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Abstract: The traditional simultaneous localization and mapping (SLAM) system uses static points
of the environment as features for real-time localization and mapping. When there are few available
point features, the system is difficult to implement. A feasible solution is to introduce line features.
In complex scenarios containing rich line segments, the description of line segments is not strongly
differentiated, which can lead to incorrect association of line segment data, thus introducing errors
into the system and aggravating the cumulative error of the system. To address this problem, a
point-line stereo visual SLAM system incorporating semantic invariants is proposed in this paper.
This system improves the accuracy of line feature matching by fusing line features with image
semantic invariant information. When defining the error function, the semantic invariant is fused
with the reprojection error function, and the semantic constraint is applied to reduce the cumulative
error of the poses in the long-term tracking process. Experiments on the Office sequence of the
TartanAir dataset and the KITTI dataset show that this system improves the matching accuracy of
line features and suppresses the cumulative error of the SLAM system to some extent, and the mean
relative pose error (RPE) is 1.38 and 0.0593 m, respectively.

Keywords: visual SLAM; point and line features; semantic segmentation; LSD feature extraction;
reprojection error

1. Introduction

Since the introduction of Industry 4.0, the robot-led intelligent manufacturing industry
has become the backbone of industrial development. The visual simultaneous localization
and mapping (SLAM) [1] system is the core component that allows robots to explore
unknown environments to self-localize and build maps. Visual SLAM relies on inexpensive
lightweight cameras that can effectively sense the appearance of the environment, making
the SLAM system, which relies only on vision sensors, a hot issue in the field of robotics.
The framework of the visual SLAM system is maturing. Although, the research field
of visual SLAM has made great progress [2–11]. However, the variability of the real
environment makes the accuracy of data association unreliable or even invalid. This
leads to a reduction in the robustness of the system and makes it difficult to meet realistic
requirements. Therefore, how to improve the robustness of data association is important to
reduce the cumulative error of visual SLAM and improve the system’s overall robustness.

Visual SLAM systems are classified based on the employed tracking method into
direct tracking-based and indirect tracking-based methods. Direct tracking-based methods,
such as large-scale direct monocular SLAM (LSD-SLAM) [5], direct sparse odometry
(DSO) [6], and semi-direct monocular visual odometry (SVO) [7], perform estimation
of the pose based on minimizing the photometric projection error. These methods are
sensitive to illumination transformations and have poor differentiation between individual
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pixels. In contrast, the indirect tracking-based method estimates a camera pose by tracking
point features of the image. Representative algorithms are parallel tracking and mapping
(PTAM) [8], ORB-SLAM2 [9], RGBD SLAM-v2 [10], etc. Point features are insensitive to
illumination interference and easy to extract in textured scenes. However, extraction is
difficult in scenes with a low-texture environment or motion blur. The robustness of the
system is affected, which can lead to failure in severe cases. There are a large number
of line features in the real environment that have the same characteristics of invariant
illumination and viewpoint as point features and are easy to extract [12]. Hence, the
interference caused by low-texture scenes can be overcome, and the complete information
about the environment structure can be reflected. Therefore, the SLAM system involving
tracking line features was born [13–15]. Line features are sensitive to occlusion and do not
have strong identification in regions with a lack of texture or high repetition; this results in
matching failures and less reliable pose solving than SLAM systems relying only on point
features. The tracking of line features is extremely time-consuming and cannot meet the
real-time requirements of the SLAM system. Therefore, point and line feature fusion has
been applied to SLAM systems [16–22].

To reduce the generation of cumulative errors, the existing solution is to perform
local optimization of the poses and reduce the drift of the trajectory by establishing more
constraints between multiple frames of the image in the short term. When the constraints
fail, the error still accumulates. The other solution is to establish a long-term constraint by
adopting a loop closure to correct the cumulative error, but this solution strictly depends
on loop closure detection.

The rapid development of computer image technologies in recent years, such as deep
learning, object detection, and semantic segmentation, provides more possibilities for robots
to improve scene understanding. Semantic segmentation [23] is a pixel-level classification
technique. Each pixel in an image is classified into a corresponding category; applying
semantic segmentation to SLAM systems to improve the robustness of data association is a
relatively popular research topic [24–26]. In the SLAM system, the movement of the camera
over time results in the features changing in viewpoint, scale, and illumination, but not in
its semantic description. As shown in Figure 1, when tracking a line segment on a car, the
pixels around the line segment change drastically due to the change in distance; this does
not match well and leads to tracking failure. However, the semantic description of this line
segment belongs to the category of cars, which is not affected by scale and illumination
changes. The semantic description of the line segment is then treated as invariant, and the
mid-term tracking of line segments is established through the semantic label’s consistency
constraint of the line segments and its reprojected features.

