance genes in the environ-
ment. Elaborating the response and development of core
resistant microbiomes and resistome under heavy metal(loid)
selective pressure is essential to understand the ecological impact
of heavy metal(loid)s on microbial succession and their potential
environmental risks. However, compared to molecular mecha-
nisms investigated in pure culture isolates, our knowledge on the
microbial resistome to heavy metal(loid)s at the community level
has lagged far behind. The fundamental mechanisms by which
microbial populations adapted to heavy metal(loid) stress and
their preference for resistance strategy in the natural environment
remain virtually unknown. The knowledge gap could be partly due
to the diverse microbes and methodological challenges, which will
be discussed in the sections below.
3. The core heavy metal(loid) resistant microbiota

Microorganisms drive vital biogeochemical processes, including
carbon turnover, nutrient cycling and pollutant transformation.
However, they are highly sensitive to heavy metal(loid)s compared
to animals and plants in the same environment [107]. In particular,
prokaryotic populations, in terms of biomass, activity and diver-
sity, are more vulnerable to heavy metal(loid) pollution than
eukaryotes [108,109]. Thus, microorganisms are frequently consid-
ered as potential ecological indicators for heavy metal(loid) pollu-
tion [110]. With advances in Next-Generation Sequencing (NGS), a
growing number of studies have illustrated the impact of heavy
metal(loid) pollution on microbial communities in many ecosys-
tems [111–115]. However, our knowledge regarding community
changes under heavy metal(loid) pollution is mainly from studies
at a local scale; little is known about the core resistant microbiome
at a scale across different ecosystems.

Here, we retrived metadata from published studies in the Web
of Science database to give an overview on the profile of core heavy
metal(loid) resistant microbiota and their distribution pattern. We
only focus on the influence of heavy metal pollution on microbiota
and resistome in natural environments. Our search terms included
‘‘microbial community” and ‘‘heavy metal”. Research articles were
checked manually to remove duplicates, irrelevant articles, and
articles without accession number. We use a bacterial dataset with



Fig. 2. Profile of the core heavy metal(loid) resistant microbiome. A. Hierarchical cluster of samples retrieved from studies on heavy metal(loid) polluted environments.
Cluster was analyzed based on the Bray-Curtis dissimilarity of relative abundance of amplicon sequence variants (ASVs) at the phylum level. Branches of the tree are colored
according to habitat. Colors in the outer ring represent detailed information including both habitat and location. B. The mean relative abundance of top 10 phyla across
samples from different environments. The remaining phyla are classified into ‘‘Others”. Community composition is clustered according to the Bray-Curtis dissimilarity of the
mean relative abundance. Silva 138.1 was used for taxonomy classification. C. Boxplot showing a difference in richness among different groups (P < 0.001, Kruskal-Wallis
test). D. Non-metric multidimensional scaling (NMDS) analysis based on the unweighted-UniFrac distance of ASV matrix showing changes in community structure in
different groups (PERMANOVA, P < 0.05).
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V3–V4 hypervariable regions of the 16S rRNA gene to illustrate the
preliminary profile of the core microbiota under heavy metal(loid)
polluted environments (Fig. 2). Eventually, 186 samples from 5
independent research articles met the criteria and were selected
for analysis (Table S1). Proteobacteria, Chloroflexi, Acidobacteria,
Actinobacteria, Bacteroidetes, Gemmatimonadetes, Nitrospirae,
Desulfobacterota, Myxococcota and Firmicutes were identified as
the dominant phyla persistent in a variety of heavy metal(loid)
contaminated environments. Proteobacteria was the most wide-
spread and ubiquitous bacterial group in the environment. It con-
tains both slow-growing oligotrophic and fast-growing
copiotrophic taxa with extensive metabolic properties and wide
niche breadth, enabling Proteobacteria to occupy a wide range of
habitats [116]. Furthermore, bacteria belonging to Proteobacteria
possess a variety of heavy metal(loid) resistance determinants.
Metagenome analysis of river sediments with chronic heavy metal
pollution identified the most variety and abundance of heavy
metal(loid) resistance genes in Proteobacteria, followed by Acti-
nobacteria and Bacteroidetes [117,118]. With the capability of
strong adaption and tolerance, Proteobacteria has been reported
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to be a predominant heavy metal(loid) resistant phylum in many
polluted environments [119–121]. The importance of Proteobacte-
ria as a core heavy metal(loid) resistant phylum is also confirmed
in studies using isolation-based methods. By compiling literature
related to heavy metal(loid) resistant isolates from various envi-
ronments, we found over 66% of studied isolates belong to Pro-
teobacteria, most of which were Gammaproteobacteria (52.84%)
(Fig. 3). Acidobacteria is another prevalent population present in
heavy metal(loid) polluted areas. As k-strategists, Acidobacteria
species grow slowly, but are well adapted to acidic and olig-
otrophic niches due to their extensive metabolic versatility and
acidic tolerance [122]. Therefore, acidification and reduced avail-
ability of nutrients in heavy metal(loid) polluted areas favor the
survival of Acidobacteria. Other abundant phyla, such as Chlo-
roflexi and Nitrospirae, are reportedly involved in nitrogen cycling
in heavy metal(loid) polluted sites [123].

