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Developments of new strategies to restore vision and improving on current strategies by
harnessing new advancements in material and electrical sciences, and biological and
genetic-based technologies are of upmost health priorities around the world. Federal
and private entities are spending billions of dollars on visual prosthetics technologies.
This review describes the most current and state-of-the-art bioengineering technologies
to restore vision. This includes a thorough description of traditional electrode-
based visual prosthetics that have improved substantially since early prototypes.
Recent advances in molecular and synthetic biology have transformed vision-assisted
technologies; For example, optogenetic technologies that introduce light-responsive
proteins offer excellent resolution but cortical applications are restricted by fiber
implantation and tissue damage. Other stimulation modalities, such as magnetic fields,
have been explored to achieve non-invasive neuromodulation. Miniature magnetic coils
are currently being developed to activate select groups of neurons. Magnetically-
responsive nanoparticles or exogenous proteins can significantly enhance the coupling
between external electromagnetic devices and any neurons affiliated with these
modifications. The need to minimize cytotoxic effects for nanoparticle-based therapies
will likely restrict the number of usable materials. Nevertheless, advances in identifying
and utilizing proteins that respond to magnetic fields may lead to non-invasive, cell-
specific stimulation and may overcome many of the limitations that currently exist
with other methods. Finally, sensory substitution systems also serve as viable visual
prostheses by converting visual input to auditory and somatosensory stimuli. This review
also discusses major challenges in the field and offers bioengineering strategies to
overcome those.
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INTRODUCTION

The development of bioelectrical interfaces in the 18th century enthralled scientists looking for
strategies to treat brain pathologies and restore vision. Revolutionary experiments by LeRoy (1755)
and Volta in 1800 (Volta and Banks, 1800) succeeded in demonstrating that electrical stimulation
of the eye could produce spots of light, or phosphenes, in one’s visual field.

Since then, advancements in neuroimaging, electrophysiology hardware, and surgical
equipment have spurred ground-breaking research uncovering intricacies of visual pathways
and possible therapeutic targets. Visual prostheses allowing for the restoration of basic abilities
promoting object discrimination (Stingl et al., 2013) and simple mobility (Humayun et al.,
2012), are now viable therapeutic considerations for visually impaired and blind individuals.
A few retinal-based prosthetic devices have already been approved for commercial use in
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Europe (Humayun et al., 2012; Hornig et al., 2017), one of which
is also approved in the United States (Luo and Da Cruz, 2016).

This review describes state-of-the-art electrode-based visual
prostheses technologies, and the ongoing development of
cutting-edge biological- and genetic-based technologies to restore
visual function including nanoparticles, optogenetics, magnetic
manipulation and sensory substitution systems. These methods
have the capability of artificially encoding sensation i.e. “writing,”
into the brain and are gaining considerable interest as next-
generation visual therapeutics.

In 2015, there were 253 million individuals (3.43% of global
population) blind and moderately-to-severely visually impaired
people in the world (Bourne et al., 2017). By 2050, owing to
a dramatic increase in life expectancy, it is predicted that this
number will rise to 703 million (7.19% of global population)
(Bourne et al., 2017). Blindness is the most feared condition by
the American public, more so than Alzheimer’s disease, cancer
and HIV/AIDS (Scott et al., 2016). Visual deficits are strongly
associated with economic (Wittenborn et al., 2013), physical
(McLean et al., 2014; Crews, 2016), and emotional (Stelmack,
2001; Hassell et al., 2006) detriments. While population aging
is still in its early stages, large-scale communities and nations
are already being challenged by the increased medical and fiscal
responsibilities associated with visual impairments (Gordois
et al., 2012; Wittenborn et al., 2013). In fact, the majority
of public health specialists have underestimated the rapidity
of this epidemiological transition and the associated need for

resource reallocation (World Health Organization, 2006). Thus,
it is necessary to identify new interventions to address the steep
increase of visual deficits among the world population.

ELECTRODE-BASED VISUAL
PROSTHESES

The traditional electrode-based visual prostheses consists of a
basic set of components. A video camera is often used to convert
light into electrical signals. These analog signals are digitized, and
the image is processed by a portable micro-computer. The signals
are then wirelessly transmitted to internal componentry with
accompanying multi-electrode arrays (MEAs), which directly
interface with the neural tissue.