At present, the theory development related to line segments is not mature enough,
mainly in the lack of accurate description of line segments, which can lead to wrong data
association occurring in complicated scenes that include many line segments [27]. This
leads to the problem that after the introduction of line segments in SLAM systems based
on point-line features, the matching accuracy of line segments is low, which results in the
accumulation of system errors.

In this paper, a robust stereo SLAM system with point and line features that combines
the semantic invariant is proposed. Specifically, the main contributions of this paper are
the following:

• An improved line segment matching method is proposed. We apply the results of
semantic segmentation to line segment matching to improve the data association of
line segments.

• We define the semantic reprojection error function of line segments and apply it to
the pose optimization process to improve the robustness of data association. In this
way, the mid-term tracking of line segments is achieved, and the drift problem of
trajectories is reduced.



Sensors 2021, 21, 1196 3 of 20
Sensors 2021, 21, x FOR PEER REVIEW 3 of 20 
 

 

 
Figure 1. Description of feature semantic invariance. When the car is moving away, the pixels 
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Figure 1. Description of feature semantic invariance. When the car is moving away, the pixels around the line segment
change dramatically, but its semantic description remains unchanged.

2. Related Work

The accuracy of indirect tracking-based SLAM pose estimation relies on the extraction
and accurate matching of image features. Point features of images, such as oriented FAST
and rotated BRIEF (ORB) [28], speeded-up robust features (SURFs) [29], and scale invariant
feature transform (SIFT) [30], are insensitive to illumination changes and easy to extract.
Classical visual SLAM systems are designed based on point feature tracking. However,
in scenes where the image texture is blurred or missing, the point features might lose the
advantage of easy extraction, leading to an insufficient number of feature points and a
serious impact on the accuracy of pose estimation, such that the system might even fail.
The line segment performs better than the point feature for the same area. As shown in
Figure 2, the line segments can reflect the structural information of the environment more
completely. Thus, line segments became the technical breakthrough point for SLAM.

In 2006, Smith et al. [13] applied line segments to the extended Kalman filter SLAM
(EKF-SLAM) system. A line segment was detected by connecting several adjacent key
points to achieve real-time performance. Zhang et al. [14] first proposed a stereo SLAM
system based on line segments; this system realized the map construction and loop closure
detection function based on line segment tracking. Before 2012, the theoretical development
of line segment extraction, description, and matching methods was not complete enough,
which resulted in fewer applications of line segments in SLAM systems. After line segment
detector (LSD) [31] and line band descriptor (LBD) [32] algorithms were proposed, the
extraction and description of line segments became more accurate. Thus, line segments
became widely used in SLAM systems. However, computing the poses using only line
segments is not as reliable as that through the computation of poses based on point
features. Xie et al. then proposed a robust efficient visual SLAM system that utilizes
heterogeneous point and line features [18]. The LSD algorithm and LBD algorithm are
used for the extraction and description of line segments in this system, respectively. In
the process of pose optimization, the method of minimizing the reprojection error was
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used for optimization, and the Jacobian matrix of the line segment reprojection error was
derived. This algorithm simply added up the detection results of point and line features
when constructing the error function, which introduced matching error of line segments
and directly affected the accuracy of data association.
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Figure 2. The performance of point and line features in areas of low texture and motion blur. (a,b) A
low-texture scene and motion blur scene, respectively. By comparing the ORB feature points (see
figures (c,d)) and LSD line segments (see figures (e,f)) extracted from the images, it can be seen that
the line segments are more responsive to the environment structure information.

For greater utilization of environmental information, Suleymanov et al. [33] used deep
learning to infer the boundaries of occluded roads to improve the localization accuracy
of their system. Semantic SLAM supplements SLAM systems with semantic information
for environmental understanding. As a result, semantic segmentation has been proposed
to be directly applied to data association in SLAM systems with the aim of reducing the
generation of cumulative errors. Bowman [25] proposed to combine an object detection
framework with the SLAM system to solve the camera’s poses problem by recognizing
objects to assist, but an accurate recognition of objects was needed. Konstantinos-Nektarios
et al. [26] proposed a medium-term data association approach, named visual semantic
odometry (VSO), that enables medium-term tracking of point features by ensuring the con-
sistency of the semantic labels of the point features, and constructed semantic reprojection
error terms.