The distribution and relative abundance of dominant phyla vary
greatly with environmental habitats, as reflected in the clustering
of all samples (Fig. 2A) and in isolation-based results (Fig. 3). Sam-
ples from heavy metal(loid) contaminated paddy soil and sediment



Fig. 3. Habitat and taxonomic distribution of heavy metal(loid) resistant bacteria isolated from polluted environments. A total of 370 research articles, which are correlated to
the isolation of heavy metal(loid) resistant bacteria from different environments, were collected from the Web of Science using keywords ‘‘(metal resistant bacteria) AND
(isolation)”. Information on the isolation environment, taxonomic and number of isolates were retrieved. Most heavy metal(loid) resistant strains were isolated from soil,
water, and sediments (82.33% of collected articles). The majority of isolates belong to Proteobacteria (66.07%). Others represent habitats including the root nodules, mosses,
copper alloy coins, fly ash, slag, mine tailing and uranium ore.
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show a comparable bacterial composition at the phylum level. In
dryland, we observed a higher relative abundance of Proteobacte-
ria and Actinobacteria, but less Chloroflexi than those in paddy soil
and sediment. Communities from the mining area and sludge are
distinct. In these habitats, Proteobacteria are less abundant than
in other environments, while other phyla such as Actinobacteria,
Chloroflexi, or Bacteroidetes become dominant (Fig. 2B). The taxo-
nomic diversity of core heavy metal(loid) resistant microbiomes
varies significantly with environmental habitats (P < 0.001), where
the mining area and sludge show the lowest diversity (Fig. 2C). The
non-metric multidimensional scaling (NMDS) ordination revealed
that samples from sediment, sludge and mining sites possess dis-
tinct bacterial communities compared to other habitats. Samples
from paddy soil overlap extensively regardless of the geographical
location, but the microbiome is separate from dryland samples
(Fig. 2D). These results suggest that environmental habitat has a
strong impact on heavy metal(loid) resistant microbiome, which
exceeds the effects from heavy metal(loid)s (types and concentra-
tion) and geographical locations.
4. Microbial responses to heavy metal(loid) pollution

4.1. Contrasting taxonomic response

Although the overall shift in bacterial composition under heavy
metal(loid) pollution has been consistently reported [124–131],
contrasting responses are observed when comparing specific phyla
across studies. For instance, the relative abundance of Actinobacte-
ria increased in metal contaminated soil from Hunan, China [132],
and in nickel polluted rhizosphere soil in Greece [133], but
decreased in metal-contaminated paddy soils from Zhejiang, China
[134]. Similar conflicting results were also found for Proteobacte-
ria, where a steady decline in the relative abundance of Proteobac-
teria was observed along a copper gradient in grassland soil,
Denmark [135], but a consistent or increased abundance was
reported in other field studies [115,136]. These inconsistent
responses not only reflect the complex interaction between heavy
metal(loid)s and diverse bacterial communities, but also indicate
heavy metal(loid) stress could not be the only key factor shaping
the core resistant microbiome.
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Many variables could contribute to bacterial community shifts
under heavy metal(loid) pollution, including profiles of heavy
metal(loid)s (e.g., types, toxicity, pollution level, exposure history
and synergistic effects), environmental factors, and the legacy
effect of the local microbiome. For instance, chronic or short-
term exposure to the same metal pollutant led to an opposite trend
in Actinobacteria abundance [134]. In addition to heavy metal
(loid)s, other abiotic factors, such as pH, organic matter and nutri-
ent content, directly or indirectly affect microbial responses
through influencing the fate and toxicity of heavy metal(loid)s
entering the environment [108,137], or affecting the physiological
status of bacterial cells. Some studies indicate that even in highly
contaminated environments, environmental factors, especially
nutrient availability, could mitigate the selective pressure of heavy
metal(loid)s on the microbial community, especially in the
nutrient-limited marine environment [122,138,139]. Additionally,
physiological traits and intrinsic resistance of the initial microbial
community are of importance for taxonomic responses under
heavy metal(loid) stress. Microbial traits such as life-history strat-
egy, stress tolerance, physiological plasticity, dormancy potential
and detoxification systems are directly related to microbial com-
munity resistance to heavy metal(loid)s [140]. For example, micro-
bial species with the ability to produce spores/myxospores or
generate a robust biofilm are prevalent in soil with high copper
pollution [141]. Further, horizontal gene transfer of heavy metal
(loid) resistance genes could enhance community tolerance with-
out phylogenic changes. It should be noted that taxonomic
responses to heavy metal(loid) perturbation is usually quantified
by the relative abundance of taxa within a community. It better
reflects the rank order of taxa rather than changes in real numbers.
Certain taxa with the same absolute abundance in different com-
munities could display different trends in relative abundance
[142]. Therefore, after an investigation of overall community com-
position changes through amplicon sequencing, absolute quantifi-
cation of specific taxa is highly recommended to access their
responses to heavy metal(loid)s.