The type of the electrode-based prostheses is dictated by
the underlying pathophysiology and its location should target
a region along the visual pathway that would be the most
effective in restoring visual perception. Interfacing too early
along the visual pathway could lead to either non-transmitted
or significantly corrupted and unintelligible signals. Interfacing
at a region later than necessary bypasses functional neuronal
circuitry, requiring additional hardware and/or complex image-
processing algorithms. There are four major prosthetic design-
types, each of which are categorized based on the location of
their associated MEAs. Table 1 summarizes the advantages and
limitations of the different visual prostheses and their location.

TABLE 1 | Advantages and limitations of different visual prostheses modalities with feasible interface locations.

Intervention Type Interface
Location

Advantages Limitations References

Electrode Retinal Optic Nerve
LGN Cortex

Efficient surgical implantation
procedures Large pool of past
research
Biocompatible-material
coatings Accessibility to deeper
brain regions

Limited hermetic encapsulation Tissue and
cell damage Limited spatial resolution
Invasive Wireless telemetry for external
hardware communication limits data
transfer

Brindley and Lewin, 1968;
Humayun et al., 1996; Schmidt
et al., 1996; Veraart et al., 1998;
Brelén et al., 2005; Pezaris and
Reid, 2007; Zrenner et al., 2010;
Panetsos et al., 2011; Da Cruz
et al., 2013; Stingl et al., 2013;
Lowery et al., 2017; Troyk, 2017;
Pouratian et al., 2019

Optogenetics Retinal Cortex Excellent spatial resolution
Excellent temporal resolution
Cellular excitation or inhibition
Non-invasive stimulation (retinal
only) Cell specificity

No accessibility to deeper brain regions
Limited cortical accessibility Phototoxicity
possibility Tissue damage (cortical only)
Invasive (cortical only) Need for high-power
light source(s) Potential immune response

Waldvogel et al., 2000; Boyden
et al., 2005; Bi et al., 2006; Chow
et al., 2010; Lin et al., 2013;
Reutsky-Gefen et al., 2013

Magnetic
stimulation

Cortex Non-invasive stimulation No
introduction of exogeneous
agents

Limited spatial resolution Limited resolution
for deeper brain regions Need for
high-power electromagnetic device(s)

Barker et al., 1985; Bonmassar
et al., 2012; Park et al., 2013; Lee
and Fried, 2016; Lee et al., 2016

Magnetic
nanoparticles

Cortex Non-invasive stimulation Cell
specificity

Limited spatial resolution Limited resolution
for deeper brain regions Potential cytotoxic
or immune response Delivery to brain can
disrupt blood–brain barrier

Hughes et al., 2007; Huang et al.,
2010; Baid et al., 2013; Chen et al.,
2015; Guduru et al., 2015; Munshi
et al., 2018

Genetically
encoded magnetic
stimulation

Cortex Non-invasive stimulation Cell
specificity

Limited spatial resolution Limited resolution
for deeper brain regions Potential immune
response

(Wheeler et al., 2016; Krishnan
et al., 2018)

Sensory
substitution

Periphery Non-invasive Suitable for any
visual ailment

Limited spatial resolution Occupies another
key sensory modality Requires additional
training

Bach-y-Rita et al., 1969, 1998;
Meijer, 1992; Chebat et al., 2007;
Striem-Amit et al., 2012; Abboud
et al., 2014
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Retinal
Retinal prostheses offer promising rehabilitative potential for
a number of retinal-based pathologies, including retinitis
pigmentosa and age-related macular degeneration. In 1956,
Tassicker developed and implanted the first retinal prostheses,
capable of providing the recipient with crude light perception
(Tassicker, 1956). Nearly 40 years later, Humayun et al.
demonstrated that focal electrical excitation of the retinal surface
could elicit cortical responses in animal models (Humayun
et al., 1994) and localized visual percepts in human patients
(Humayun et al., 1996). These preliminary experiments paved the
way for retinal implants as the most common visual prostheses
due to the orderly retinotopic organization, ease of surgical
accessibility, and early positioning in the visual pathway. Two
retinal prostheses sub-types, subretinal and epiretinal, constitute
the majority of retinal prostheses-based research.