Based on the stereo point-line SLAM system, the present paper aims at the problem
that after the introduction of line segments, the accuracy of data association is directly
affected by the mismatching of line segments, which aggravates the cumulative error of
the system. An effective improvement approach is proposed. Our approach uses semantic
invariants to provide constraints for line segments matching to reduce the generation of
line feature mismatching. Furthermore, the semantic reprojection error function of the line
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segment is defined to realize the mid-term tracking of line segments, which effectively
reduces the drift of trajectories and improves the robustness of the system.

3. System Overview

In this section, a brief description of the system design is presented. We indicate in
which part of the SLAM system the semantic invariants are mainly applied. The general
structure of the proposed system is depicted in Figure 3. The system follows the framework
of ORB-SLAM2 [9], and the whole SLAM task runs in parallel according to three threads:
visual odometry, local mapping, and loop closure.
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Figure 3. System overview. Our system pipeline is an extension of the ORB-SLAM2 [9]. In the figure, the red squares are
the main improved modules in our approach. Our system is composed of three main threads: Tracking, Local Mapping,
and Loop Closing. The tracking thread performs pose estimation by data association of point and line features. The local
mapping thread adds the new keyframe into the map and optimizes it with BA. The loop closing thread constantly checks
for loops and corrects them.

The visual odometry part includes feature extraction, matching, and pose estimation.
We used the methods described in [9,18] to estimate the poses by processing the point and
line features. First, we extract the point and line features in the current frame, and associate
the features with those of the previous frame. Based on the results of data associations,
a relative motion matrix ∆T is calculated. The pose of the current frame is calculated by
Tew = ∆T·Trw, where Tew represent the current frame pose, and Trw represent the previous
frame pose.

The local mapping is composed of 3-D landmarks (both points and line segments)
and a set of keyframes. If the current frame is determined to be a keyframe, we insert it
into the local map to be maintained. The optimization process of the poses is performed
by minimizing the sum of the reprojection error term with joint semantic invariants of the
reprojection error term.

Loop closure is a process of re-identification and re-localization. The generation of
loop closure depends on the similarity of the images. We follow the approach in ORB-
SLAM2 [9] and PL-SLAM [17] to determine the similarity of images by computing the
similarity of the word vector in the bag-of-words (BoW) [34] approach. Once the loop
closure is generated, the global bundle adjustment (BA) process is used to optimize the
poses and obtain a globally consistent map.
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In this paper, the results of semantic segmentation are mainly applied to the visual
odometry and local pose optimization. As shown in Figure 4, the system receives the
image sequence and then performs the extraction and matching of point and line features.
Since the extraction and matching methods for point features are more complete than
line segments, semantic segmentation results are only applied to the association of line
segments. Based on existing association methods for line segments, semantic classification
of line segments can be done by using the results of semantic segmentation. This provides
semantic invariant constraints on the association of line segments and reduces incorrect
data associations. When the association results of point and line features are obtained, the
landmarks (both points and line segments) in the local map are projected into the current
frame and its corresponding semantic segmentation image, respectively. Pose optimization
is subsequently performed by minimizing the sum of the reprojection error term with joint
semantic invariants of the reprojection error term. Our approach is described in detail in
Section 4.
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Figure 4. SLAM process incorporating semantic invariants. The red square represents the effective
area of the semantic segmentation result. We use semantic invariants as conditional constraint for the
data association between line features, and define an error function fused with semantic invariants to
optimize the pose.

4. Semantic Invariants in Line Segment Association and Pose Optimization

In this section, we first introduce the details of the pre-processing of the line segments
extracted by the LSD algorithm and the way to apply the results of the semantic segmenta-
tion to constrain the data association of the line segments. The problem of how to perform
the pose optimization after establishing the medium-term data association about point and
line features by semantic invariants is described in Section 4.2.