4.2. Microbial diversity patterns under heavy metal(loid) stress

Higher microbial diversity is insurance for resistance and resili-
ence of microbial community and function (the insurance hypoth-
esis) [143]. Therefore, microbial diversity is a commonly used



Fig. 4. Potential responses of microbial diversity, taxonomic composition, and function to heavy metal(loid) contamination. A. Shifts of microbial diversity along with heavy
metal(loid) gradients. Microbial diversity could either decrease (upper), increase (middle), or remain constant (bottom) along with heavy metal(loid) gradients. B. Potential
impacts of heavy metal(loid)s on community composition. Heavy metal(loid) exposure selects specific metal resistant taxa, leading to a decrease in diversity. Moderate-heavy
metal(loid) loading or low concentration of essential metals benefit the growth of various taxa, which is accompanied by an increase in microbial diversity. Either unaffected
microbial composition or turnover of dominant taxa under heavy metal(loid) exposure will lead to a constant microbial diversity. C. Relationship between microbial
diversity/taxonomic community and function in heavy metal(loid) polluted environment. Increased microbial diversity may lead to increase, decrease, or constant in
functional profiling (upper). Coupled and uncoupled patterns between microbial community and function could be due to horizontal gene transfer, functional redundancy,
and changes in rare taxa.
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index for heavy metal(loid) polluted environments. However, con-
trasting observations always appear when assessing the impact of
heavy metal(loid)s on microbial diversity and functionality in both
terrestrial and aquatic ecosystems. Microbial diversity could either
decrease, increase, or remain constant along with heavy metal
(loid) gradients (Fig. 4A). In general, reduced diversity is frequently
observed in studies with severe heavy metal(loid) contamination,
or short-term exposure experiments in the laboratory. Strong
selection occurs by heavy metal(loid)s purging sensitive taxa, lead-
ing to the proliferation of a few specific resistant groups and result-
ing in a subsequent decrease in diversity. In other cases, exposure
to a low concentration of essential metals such as copper and zinc
will promote growth of a wide range of bacteria, which is accom-
panied by an increase in microbial diversity. Previous studies have
shown that the diversity patterns of soil and benthic prokaryotic
community in metal polluted environments followed the interme-
diate disturbance hypothesis [123,144]. Alternatively, microbial
diversity may not be affected, even under chronic and high levels
of pollution [145]. The constant diversity could be due to the
strong resistance and resilience of the initial community, the
capacity to acquire resistance through horizontal gene transfer,
or turnover of dominant taxa without influencing microbial diver-
sity [133,146,147]. Further, different responses of the rare bio-
sphere to heavy metal(loid) pressure could result in changes in
microbial diversity in different ways. The rare biosphere possesses
huge genetic diversity and contributes greatly to microbial
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diversity, functionality, and ecosystem stability [148]. When
encountering a disturbance, rare species susceptible to heavy
metal(loid) toxicity will be eliminated. Extinction of highly diverse
rare species leads to a severe decline of microbial diversity
[37,149]. For example, a previous study showed heavy metal pollu-
tion reduced more than 99.9% of the bacterial diversity via elimi-
nating rare taxa in pristine soil [37]. However, the rare biosphere
may contain taxa that are tolerant to heavy metal(loid) pollution.
These rare taxa could remain rare under adaptive condition, or
become dominant when the conditions are favorable [150,151],
leading to different responses of microbial diversity.

Links between microbial composition, diversity and functional-
ity are complex (Fig. 4B and C). Liu et al. reported consistent
responses of microbial taxonomic and functional traits with
increased mercury content at the regional scale [123]. However,
uncoupled patterns between microbial community and function
are also observed under heavy metal(loid) pollution. The underly-
ing mechanisms for the discrepancy in microbial community struc-
ture and function after disturbance have been interpreted in
another review [152]. Essentially, the microbial community with
a high functional redundancy is relatively stable. In this case, the
lost function due to a taxonomic shift will be offset by other taxa
with similar functional traits. The opposite pattern (small compo-
sitional change but large functional change) often occurs when the
microbial community can acquire mobile genetic elements
conferring function. Alternatively, metal stress could inhibit rare
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but keystone species responsible for important functional pro-
cesses, leading to great changes in function rather than in
composition.
5. Evolution and distribution of heavy metal(loid) resistance
genes in the environment

Due to their ability of rapid adaption, microbes are considered
as living fossils recording contemporary environmental changes
such as heavy metal(loid) pollution [153]. Heavy metal(loid)s were
high in primordial anoxic oceans and hydrothermal vents where
life likely first arose, presenting one of the first challenges for early
microorganisms. Therefore, microbial heavy metal(loid) resistance
determinants are believed to be as ancient as the evolution of life
on Earth. With the rise of oxygen during the Great Oxidation Event
(GOE, 2.4 Bya), more diverse heavy metal(loid) species appeared
and became bioavailable [154,155]. Bacteria, in turn, evolved novel
enzymatic systems to accommodate dramatic changes in heavy
metal(loid) toxicity. Therefore, the current heavy metal(loid) resis-
tance determinants are thought to be the consequence of billions
of years of selection by geological heavy metal(loid)s and later by
anthropogenic influence. This is verified by a recent study showing
the expansion of arsenic resistance systems from reduced arsenic
detoxification to diverse ars operon conferring arsenic resistance
to both reduced and oxidized arsenic species during/after the
GOE [153].