In the fovea, the most visually acute portion of the retina,
there are an average of 150,000 (Shroff, 2011) and a peak density
of 200,000 cone photoreceptors per mm2 (Curcio et al., 1990).
The diameters of cone outer segments and retinal ganglion
cells are 3–5 µm and 6–13 µm, respectively (Hebel and
Holländer, 1983; Shepherd, 2003). Although improvements in
micromachining and lithography now allow for the development
of precise electrode arrays, targeting each neuron independently
to reproduce natural vision is still challenging. Fortunately,
extrapolating from cochlear implant patients, functional vision
restoration most likely requires a total electrode count that is
a mere fraction of the number of retinal neurons. Moreover,
patients have been observed to demonstrate a significant learning
effect and task-based improvements shortly after implantation.

Subretinal
Retinal-based diseases are characterized by photoreceptor cell
death that glasses and contact lenses, which only refocus light
rays through the cornea and lens, cannot address. Subretinal
prostheses allow for the earliest possible intervention in the visual
process. The prostheses most often consists of metallic electrode
contacts embedded in a biocompatible polymeric film. It is
positioned within the largely degenerated photoreceptor layer
and directly interface with retinal bipolar cells. Since they interact
with outer-retinal tissue, subretinal prostheses retain substantial
intra-retinal signal processing. This allows for the generation
of more naturalistic phosphenes, serving to expedite patient
training periods relative to other types of visual prostheses.

Some subretinal implants even do away with the need for
an external imager altogether via the use of microphotodiode
arrays (MPDAs). Early research has shown that photodiodes
reliant solely on ambient light can induce neurotrophic effects,
but are insufficient for phosphene generation (Chow et al.,
2004; Palanker et al., 2005). By incorporating circuitry for
signal amplification, significant responses were seen in animal
models (Lorach et al., 2015; Prévot et al., 2019) and patients
can perceive distinct phosphenes (Zrenner et al., 2010; Lorach
et al., 2015). Since the image is based on incident light entering
the eye instead of an externally located camera for MPDAs
with electronic amplification, patients can utilize natural eye
movements. This is a marked advantage over camera-based

visual prostheses, which are restricted to head movements for
environmental scanning. Moreover, these MPDAs preserve the
functionality of microsaccadic eye movements that prevent
image fading by moving stimuli into and out of adjacent
neurons’ receptive fields. The resultant spatial and temporal
signal summation may result in more intelligible and naturalistic
percepts; patients with photosensitive implants are capable of
immediately recognizing shapes without any image processing
(Stingl et al., 2013). A 1500 pixel MPDA subretinal implant offers
visual acuity restoration up to 20/546 (Stingl et al., 2013), roughly
translating to such real-world abilities as identification of office
supplies and distinguishing between kitchen cutlery (Stingl et al.,
2012). Some patients are even able to differentiate between large
alphabet letters and combine them into words (Zrenner et al.,
2010; Stingl et al., 2013). A recent study incorporated a 378-
pixel array, achieving the highest visual acuity to date: 20/460.
Additional testing of letter recognition and reading has already
shown promising preliminary results (Palanker et al., 2019). Since
MPDAs rely upon light transmittal through the cornea and lens,
those with conditions that obscure light passage would not be
eligible for such implants.

Research into subretinal implants has proven some initial
physiological limitations, though researchers are actively seeking
innovative solutions. The uneven photoreceptor density within
the retina presents a major challenge. Since the density of cone
photoreceptors decreases with increasing retinal eccentricity,
uniform phosphene generation throughout the visual field would
require MEAs with varying electrode diameters and inter-
electrode spacing. Novel MEA designs that promote glial and
neuronal migration may allow for lower stimulation levels and
more densely packed arrays (Butterwick et al., 2009; Spira and
Hai, 2013). Due to the variable thickness (Shroff, 2011) and
fragility (Colodetti et al., 2007) of the degenerating retina, such
designs are also surgically preferable to mitigate device-tissue
contact. This prosthetic design has rehabilitative potential for
millions of blind and visually-impaired individuals suffering from
outer-retinal pathologies.