4.1. Pre-Processing and Association of Line Segments

Line segments are extracted using the LSD algorithm. The LSD algorithm is a local
straight line detection algorithm that can quickly extract local straight contours in an image
without adjusting parameters. However, the line segments are broken into several straight
lines due to occlusion or partial blurring, etc. To solve this problem, we follow the method
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in the literature [18] to merge the broken line segments. Whether a broken line segment
satisfies the condition of merging is determined by both the distance between the endpoints
and the distance between the line segments. We remove the line segments that do not meet
the length threshold after merging.

When the pre-processing is complete, our approach performs semantic classification of
the line segments. As shown in the right image of Figure 1, fields of different colors indicate
different semantic categories. If an extracted line segment is within a particular color block,
the corresponding semantic category label will be given. The following principles are
applied to determine whether a line segment belongs to a semantic category:

1. The length of the detected line segment in the category region is greater than the
parameter set as threshold D.

2. If the detected line segment lies on the boundary of several semantic categories, it is
marked as the category with the highest probability.

Detectron2 is used to predict semantic segmentation of the image. The prediction is
composed of ground (yellow area) and non-ground (purple area). Then, the line segments
are classified according to the rules proposed above. The classification results are shown in
Figure 5.
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Figure 5. Line segment classification.

The data association of line segments should ensure that the line segments belong
to the same semantic class and have a high relevance. The relevance of line segments
is determined by the description of the local appearance of the line segments, which is
provided by the LBD descriptor.

4.2. Fusion of Semantic Invariants for Point and Line Reprojection Error Functions

In SLAM systems, there are two main ways to reduce the cumulative error of tra-
jectories. One is to optimize the pose through inter-frame data association to reduce the
trajectory drift; this is a short-term constraint. The other one relies on loop closure detection
for pose correction, which establishes long-term constraints in the image frame. VSO [26]
uses the semantic segmentation information of images to establish a mid-term data as-
sociation of pairs of points. Line segments also have semantic invariance; therefore, our
approach uses this property to establish medium-term data association on line segments.
Figure 6 illustrates the data association process for point and line features during camera
motion. The red lines indicate the appearance-based constraints on features in the visual
odometry framework, and the green line indicates the semantic-based constraints. Camera
1 and camera 2 can establish appearance-based constraints and semantic-based constraints
on features. During camera movement, because the description of the feature appearance
changes drastically, only the semantic constraint of the feature can be observed in the k-th
camera. Such semantic constraints can provide a longer-term constraint for feature data
association than appearance-based constraints; this is called mid-term tracking of features.
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We define an error function by combining semantic invariant with reprojection error:

E = Ebase + Esem (1)

where Ebase is the reprojection error, and Esem is the error function of the fused semantic
invariants. By minimizing the error function, the mid-term tracking both of the point and
line features is realized, and the drift of the trajectory is reduced.

4.2.1. Definition of Ebase

The point-line feature-based stereo SLAM system usually performs local pose op-
timization by minimizing the reprojection error [35], given input images I = {I}k

k=1,
corresponding poses T = {T}k

k=1, 3-D points PN
i , and 3-D line segments LM

j . The reprojec-
tion error function Ebase is defined as follows:

Ebase = EP + EL (2)

where EP and EL represent the reprojection errors of point features and line segments, re-
spectively.

EP is the distance between the observation µik of the i-th 3-D point and its reprojection
in the k-th keyframe:

EP = µik − π(Pi, K, Tk) (3)

where π(·) represents the reprojection coordinates of the 3-D point Pi; K represents the
camera’s intrinsic matrix; and Tk is the relative motion matrix.

Uncertainty occurs in the endpoints of line segments in reprojection due to occlusion
or other reasons. Therefore, the reprojection error function of the line segment cannot be
defined simply by the coordinate’s distance between the observed line and its reprojection.
A more precise approach is to use the method in the literature [19], where the reprojection
error of the line segment is defined by the sum of the perpendicular distances between
the endpoints of the projected line segment and the detected straight line. As shown in
Figure 7, lo is the observation of the line segment, and lP is the reprojection of the 3-D line
segment; and d′s and d′e represent the line reprojection errors. Therefore, EL is defined as:

EL = d′s
2
+ d′e

2 (4)
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4.2.2. Definition of Esem

The error function of the fused semantic invariants describes the probability that the
point and line features belong to category C after reprojection. As consistent with the phe-
nomenon elaborated upon in VSO [26], features change drastically during camera motion
because of the pixel information around them (see Figure 1). When the camera moves away
from the green line, the pixels around the green line have a huge transformation due to
the scale shift, which makes the feature fail in tracking. Thus, the constraint of this part
of the feature is lost in the data association. In contrast, the semantic description of the
feature remains unchanged during the scale change. Therefore, such semantic invariance is
applied to data association to establish constraints on features, extend the effective tracking
time of features, and reduce the generation of cumulative errors.