Vertical inheritance, horizontal gene transfer, gene duplication,
and mutation are major mechanisms involved in the evolution of
heavy metal(loid) resistance genes in contaminated environments.
As we have discussed above, heavy metal(loid)s provide a selective
advantage for resistant populations, leading to the thriving of
specific populations. The inherent resistance determinants pos-
sessed by surviving populations could be passed down to subse-
quent generations, and thereby become abundant in the polluted
environment. For instance, enriched Rhodanobacter contributes to
the overabundance of multiple genes encoding heavy metal(loid)
resistance determinants in uranium-contaminated groundwater
[156]. A Geobacter population with the gene hgcA encoding
enzymes responsible for mercury methylation was shown to dom-
inate mercury methylating communities in metal-affected paddy
soil and lake sediments [157,158]. Horizontal gene transfer is also
of importance for the development of heavy metal(loid) resistance.
It has been suggested that heavy metal(loid)s modulate
conjugation-mediated horizontal gene transfer in a type and
dose-dependent manner [159]. In natural and anthropogenic envi-
ronments, re-assembly of gene clusters or genomic islands confer-
ring heavy metal(loid) resistance is commonly identified in isolates
from heavy metal(loid) enriched environments such as mining
sites, livestock farms, hospitals and sewage [160–162]. These
reassembled clusters contain multiple resistance operons flanked
with mobile genetic elements, conferring a robust resistance to
multiple heavy metal(loid)s. For instance, copper homeostasis
and silver resistance island (CHASRI), is widely present in Enter-
obacteriaceae members. CHASRI arose from the assembly of sev-
eral pre-existing cus and pco clusters in E. cloacae, Pseudomonas
spp. and Shewanella spp., but has a distinct evolution path from
inherited clusters. Recombination of multiple types of genes
encoding functions conferring copper resistance enables a robust
copper resistance across (an)aerobic environments. Interestingly,
CHASRI diversification highly coincided with historically anthro-
pogenic copper production during the Roman Empire, the Song
Dynasty and the post-Industrial Revolution, indicating anthro-
pogenic impacts on the generation of novel genetic clusters
[161]. In addition, the generation of genetic variation by a point
mutation in existing resistance genes is another way to accelerate
101
heavy metal(loid) detoxification. For example, previous studies
observed a 10-fold decline in abundance of the merA gene, but a
constant abundance of housekeeping genes, from the old to newly
deposited sediments with higher mercury content. Instead of
increasing gene copy numbers, bacteria living in the newly depos-
ited sediment evolved more effective mercury reductases (MerA)
by replacing one amino acid. Not surprisingly, the rapid evolution
of merA again coincided with changes in anthropogenic mercury
emission during the Industrial Revolution [163,164].

Genes encoding heavy metal(loid) resistance determinants are
prevalent across different taxonomic groups. However, an uneven
distribution and a great divergence of these heavy metal(loid)
resistance determinants are present in a host-dependent way.
Metagenome analysis of environmental and human-related sam-
ples displayed a strong correlation between metal resistance genes
richness and bacterial genus richness [165]. This result is also sup-
ported by investigating the distribution of heavy metal(loid) resis-
tance genes on bacterial genomes. For instance, genes encoding
CusB and CusF-like proteins are only prevalent in Proteobacteria
groups, particularly in alpha-, beta-, delta- and gamma- Proteobac-
teria [166]. Even for highly homologous genes (e.g., mer and ars
operon), variations still exist across bacterial hosts. For example,
the merB gene encoding an organomercurial lysase was identified
in about 50% of Pseudomonas mer operons [167], but rarely found
in E. coli [39]. Uneven distribution of other homologous operons
is observed in different bacterial groups, such as the copper resis-
tance operon cop in Pseudomonas and Xanthomonas, and pco operon
in E. coli [22]. Further, horizontal gene transfer results in a random
distribution of genes encoding heavy metal(loid) resistance deter-
minants across phylogenetic boundaries, generating a more com-
plicated distribution of heavy metal(loid) resistance genes in
natural environments.

Considering the discrepancy in microbial phylogenetic commu-
nity structure in different habitats, we propose that the distribu-
tion of genes encoding heavy metal(loid) resistance determinants
may vary between environmental habitats, while horizontal gene
transfer could lessen the correlation between heavy metal(loid)s
resistome and phylogenetic signature [168]. This hypothesis is
supported by several studies investigating resistance strategies to
heavy metal(loid)s. For instance, metagenome comparison across
various environmental habitats showed a niche differentiation in
both taxonomic composition and heavy metal(loid) resistome
[165]. In this study, samples from external environments (e.g., soil,
water, sediment, and smog, etc.) contain more abundance, higher
richness, but lower beta diversity of biocide/metal resistance genes
than human and animal-related samples. This result indicated the
natural environment represents a large reservoir harboring heavy
metal(loid) resistance genes. However, the heavy metal(loid) resis-
tome is not always coincident with taxonomic profiles. For exam-
ple, biocide and metal resistome in different sites of the human
body (an exception being oral samples) displayed overlap,
although the different sites have distinct taxonomic profiles
[165]. Niches differentiation of the heavy metal(loid) resistome
was also observed when comparing terrestrial, mangroves and
ocean ecosystems [169], even in soil with different physicochemi-
cal properties [170]. As the main reservoir of various anthro-
pogenic pollutants, estuarine and marine sediment could
represent specific niches for the resistant microbiome [131]. For
instance, previous studies identified the presence of divergent
mer genes in estuarine and marine environment compared to the
well-characterized mer operons from terrestrial, clinical and fresh-
water environments [171,172].