Epiretinal
Epiretinal prostheses interact with retinal ganglion cells. Owing
to their downstream placement, epiretinal prostheses have a
wider therapeutic potential than subretinal prostheses. Since
extended periods of no photoreceptor input may cause signal
corruption and intra-retinal neuronal degeneration, epiretinal
prostheses may be the preferred visual prostheses for mid-
to-late stage outer retinal pathologies. Epiretinal arrays can
even selectively stimulate ganglion cells or bipolar cells
based on stimulation parameters, including pulse polarity
and duration (Boinagrov et al., 2014). Optimization of these
features can reduce functional threshold levels, thus allowing for
smaller electrode-diameters and denser MEAs before surpassing
physiological safety limits. The implants are located adjacent to
the spacious vitreous humor. This allows for larger electrical
componentry and mitigates electrically-induced heat absorption
by nearby tissue. However, unlike subretinal MEAs that are
held in place by the underlying retinal pigment epithelium, the
positioning of epiretinal arrays requires scleral-retinal tacks to
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achieve long-term perceptual consistency. Stabilization by an
individual tack induces localized damage at the tack site and can
physically separate distal regions of the array from the tissue
surface (Majji et al., 1999; Mahadevappa et al., 2005). Currently
there is an FDA-approved retinal prostheses (Luo and Da Cruz,
2016) which consists of a 60-electrode epiretinal device that has
yielded patient improvements in spatial motor tasks (Ahuja et al.,
2011), motion detection (da Cruz et al., 2016), and letter-reading
performance (Da Cruz et al., 2013).

Optic Nerve
Optic nerve prostheses can be efficacious for patients exhibiting
retinal-based diseases or retinal detachment. Borrowing from
peripheral-nerve stimulation technology (Mortimer et al., 1995),
self-sizing cuff electrodes with four equidistant 200 µm2

contacts have been implanted around the optic nerve of a
human patient (Veraart et al., 1998). By varying stimulation
parameters, such as pulse duration and pulse train frequency
optic nerve prostheses can elicit phosphene clusters of different
sizes and in various locations (Veraart et al., 2003; Brelén
et al., 2005). Although selective phosphene generation is rather
crude, an implanted patient successfully localized, discriminated
between and grasped small specific objects (Duret et al.,
2006). Moreover, optic nerve prostheses benefit from enhanced
electrode-phosphene efficiency and reduced tissue damage unlike
high-density arrays. Such prostheses, however, are restricted
to serial stimulation (Brelén et al., 2005) and lack adjustable
phosphene luminosity (Delbeke et al., 2003), a feature positively
correlated with performance scores on object discrimination
tasks. The surface-based electrode contacts also increase current
injection thresholds and reduce nerve fiber selectivity – the
1.2 million, 1-µm diameter optic nerve fibers already makes
targeting specific points in the visual field extremely challenging
(Jonas et al., 1992). In an effort to enhance fiber selectivity,
penetrating electrode arrays have been inserted into the optic
nerve. These MEAs can elicit cortical responses in animal models
(Chai et al., 2008; Li et al., 2008; Lu et al., 2013; Gaillet
et al., 2019) and one penetrating array, with wire electrodes
progressing through the optic disk and into the optic nerve,
has been implanted in a human patient (Sakaguchi et al., 2009).
Similar to retinal prostheses, optic nerve prostheses, both surface-
based and penetrating, benefit from a relatively less invasive
intraocular surgery.

Lateral Geniculate Nucleus (LGN)
At the optic chiasm, optic nerve fibers associated with the
nasal half of each retina decussate and project to contralateral
subcortical structures. Ninety percent of the retinal ganglion
axons synapse at the dorsal lateral geniculate nucleus (LGN)
of the thalamus (Kandel et al., 2000). An LGN prostheses has
rehabilitative potential for individuals with either retinal or optic
nerve pathologies.

Unlike the retina, LGN receptive fields have a consistent
spatial density regardless of their visual field eccentricity.
Since 60% of the LGN volume is devoted to processing the
central 3◦ of the visual field (Schneider et al., 2004), lower-
density MEAs could be used, reducing tissue damage due to

mechanical insertion or electrical current delivery. Thalamic
visual prostheses would require numerous electrodes to generate
discrete phosphenes. One proposed method to facilitate high-
density MEA uses a microwire bundle inserted via a cannula
(Pezaris and Eskandar, 2009). Once the electrode nears the
LGN, the microwires splay outward through the end of
the cannula and penetrate the tissue at distinct locations.
A model of bilateral 400-electrode implants is estimated to
provide visual acuity up to 20/240 (Kyada et al., 2017). In
order for such a device to be efficacious, electrode material,
insertion speed and current injection levels must be optimized.
As with retinal and optic nerve prostheses, intervention
timing will be a key consideration to mitigate downstream
neuronal degradation. Patients with severe glaucoma, for
example, can show a significant progressive reduction in LGN
size (Gupta et al., 2009). Although prostheses targeting the
LGN have yet to be implanted in humans, animal models
demonstrate device efficacy via cortical responses (Panetsos
et al., 2011) and crude resolution via object localization tasks
(Pezaris and Reid, 2007).