For input images I = {I}k
k=1, semantic segmentation is performed, and the corre-

sponding semantic segmentation image is IS = {IS}k
k=1. Each pixel in IS has a category

C. Then, for a 3-D point Pi projected into ISk, the projection coordinates are µi, and the
projection coordinates have a semantic category µi ∈ c, where c is a subcategory of C.
A semantic observation probability model on point features is defined in VSO:

P(ISk|Tk, Pi, µi = c) ∝ e−
1

2σ2 DTC
k (π(Pi ,Tk))

2
(5)

where DTC
k (·) represents the distance from the projection coordinate µi to the nearest

boundary of the semantic category C. σ describes the uncertainty of the semantic category
C. Then, the error function on the fused semantic invariants of the point features can be
defined as follows:

EsemP = ∑
c∈C

ωc
i (− log(P(ISk|Tk, Pi, µi = c))) = ∑

c∈C
ωc

i ·
1

2σ2 DTC
k (π(Pi, Tk))

2 (6)

where ωc
i is the category probability vector that describes the case where Pi is observed by

a series of cameras and the category belongs to C. This leads to:

ωc
i =

1
α

Π
k∈Ti

P(ISk|Tk, Pi, µi = c) (7)

where α is a constant used to guarantee ∑
c∈C

ωc
i = 1.

Similarly, for a 3-D line Lj, its projection to ISk will also make the projected line segment
lj have a semantic category lj ∈ C. As shown in Figure 8, the probability of belonging to
semantic category C for the reprojected line segment lj is described by calculating the two
endpoints of the projected line segment and the distance from the midpoint of the line
segment to the nearest boundary of semantic category C. It can be determined that the
smaller the distance dm of the midpoint Pm of the line segment from the nearest boundary
of C, the more likely it is that the line segment belongs to category C. To ensure that most
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of the line segments belong to category C, the endpoints with the smallest distance to the
nearest boundary of semantic region C should also be considered jointly:{

dm = DTC
k (π(Pmi, Tk))

2

de = DTC
k (π(Pei, Tk))

2 (8)

where dm and de represent the distance from the midpoint and the endpoint to the bound-
ary, respectively.
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Figure 8. Feature-based semantic observation likelihood. The figure describes the probability that
the point and line features reprojected to the semantic segmentation image belong to category C. This
probability is described by the distance from the point and line features to the semantic boundary. µi

and lj in the figure represent the point and line features reprojected to the semantic segmentation
image; Ps and m denote the endpoints and midpoints of the line segments, respectively.

As a result, the probability of a projected line segment belonging to category C is
described by the distance between the midpoint and endpoints of the projected line segment
and the boundary of category C. The semantic likelihood model of the line segment is
defined as follows:

P
(

ISk/Tk, Lj, lj = C
)

∝ e−
1

2σ2 (DTC
k (π(Pmi ,Tk))

2+DTC
k (π(Pei ,Tk))

2) (9)

The error on the fused semantic invariants of the line segments can be defined as:

EsemL = ∑
c∈C

τc
i
(
− log

(
P
(

ISk/Tk, Lj, lj = C
)))

= ∑
c∈C

τc
i ·

1
2σ2

(
DTC

k (π(Pmi, Tk))
2 + DTC

k (π(Pei, Tk))
2
) (10)

where τc
i is the category probability vector describing the case where line segment Lj is

observed by a series of cameras and the category belongs to C:

τc
i =

1
β

Π
k∈Ti

P
(

ISk/Tk, Lj, lj = C
)

(11)

The error function of the joint semantic invariants is thus defined as follows:

Esem = EsemP + EsemL (12)

The error function for solving the fused semantic invariants follows the EM method
in VSO, first solving the category probability vector by E-step keeping the 3-D points and
3D lines unchanged, and M-step keeping the category probability vector unchanged to
optimize the camera pose.
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5. Results

In this section, a series of experiments are performed to verify the effectiveness of the
system proposed in this paper. It is necessary to use color images for semantic segmentation.
We therefore perform validation using publicly available datasets TartanAir [36] dataset and
KITTI [37] dataset, both of which provide color sequences with ground-truth. The TartanAir
dataset is an indoor scene dataset, and the KITTI dataset is an outdoor scene dataset. We
compare our method with several state-of-the-art methods, including ORB-SLAM2 [9]
and PL-SLAM [17]. All experiments are performed on a laptop with Intel i5-4200U CPU,
4GB RAM, and an Ubuntu 16.04 operating system. The semantic segmentation results are
obtained using Detectron2, which was introduced by Facebook AI Research [38].