Environmental physicochemical properties (e.g., pH, organic
matter, (an)aerobic status, Fe-Mn oxides, etc.) were shown to affect
heavy metal(loid) speciation, bioavailability, and transport in the
environment, leading to discrepancies in heavy metal(loid) resis-
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tomes. A previous study showed that soil with low pH favors genes
encoding functions involved in metal acquisition and multiple
heavy metal(loid) and antibiotic efflux systems [170]. The uneven
distribution of heavy metal(loid) resistance genes could be due to
the enhanced impact of toxicants under low pH conditions. Addi-
tionally, heavy metal(loid) efflux by the cation diffusion facilitator
(CDF) is pH-dependent and driven by a proton motive force.
Increased H+ at a low pH environment could affect the efflux of
CDF transporters (e.g., ZitB and CzcD) [173]. The impact of environ-
mental properties was observed in the mercury transporter MerC,
where the uneven distribution ofmerC in brackish water and fresh-
water could be related to the effects of Na+ on Hg2+ transport [174].
Together, discrepancies in environmental properties and initial
microbial community in different habitats may result in niches-
preference of the core heavy metal(loid) resistome. However, the
distribution pattern, driving factor and mechanism behind the eco-
logical division of heavy metal(loid) resistance genes remain virtu-
ally unknown. Further studies are needed to investigate the
development of resistance strategies in different niches and under-
lying reasons.

6. Overlooked biotic factors shaping bacterial heavy metal(loid)
resistome

There is no doubt that geographic and anthropogenic activities
contribute greatly to the emergence, persistence, and evolution of
bacterial heavy metal(loid) resistance in the environment.
However, compared to the increased knowledge on the impact of
Fig. 5. Selection of microbial interactions in heavy metal(loid) resistant bacteria. A. Ba
without detoxification system. MAs(III): methylarsenite; AST: arsinothricin. B. Siderophor
host innate immune defense against pathogens. D. Selection of protozoan predation for
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abiotic and anthropogenic factors, the role of microbial interac-
tions in maintaining metal resistance is largely ignored. The evolu-
tionary history of microbial interaction could be tracked back to
3.5 billion years ago [175]. In the figuratively speaking microbial
jungle, heavy metal(loid)s are used as an offensive weapon against
competitors or predators. Thus, the intense interaction among bac-
teria or even across microbial kingdoms could represent a long-
term and robust driver for the development of the heavy metal
(loid) resistome. In addition, heavy metal(loid) pollution altered
microbial interactions, which could further change host-
associated microbiota and resistome. As reported in previous stud-
ies, heavy metal pollution affected the interaction between hetero-
trophic bacteria and cyanobacteria from estuary [176], and
archaea-bacteria interaction in long-term contaminated soil
[132]. In this section, we will provide insight into heavy metal
(loid)-mediated interactions and selection for heavy metal(loid)
resistant bacteria (Fig. 5).

The secretion of antimicrobial compounds, such as antibiotics,
is one of the critical competitive strategies employed by microor-
ganisms to kill or suppress the growth of competitors. Microorgan-
isms were shown to produce secondary metabolites with
antimicrobial activity to maintain a competitive advantage under
nutrient-limited conditions [177]. A recent study proposes an
antibiotic property of methylarsenicals, including MAs(III) (methy-
larsenite) and AST (arsinothricin), in bacterial warfare for domi-
nance. Some microbial groups which are capable of reducing
MAs(V) (methylarsenate) to MAs(III), utilize the produced toxic
MAs(III) to inhibit or kill off competitors without corresponding
cteria secret toxic methylarsenicals (MAs(III) and AST) to kill off their competitors
e-mediated interspecies cooperation and competition. C. Heavy metal(loid)-mediate
bacterial heavy metal(loid) resistance.
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detoxification system [178]. To survive in a MAs(III)-mediated bat-
tle, microbial species have evolved several MAs(III) detoxification
mechanisms including re-oxidation of MAs(III) to less toxic MAs
(V) by ArsH, degradation of MAs(III) to less toxic As(III) by ArsI,
or efflux MAs(III) out of the cell through ArsP and ArsK. AST is
another broad-spectrum methylarsenical antibiotic synthesized
by some soil bacteria. Bacteria with the arsN gene could detoxify
AST, thereby having a competitive advantage over sensitive bacte-
ria [179].