Cortex
One of the most important features of cortical prostheses is
the downstream location. This offers rehabilitative potential
for blind and visually-impaired individuals for which a retinal,
optic nerve or LGN visual prostheses would be ineffective
(Gabel, 2016). Furthermore, cortical implants have the longest
window for therapeutic intervention; instead of total neural
degeneration, post-injury compensatory plasticity mechanisms
recruit deafferented neurons from other cortical regions, offering
the possibility of stimulation well beyond the onset of injury
or disease (Sadato et al., 1996; Pietrini et al., 2004). After
the LGN, the optic radiations transmit signals to layer 4 of
the primary visual cortex (V1). Neurons with similar receptive
fields are organized into 1 mm2 columns, which can be further
subdivided into smaller columns responsive to orientation
axis, color and ocular dominance. Similar to the LGN, these
columns maintain a fairly consistent spatial density across the
surface of V1 owing to the cortical magnification of central
visual fields (Daniel and Whitteridge, 1961; Tehovnik, 1996;
Dagnelie, 2011). Figure 1 illustrates the various interfaces
and their location.

The subdural electrodes used in preliminary cortical visual
prostheses proved capable of eliciting phosphenes but the
substantial electrode-neuron distances required milliampere-
range current injection levels (Brindley and Lewin, 1968; Dobelle
et al., 1974, 1976). In the 1990s, penetrating intracortical
electrodes were found to exhibit vastly superior spatial resolution
and induce percepts with electrical currents two to three orders of
magnitude less than those of surface electrodes (Bak et al., 1990;
Schmidt et al., 1996).

Cortical prostheses can comfortably access central receptive
fields, which are located near the surface of the occipital
lobe, but face difficulty when targeting regions corresponding
to peripheral fields. The interhemispheric fissure presents an
anatomical barrier for stimulating roughly 85% of V1 (Trobe,
2001) and convolutions on the surface of the brain can
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FIGURE 1 | Electrical, light and magnetic stimulation for interfacing visual
processing.

bury receptive fields. However, since spatial representation is
preserved and repeated multiple times across the visual cortex
(Wandell et al., 2007), additional MEAs can be implanted
in higher visual areas if receptive fields are inaccessible in
lower regions (Dagnelie, 2011). Tertiary visual areas exhibit
highly specific stimulus responsivity offering the potential
for generating complex visual percepts. Early simulations for
restoring functional vision via cortical prostheses estimate a
total of at least 625 discrete phosphenes (Cha et al., 1992). In
addition to electrode manufacturing, electronics for power and
information transmission and processing must be developed. For
example, one complementary metal-oxide-semiconductor chip
can drive 473 electrodes independently (Wong et al., 2019), far
more than is currently necessary for cortical-based MEAs.

The rapid advancement of microelectronic device fabrication
and information processing has made cortical prostheses a
viable rehabilitative option. There are several ongoing clinical
trials testing the effectiveness and the risk associated with these
implants (Fernández and Normann, 2017; Lowery et al., 2017;
Troyk, 2017; Pouratian et al., 2019).

Next-generation pattern-recognition and deep-learning
algorithms, especially those being investigated for computer
vision will complement the complex response properties
of visual areas in the brain. This could greatly expand

cortical prostheses recipients’ capabilities, offering depth-
perception, color discrimination, figure-ground discernment,
and attentional modulation.

OPTOGENETICS

A number of organisms express light-sensitive proteins (opsins)
allowing them to perform vital functions, such as phototaxis
(Nagel et al., 2002; Sineshchekov et al., 2002) and energy
conservation (Ernst et al., 2013). Optogenetic technologies
use viral vectors to deliver genes encoding for opsins into
defined tissue regions and cell populations with excellent
temporal and spatial resolution (Boyden et al., 2005; Han
and Boyden, 2007; Chow et al., 2010). Once the proteins are
expressed, the cell can be controlled using a specific wavelength
of light. Though the majority of optogenetic-based research
has utilized microbial opsins, animal opsins have also been
explored for vision restoration. Preclinical trials have shown
that most animal opsins exhibit excellent light sensitivity but
poor temporal responsivity, compared to microbial opsins (Lin
et al., 2008; Cehajic-Kapetanovic et al., 2015). However, a
recent study utilized an alternative animal opsin to achieve
high light sensitivity and quick response kinetics, both of which
are imperative for visual prostheses (Berry et al., 2019). An
opsin-free approach incorporates small light-sensitive molecules,
deemed photoswitches, that can be bound to specific cellular
proteins, such as ion channels. The physical conformation of
photoswitches can be selectively altered by exposing the molecule
to different wavelengths of light, causing neuronal excitation and
inhibition. Intravitreal injections of photoswitch molecules have
been found capable of restoring light-sensitivity in blind animal
models (Caporale et al., 2011; Polosukhina et al., 2012).