Detectron2 provides a flexible framework based on Mask R-CNN [39], which can add
different branches to accomplish tasks, such as object detection, object classification, and
semantic segmentation. We use this framework to perform semantic segmentation tasks on
the selected sequences, as shown in Figure 9, to prepare for subsequent system operation.
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Figure 9. Example of semantic segmentation.

5.1. Fusion of Semantic Invariants for Line Feature Matching

In this paper, the matching of line segments is constrained by adding semantic invari-
ants to the existing matching method. Two frames in the corridor scene are selected for line
feature extraction and matching. Two matching methods are used in the experiments: one
is the LBD descriptor matching approach, and the other is our approach. Figure 10 and
Table 1 shows the matching results of the two methods.

Table 1. Results of using different methods to associate the data of line segments.

Number of Detected
Line Segments

Number of Data
Associations

Number of Correct
Data Associations

Classical method 203 178 108
Improved method 46 37 37

As can be seen, after adding semantic invariants, the mismatching between line
segments is significantly reduced, and the accuracy of line segment matching is improved.
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Figure 10. Fusion of semantic invariants for line segment matching. (a) The raw image; (b) the
semantically segmented binary image; (c) the results of line segment matching by LBD descriptors in
the OpenCV [40] library; (d,e) line segment matching results after adding semantic invariants.

5.2. TartanAir Dataset

TartanAir [36] is a dataset with a variable and challenging environment in a virtual sce-
nario. We chose the Office sequence from the TartanAir dataset for our experiments. These
sequences contain motion blur and low-texture scenes, and lack dynamic objects. Each
sequence contains easy and hard modes. Hard mode means there are drastic illumination
changes and camera movements.

We follow two methods to evaluate the performance of the system: absolute trajectory
error (ATE), and relative pose error (RPE). The ATE is used to reflect the drift between
the ground-truth trajectory and estimated trajectory and is suitable for evaluating the
performance of the whole SLAM system. The RPE calculates the difference in the amount of
pose change over the same time stamp and is suitable for evaluating the drift of the system.

Figure 11 shows the ATE for some of the sequences in the TartanAir dataset. We can
see the difference between the estimated trajectory and ground-truth of different algorithms.
Among the four selected sequences, the system in this paper achieves better results in three
of them. In the Easy-P001 sequence, the trajectory estimated by ORB-SLAM2 is closest
to the ground-truth, and our method is the next closest. In the Easy-P006, Hard-P001,
and Hard-P006 sequences, our approach has excellent performance, and the estimated
trajectories are closer to the real trajectories than those of ORB-SLAM2 and PL-SLAM.

Figure 12 shows the trajectories estimated by ORB-SLAM2 and our approach on the
Hard-P001 sequence. We can see that ORB-SLAM2 has tracking loss in this sequence, which
occurs in frames 229 and 376–568 of the sequence. In contrast, our approach successfully
performed the tracking and estimated a trajectory close to the ground truth.
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Figure 11. Absolute trajectory errors on the TartanAir dataset. (a–d) are the ATE comparison of
different algorithms in sequences Easy-p001, Easy-P006, Hard-P001 and Hard-P006, respectively. The
black line in the figure is the ground-truth, the blue line is the estimated trajectory, and the red area
represents the difference between the ground-truth and the estimated trajectory.
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Figure 12. A motion trajectory of ORB-SLAM2 compared with our approach on the Hard-P001 sequence. The red circle in
the figure shows that ORB-SLAM2 lost the tracking at runtime, and the left column shows the frames with the tracking lost.

Figure 13 shows the reason why our method has a large error in pose estimation in
the Easy-P001 and Hard-P005 sequences. It can be seen that within some image frames,
our method cannot extract enough features (both points and lines) for pose estimation.
However, ORB-SLAM2 can track smoothly in the same frames and estimate a more accu-
rate pose.