Competition for micronutrients such as iron is another metal-
mediated strategy in microbial interaction. Bacteria secrete sidero-
phores to scavenge iron in iron-limited environments for growth
and function. To date, siderophore-mediated interspecies coopera-
tion and competition have been shown as critical drivers for bacte-
rial co-evolutionary dynamics in nature and infectious settings
[180–183]. Bacteria producing high-iron-affinity siderophores are
more competitive than those producing low-iron-affinity sidero-
phores under iron-limiting conditions. A recent study reports the
suppression of pathogens by the rhizosphere microbiome through
the depletion of iron from pathogens [184]. Simultaneously, the
use of heterologous siderophore also provokes competition
between siderophore producers and cheaters taking up heterolo-
gous siderophore without pay. Further, the evolutionary arms race
for iron is also of importance in host-pathogen interactions. The
iron restriction is one of the main mechanisms of the host immune
response against invading pathogens. To inhibit pathogen growth
and repair, host cells evolve a series of iron-withdrawal mecha-
nisms counteracting iron acquisition pathways in pathogens [185].

The other typical example of an interaction involving heavy
metal(loid)s is the host innate immune defense against infecting
pathogens utilizing heavy metal(loid) toxicity. Copper and zinc
have been reported as important weapons to kill invading patho-
gens. In contrast to simultaneously occurring iron depletion, cop-
per and zinc are accumulated in the phagosome of macrophages
to poison invading bacteria during infection. Simultaneously, iron
and manganese, which are required for Fe-S cluster repair and
oxidative defense, are withdrawn by NRAMP1 (natural
resistance-associated macrophage protein 1) and other iron and
manganese transporters. The overload of toxic copper and zinc,
Fig. 6. Schematic diagram of approaches accessing pollution level, microbial community
environments. AAS: Atomic absorption spectrometry; ICP-OES/MS: Inductively coupled
community tolerance; QMEC: Quantitative microbial element cycling; HT-qPCR: High-th

103
together with the depletion of iron and manganese in the phago-
some, increases the susceptibility of pathogens. In turn, copper
and zinc efflux and detoxification determinants protect engulfed
bacteria against metal toxicity and are proposed as essential viru-
lence factors [20,33]. A similar heavy metal(loid)-mediated bacte-
rial killing mechanism is also observed during protozoan
predation. Recent studies document upregulations of several genes
encoding Cu(I) and Zn(II) transporters, as well as NRAMP-type
transporters in amoeba during predation. Meanwhile, the deletion
of copper, zinc, or arsenic resistance determinants reduced the fit-
ness of intracellular bacteria against protozoa digestion [186,187].
Protozoa are highly diverse and ubiquitous in natural environ-
ments, and they are thought to regulate microbial diversity, com-
position and functionality through trophic regulation [188,189].
Considering the long evolutionary history between protozoa and
bacteria, protozoan predation may play an essential role in main-
taining bacterial heavy metal(loid) resistance. However, this con-
tinual selection has long been overlooked.
7. Summary and outlook

Heavy metal(loid)s pose an intense selective pressure for the
development of resistant populations and diverse detoxification
systems. Previous studies in individual isolates provide a state-
of-art molecular mechanism responsible for bacterial heavy
metal(loid) resistance, including both ubiquitous operons and
specific determinants with narrow-spectrum hosts. However, the
isolated bacteria only represent a small and partly biased fraction
of the microbiota in the environment. We know little about the
distribution patterns of genes encoding heavy metal(loid) resis-
tance determinants and the microbial community’s strategies to
avoid heavy metal(loid) toxicity. Filling this knowledge gap would
enable to better understand the results obtained pure culture and
at the community level.

Fig. 6 summarizes the framework to investigate microbial resis-
tance profiles from different perspectives. For instance, pollution-
induced community tolerance (PICT) is a commonly used approach
to determine the community tolerance to heavy metal(loid)s, and
BIOLOG ECO microplates are widely employed to interpret
structure, functional response, and resistance strategy in heavy metal(loid) polluted
plasma-optical emission spectroscopy/mass spectroscopy; PICT: Pollution-induced
roughput-qPCR.



Table 1
Primers published previously for quantification of heavy metal(loid) resistance genes by qPCR.

Heavy metal(loid)s Genes Function Sequence(50-30) Sample type Reference

Cu copA Efflux F: GGTGCTGATCATCGCCTG Sediments from mining-waste discharge canal and
marine, intertidal samples, freshwater

[220]
R: GGGCGTCGTTGATACCGT

cusA Efflux F: ATGCSACVGGYGTTGGCTGG Marine sediments, sewage sludge, swine manure [221]
R: CCRTTCAGYTCGGCRATRCC

pcoA Redox F: GCTGCAGATGGCCAGTATGTAAA Swine manure [222]
R: CCCTCGAGCGTAACCGGTCC

pcoD Binding F: ATAACTTCAAGCCGGGGACCCAG Swine manure [222]
R: AATGCACAGAGCGTCATTGT

tcrB Efflux F: CATCACGGTAGCTTTAAGGAGATTTTC Swine manure [223]
R: ATAGAGGACTCCGCCACCATTG