The retina has constituted the majority of optogenetic-based
visual research because of its accessibility and transparent nature
(Bi et al., 2006). Since there are more than 60 cell types within
the retina (Masland, 2012), different classes of microbial and
animal opsins can be expressed in particular cell populations.
By activating and silencing individual cell types, patients can
experience more naturalistic visual percepts (Bi et al., 2006; Lagali
et al., 2008; Busskamp et al., 2010). Optical-based stimulation
technologies, including µLED matrices (Wu et al., 2015; Khan
et al., 2018) and computer-generated holography (Lutz et al.,
2008; Reutsky-Gefen et al., 2013; Hernandez et al., 2016; Shemesh
et al., 2017), are currently being developed to enable cellular and
sub-cellular spatial resolution.

Preclinical studies have yielded promising results in non-
human primates (Ivanova et al., 2010; Chaffiol et al., 2017) and
clinical trials for patients with a variety of retinal-based diseases
are currently underway (ClinicalTrials.gov NCT02556736,
NCT03293524, and NCT03326336). Though biocompatibility
concerns are minimal compared to electrode-based prostheses,
clinical trials will determine if any long-term immune responses
are present (Busskamp et al., 2012). A limitation of any light-
based modality is its restricted penetration depth through
tissue, which often requires the insertion of optical fibers.
Fortunately, experiments involving non-human primates have
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shown that optogenetic stimulation of cortical neurons can
induce visual percepts without the need to displace neural tissue
(Jazayeri et al., 2012; Ju et al., 2018). Red-shifted opsins have
been developed to mitigate tissue-induced light scattering as
well as enable deeper stimulation and inhibition capabilities
(Lin et al., 2013; Chuong et al., 2014). With the success of
optogenetic-based therapies in preclinical models, it is likely
that clinical trials will soon follow suit. The incorporation of
these opsins may allow for the control of retinal or cortical
neurons while minimizing the tissue damage characteristic of
penetrating devices.

MAGNETIC STIMULATION

Magnetic fields pass through biological tissue with minimal
reduction in field strength, making them desirable for non-
invasive neurostimulation. Indeed, scientists have been
experimenting with magnetically-induced phosphenes since
the late 1800s (d’Arsonval, 1896).

The first transcranial magnetic stimulation (TMS) device was
demonstrated in 1985 (Barker et al., 1985), and quickly became an
important clinical and preclinical method for stimulating specific
regions in the brain and spinal cord. TMS involves running an
alternating current through a wire coil that is placed over a
region of interest. Electromagnetic induction generates currents
that are capable of stimulating neurons within the specific region.
Since non-invasive stimulation of the brain reduces the risks
encountered in surgical patients, such as hemorrhage, infection,
and the overall cost of the procedure, TMS has recently gained
interest for use in functional and behavioral research as well
as rehabilitation research after brain injury (Ferbert et al.,
1992; Celnik et al., 2009; Lu et al., 2015; Shin et al., 2018;
Krishnan et al., 2019).

Cortical electromagnetic-based prostheses would benefit from
superior coil-neuron proximity, permitting numerous small, low-
power devices. Recent developments in the construction of
micro-scale magnetic coils have the potential to increase the
effectiveness and specificity of TMS. A number of micro-coils
have demonstrated device efficacy in vitro (Bonmassar et al.,
2012; Lee and Fried, 2016; Rizou and Prodromakis, 2018) and
in vivo (Park et al., 2013; Minusa et al., 2017). While one major
attraction of such devices is their non-invasive nature, device
insertion can reduce coil-neuron distance, perceptual thresholds
and necessary power input (Lee et al., 2016). Advancements in
material sciences can accelerate the development of implantable
micro-coils that are completely encased in biocompatible
polymers to reduce electrically-induced tissue inflammation and
glial scarring at the tissue-electrode interface. Additionally, the
asymmetric current distribution permits selective activation of
longitudinally-aligned axons (Bonmassar et al., 2012), adding
a slight degree of specificity based on cellular orientation.
One major limiting factor of micromagnetic stimulation is that
conventional solenoid coils exhibit poor power efficiency and
significant heat dissipation. Efforts into coil optimization may
result in stronger magnetic flux densities and induced electric
current at specific regions of interest (Bonmassar et al., 2014).