Zn zntA Efflux F: GGTCGGGTCTGGCATTGAAG Swine manure [222]
R: TTGCAGCATCGGCGCGCAGGGTA

Ni nreB Efflux F: CCTTCACGCCGACTTTCCAG Rhizosphere [224]
R: CGGATAGGTAATCAGCCAGCA

cnrA Efflux F: AACAAGCAGGTSCAGATCAAC Rhizosphere [224]
R: TGATCAGGCCGAAGTCSAGCG

Co/Zn/Cd czcA Efflux F: GGSGCGMTSGAYTTCGGC Sediment, seawater [225]
R: GCCATYGGNYGGAACAT

czcC Efflux F: AGCCGYCAGTATCCGGATCTGAC Sediment, water, biofilm, soil [226]
R: GTGGTCGCCGCCTGATAGGT

czcD Efflux F: TCATCGCCGGTGCGATCATCAT Sediment, water, biofilm, soil [226]
R: TGTCATTCACGACATGAACC

Ni/Co nccA Efflux F: TTYAGCCAGGTVACSGTSATYTT Sediment, water, biofilm, soil [226]
R: GCYGCRTCSGCRCGCACCAGRTA

Pb pbrT Uptake F: AGCGCGCCCAGGAGCGCAGCGTCTT Sediment, water, biofilm, soil [226]
R: GGCTCGAAGCCGTCGAGRTA

Hg hgcA Redox F: GGNRTYAAYRTCTGGTGYGC Paddy Soils, forest soils, lakes, wastewater, compost [227]
R: CGCATYTCCTTYTYBACNCC

merA Redox F: CCTGCGTCAACGTCGGCTG Sediment, seawater [164]
R: GCGATCAGGCAGCGGTCGAA

merB C-Hg lyase F: TCGCCCCATATATTTTAGAAC Fecal, soil, sediment [228]
R: GTCGGGACAGATGCA AAGAAA

merC Uptake F: CATCGGGCTGGGCTTCTTGAG Fecal, soil, sediment [228]
R: CATCGTTCCTTATTCGTGTGG

merD Regulator F CCAGGCGGCTACGGCTTGTT Fecal, soil, sediment [228]
R: GGTGGCCAACTGCACTTCCAG

merR Regulator F: GCCGGGGTCAATGTGGAGAC Wastewater treatment plant [229]
R: TAGTCACCCCGTGACTCCCCC

merP Binding F: CCGCYTGYCCGATCACWGTC Sediment, seawater [164]
R: CGGATAGCCSGCGTCYKCGG

merT Uptake F: RGTGGCGYTGTTYTTCGCCT Sediment, seawater [164]
R: CCAGCRCGGCCACGAYCCAG
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metabolic activities of the microbial community of interest via
determining their capacities to utilize different carbon sources
[190]. Amplicon sequencing is mainly employed to illuminate tax-
onomic changes of the microbial community. Only a few studies
have used this method to monitor the diversity and structure of
genes conferring heavy metal(loid) resistance [157,163]. The less
frequent use of amplicon sequencing in heavy metal(loid) resis-
tome analysis could partly be due to the high diversity and low con-
servation of heavy metal(loid) resistance genes, and the lack of
reliable primers and specialized databases for analysis of the bacte-
rial heavy metal(loid) resistome [191]. Metagenomics allows deep
mining of the heavy metal(loid) resistome and identification of
novel genes. It allowed resolving several technical limitations pre-
sented in other approaches, such as PCR-related biases and low-
resolution views. However, the increased cost for high-resolution
analysis hinders the large-scale application of the metagenomics
approach. Therefore, metagenomic sequencing is often combined
with amplicon sequencing, where amplicon sequencing analyzes
a broad set of samples and provides an overall survey of the com-
munity composition, while metagenomics is used to further inter-
pret functional profiling in subsamples [192]. The lack of
comprehensive primer or probe sets is another challenge for detect-
ing a comprehensive heavy metal(loid) resistome. Currently, there
is no independent microarray-based chip available for genes con-
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ferring heavy metal(loid) resistance. Only a metal resistance mod-
ule in Geochip is available, which consists of 44 metal(loid)s
resistance genes involved in the detoxification of 13 metals [193].
However, most of the probes in the metal resistance module detect
genes functioning as transporters, and only a few genes are present
as arsenic and mercuric reduction and organomercural lyase [194].
For qPCR-based quantification approach, currently available degen-
erate primers for heavy metal(loid) resistance genes are limited,
which cannot represent the diverse detoxification systems in the
environment. As shown in Table 1, themajority of available primers
target genes encoding heavy metal(loid) transporters. Additionally,
some degenerate primers were initially designed for only specific
groups of bacteria. The coverage and specificity of these primers
should be of concern when used to quantify environmental sam-
ples. A recent developed As-Chip is a high throughput detection tool
using high-throughput-qPCR (HT-qPCR) to evaluate arsenic biogeo-
chemical cycling [195]. This chip contains 81 primer sets targeting
19 genes involved in different arsenic metabolic and resistance
pathways. It has been successfully applied to investigate the arsenic
resistome in soil and the earthworm intestine [195,196].

Taken together, approaches used for metal resistant micro-
biome study have different merits and drawbacks (Table 2). There-
fore, integrating multi-scaled methods will provide better insights
into heavy metal(loid) resistant microbiome and resistome,



Table 2
Advantages and limitations of methods for heavy metal(loid) resistome study.

Method Advantages Limitations

qPCR � Simple operation and low cost;
� Higher sensitivity and accuracy;
� Capacity for both absolute and relative quantification
analysis.

� PCR and primer biases;
� Primer design requires sequence information of target genes;
� Time-consuming and laborious when quantifying a large amount of
samples/genes;

� Few heavy metal(loid) resistance gene degenerate primers are
available.

HT-qPCR � High throughput;
� Higher sensitivity and accuracy;
� Time-, labor-saving when quantifying a large amount of
samples/genes;

� Nanoliter scale reactions save consumables, reagents,
and eDNA;

� Capacity for both absolute and relative quantification
analysis.

� PCR and primer biases;
� Primer design requires sequence information of target genes;
� All reactions are carried out under the same program, and the condi-
tions of each PCR reaction cannot be optimized.

� Nanoliter scale reactions restrict the detection of low abundant genes.

Clone library � Friendly for longer length of PCR fragments;
� Amplified fragments are kept on vectors, which are easy
to recover.

� Labor and time-consuming;
� Not suitable for a large amount of samples and genes analysis;
� Bias from PCR, clone library preparation, and clone selection.

Microarray � High throughput;
� Fair specificity and sensitivity.

� Probe design requires sequence information of target genes;
� Require frequent update of probes;
� Data processing and analysis are complex;
� Potential cross-hybridization affects the accuracy of quantification;
� Can only complete relative quantification analysis;
� Available probes target few types and numbers of heavy metal(loid)
resistance genes.

Amplicon sequencing � High throughput;
� Lower cost;
� Can characterize the diversity and structure of heavy
metal(loid) resistance genes.

� PCR and primer biases;
� Lack of reliable specialized database for bacterial heavy metal(loid)
resistome;

� Only provide a relative abundance of potential hosts for heavy metal
(loid) resistance genes;

� Low resolution due to the short length of the amplicon.
Metagenomics and

Metatranscriptomics
� High coverage;
� Link microbial taxa with function;
� Can survey microbial genetic diversity of unknown
communities and discover novel genes;

� Metatranscriptomics can investigate active microbiome
and heavy metal(loid) resistome.

� Expensive;
� Higher requirements for DNA quality;
� Sequencing depth affects sequencing results;
� Complex data analysis process;
� It only provides a relative abundance of microbial taxa and functional
genes.
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especially for samples from the natural environment with a high
level of spatial and temporal heterogeneity. For instance, a recent
study assessed a mercury-methylating bacterial community via
multiple approaches [197]. 16S rRNA gene pyrosequencing along
with a mercury contamination gradient did not have sufficient res-
olution to identify mercury-methylating microbes; while amplicon
sequencing of hgcAB and metagenomic analysis provided compara-
ble results. A qPCR-based approach is recommended to quantify
the abundance of specific mercury-methylating clades. Addition-
ally, a combination of a culture-dependent method with high-
throughput sequencing technologies is of importance for future
studies, since findings of novel resistance determinants in environ-
mental isolates will expand our knowledge on detoxification sys-
tems, and benefit functional annotation or PCR primer design. In
turn, investigation of the core resistant microbiome and resistome
through high-throughput sequencing technologies will promote a
better understanding of the microbial response and adaption under
heavy metal(loid) exposure, which may guide isolation and appli-
cation of specific isolates for remediation.

Progress in understanding the core heavy metal(loid) resistant
microbiome and resistance strategy from local to large-scale or
across ecosystems is still a challenge. Rapid advances in high-
throughput sequencing technologies enable us to interpret heavy
metal(loid) resistant microbiomes in an integrative way. With an
increase in high-throughput sequencing data in hand, it is possible
to integrate individual local studies from various environments,
and gain clues in feature and ecological function of the core heavy
metal(loid) resistant microbiota, adaption of a resistance strategy
andenvironmentaldriving factors.However, thediscrepancy inboth
sample and data processing in different studies is still problematic
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for integrative analysis. Here, we propose the following five key
questions which should be addressed in future studies. 1. What are
the features of core heavy metal(loid) resistant microbiomes, and
what are the driving factors shaping assemblages of core heavy
metal(loid) resistant microbiomes. 2. What is the diversity, abun-
dance, and geographic distribution of heavy metal(loid) resistance
genes acrossdifferent ecosystems? Is thereapreference for a specific
resistance strategy indifferenthabitats, andwhat are theunderlying
mechanisms? 3. To what extend do biotic and abiotic factors affect
the core heavy metal(loid) resistant microbiome and resistome?
4. Does the core heavy metal(loid) resistant microbiome also con-
tribute to microbial antibiotic resistance? 5. How can we integrate
multiple and novel technologies to interpret the development of
the heavymetal(loid) resistant microbiome and resistome?
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