NANOPARTICLE-BASED STIMULATION

Nanoparticles are extensively utilized in the fields of drug delivery
(Kumari et al., 2010), biosensing (Doria et al., 2012) and tissue
imaging (Gilad et al., 2008). Recently, ferrite-based magnetic
nanoparticles were attached selectively to ion channels. Applying
a magnetic gradient generates a force on the nanoparticles that
most likely induces a conformational change on the associated
membrane channel. This method has demonstrated to induce
changes in cellular activity in vitro upon applying an external
magnetic field (Hughes et al., 2007; Tay et al., 2016).

Another method is based on magnetic hyperthermia. When
exposed to an alternating field, the orientation of a nanoparticle’s
magnetic domain oscillates in accordance with the applied
frequency. In response to weaker magnetic fields, this causes the
nanoparticle to rotate and the particle-medium friction dissipates
heat. With sufficient frequency, the localized heating can induce
neuronal activation or inhibition via TRPV1 (Huang et al., 2010;
Stanley et al., 2012; Chen et al., 2015; Munshi et al., 2017)
or TMEM16A (Munshi et al., 2018) temperature-sensitive ion
channels, respectively.

Voltage-gated ion channels expressed in V1 neurons can
also be targeted by magnetoelectric composite nanoparticles.
These nanoparticles, consisting of a magnetostrictive core and
a piezoelectric shell, exhibit significant elastic coupling and
magnetoelectric output (Nan et al., 2008). The magnetostrictive
material can amplify a slowly varying external magnetic
field, which induces a localized electric field via the
piezoelectric compound. Rodent EEG recordings suggested
that magnetoelectric nanoparticles offer an efficient method of
neurostimulation (Guduru et al., 2015).

Nanoparticle materials are only suitable candidates for
neurostimulation if they exhibit minimal cytotoxicity; little
is known about the long-term health effects of nanoparticle
delivery to the brain. Additionally, the method of effectively
delivering nanoparticles to the central nervous system is a
significant concern. Only a fraction of intravenously-injected
nanoparticles successfully reach the brain and only do so
by long-term endothelial cell endocytosis or by destroying
their cellular membranes (Calvo et al., 2001; Yarjanli et al.,
2017). However, non-invasive intranasal delivery may expedite
delivery and reduce cell damage by bypassing the blood-
brain barrier, which will make it more suitable for potential
clinical applications.

GENETICALLY ENCODED MAGNETIC
STIMULATION

Ongoing efforts have been dedicated to developing genetic-
based neuromodulation technologies relying on magnetic
changes. Magnetogenetics is a technology that allows cell,
temporal, and location specific activation via magnetic fields
and could evolve into a powerful non-invasive and effective
technique for neurorehabilitation and vision restoration. These
technologies mitigate concerns over cytotoxicity and tissue
damage because no introduction of synthetic materials is
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required. A recent work showed the development of a
construct encoding for ferritin protein subunits fused to
TRPV4 receptors and its effectivity in inducing neural changes
(Wheeler et al., 2016). However, neuronal response times
were on the order of 20–60 s. Therefore, this approach
may be effective for visual rehabilitation once allowing short
responses time.

Several organisms including birds (Wiltschko and Wiltschko,
2005), fish (Quinn, 1980) and bacteria (Fassbinder et al.,
1990), are known to rely on the Earth’s magnetic field
for navigation and detection of prey and predators. Indeed,
magnetic stimulation has been shown to trigger neural responses
in the glass catfish, Kryptopterus bicirrhis (Lissmann and
Machin, 1963; Struik et al., 2001). The magnetically sensitive
gene has been identified and cloned, and was termed the
electromagnetic-perceptive gene (EPG). In vitro and in vivo
animal studies demonstrated that EPG is capable of eliciting
neural responses (Krishnan et al., 2018). A number of
research teams are working toward discovering the molecular
structure and the signal transduction basis of this phenomenon.
This will serve to expedite the optimization of stimulation
parameters, including the strength and frequency of the applied
magnetic field, as well as the EPG itself via artificial and
targeted mutations.

SENSORY SUBSTITUTION

Stimulation devices that convert optical information into tactile
and auditory sensory inputs may offer alternative sight to
individuals who are visually impaired due to stroke or brain
injury (Amedi et al., 2001; Poirier et al., 2006). Tactile sensory
substitution systems consisting of fingertip pin arrays that
vibrated according to incoming signals from a video camera were
developed in the 1960s and offered limited reading capabilities
(Linvill and Bliss, 1966; Bliss et al., 1970). Other devices
that stimulated the patients’ back extended such abilities to
object recognition and differentiation (Bach-y-Rita et al., 1969;
Collins, 1970).

The tongue is an excellent location for a sensory substitution
device because it is densely innervated and coated in
electrolytic saliva. With a tongue array consisting of over
100 electrode contacts, subjects significantly increased their
visual acuity (Sampaio et al., 2001; Chebat et al., 2007). One
drawback to positioning an electrode grid on the surface
of the tongue, is that its usage would restrict normative
tasks, such as conversing and eating. Stimulating gloves
(Meers and Ward, 2005), headbands (Kajimoto et al.,
2006), vests (Jones et al., 2006; Cancar et al., 2013), and
belts (Van Erp et al., 2005) have also been explored for
navigational, kinesthetic and vision reproduction purposes.
The developments of methods such as electronic skin (Fu
et al., 2018) will open new frontiers in tactile-based sensory
substitution devices.

Other sensory substitution research has investigated auditory
stimulation as a replacement for visual input. These devices use a
number of translational parameters, including substituting pitch

or frequency for vertical location, binaural intensity or time-
scanning for horizontal position, loudness for brightness, and
timbre for color (Meijer, 1992; Capelle et al., 1998; Abboud
et al., 2014). While the development of visuoauditory systems
initially lagged behind that of visuotactile, since its inception
in the early 1990s (Meijer, 1992), such devices are now at
the forefront of sensory substitution research. One reason for
the popularization of visuoauditory devices is their increased
absolute bandwidth over tactile devices; sighted individuals can
recognize a total of 600 different tones (Capelle et al., 1998). Since
blind individuals often exhibit enhanced auditory perception, it
is feasible for the total number of tones to extend beyond the
maximum estimated value. One limitation of these devices is
that they restrict the ability to perceive auditory environmental
cues, which is a highly preferred ability in blind individuals
(Brewster and Brown, 2004).

CONCLUSION

The total number of visual ailments is increasing rapidly
among the general population in both developed and
developing nations. Preliminary electrode-based visual
prostheses demonstrated that they could induce visual
percepts by interfacing with various regions of the visual
system but lacked the efficiency to be adopted by blind
and visually-impaired individuals in their everyday lives.
Contemporary electrode-based visual prostheses have improved
substantially since early prototypes. These devices can restore
a number of abilities, such as crude object recognition
and spatial navigation, and are now becoming a viable
therapeutic consideration for blind and visually-impaired
individuals. However, even with advanced micromachining
and surgical procedures, limited spatial resolution and
unavoidable tissue damage may render future electrode-
based devices wanting. Nevertheless, non-electrode-based
means for neurostimulation are being pursued. Optogenetic
technologies introduces light-responsive proteins that can
be used to excite or inhibit neural activity. For example,
optogenetic technologies that introduce light-responsive
proteins offer excellent resolution but cortical applications
are restricted by fiber implantation and tissue damage. Other
stimulation modalities, such as magnetic fields, have been
explored to achieve non-invasive neuromodulation. Miniature
magnetic coils are currently being developed to activate select
groups of neurons. The poor coupling efficiency between
magnetic fields and biological tissue leads to increasing
power requirements and reducing achievable resolution.
Magnetically-responsive nanoparticles or exogenous proteins
can significantly enhance the coupling between external
electromagnetic devices and any neurons affiliated with these
modifications. The need to minimize cytotoxic effects for
nanoparticle-based therapies will likely restrict the number
of usable materials. Nevertheless, advances in identifying and
utilizing proteins that respond to magnetic fields may lead
to non-invasive, cell-specific stimulation and may overcome
many of the limitations that currently exist with other methods.
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Finally, sensory substitution systems also serve as viable
visual prostheses by converting visual input to auditory and
tactile stimuli.
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