To verify whether our approach is effective in reducing the generation of cumulative
errors, we selected the RPE for evaluation. After calculating the RPE between the trajectory
estimated by the system in this paper and the ground-truth, we compared it with the RPE
of ORB-SLAM2 and PL-SLAM. The experimental results recorded in Table 2 and Figure 14
describe the degree of drift of the trajectory.

Table 2. Mean relative pose error (RPE) in the TartanAir dataset. Bold numbers represent the
best performances.

Sequence
ORB-SLAM2 PL-SLAM Ours

trel (m) Rrel (◦) trel (m) Rrel (◦) trel (m) Rrel (◦)

P001
Easy 1.33 16.15 1.63 16.55 1.37 16.07
Hard 1.68 8.73 1.53 7.65 1.40 7.62

P005
Easy 1.63 13.24 1.61 18.16 1.57 13.47
Hard 1.04 7.13 1.72 10.35 1.19 9.15

P006
Easy 1.37 12.17 1.71 13.41 1.28 11.77
Hard 1.48 5.68 1.86 4.93 1.47 5.05
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Figure 13. A motion trajectory of ORB-SLAM2 compared with our approach on Easy-P001 and Har-P005 sequences. (a,b)
show the trajectories estimated by different algorithms in thee sequences Easy-P001 and Hard-P005, respectively. The
right side of the trajectory shows a zoomed-in version of the trajectory with red circles (pose estimation error). Below the
trajectories, the reasons why our system incurs a pose estimation error are shown.
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Figure 14. Mean relative pose error of translation on the TartanAir dataset. (a,b) are the trel of different algorithms in
Easy-P001, Hard-P001 sequences; (c,d) are the trel of different algorithms in Easy-P005, Hard-P005 sequences; (e,f) are the
trel of different algorithms in Easy-P006, Hard-P006 sequences. The blue line, red line, and green line represent the relative
pose error of translation for ORB-SLAM2, our approach, and PL-SLAM, respectively.

As shown in Table 2, the mean RPE of our approach in the translation direction in
the sequences Hard-P001, Easy-P005, Easy-P006, and Hard-P006 is smaller than that of
ORB-SLAM2 and PL-SLAM. Furthermore, the mean RPE of rotation of our approach in
Easy-P001, Hard-P001, and Easy-P006 is better than that of ORB-SLAM2 and PL-SLAM.

The RPE values for translation are plotted in Figure 14. In the Easy-P001 sequence,
the RPE of translation of our method is more uniform, while ORB-SLAM2 and PL-SLAM
both produce large undulations, indicating that they produce a large trajectory drift. In
the Hard-P001 sequence, the RPEs of the proposed system are closer to those of PL-SLAM,
and ORB-SLAM2 produces a large drift in the results estimated in the last 200 frames of
the sequence, with a maximum RPE of 12 m. The performance of our method is closer to
that of ORB-SLAM2 in the Easy-P005 sequences, with its RPE fluctuating above and below
1.55 m, with a fluctuation range of 0.5 m; meanwhile, PL-SLAM produces a large drift of
up to 4 m. In the Hard-P005 sequence, ORB-SLAM2 performs the best, and the RPEs of our
method are closer to ORB-SLAM2; meanwhile, PL-SLAM performs the worst. The RPEs of
our approach are smoother than those of ORB-SLAM2 and PL-SLAM in the Easy-P006 and
Hard-P006 sequences.

The comparison of the experimental results shows that our approach can suppress the
trajectory drift better in indoor scenes where there is no interference from dynamic objects.
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5.3. KITTI Dataset

The KITTI [37] dataset was used to verify that our approach performs properly in
texture-rich outdoor scenes. The KITTI dataset is currently the largest test set of au-
tonomous driving scenarios in the world. It covers urban, rural, highway, and other scenes.
In this paper, several typical color sequences from the KITTI dataset are used: 00, 04, 07,
and 08. Sequence 00 contains multiple loops, 04 is travel in a straight line, 07 contains only
one loop, and 08 is travel for a long distance but without a loop.

Table 3 records the RPE of our method and ORB-SLAM2 on the KITTI dataset. There
is no significant accuracy improvement of our method in the textured outdoor scenes
compared to ORB-SLAM2. This is due to the fact that in outdoor scenes, there are already
enough feature points available for the SLAM system to function properly.

Table 3. Mean relative pose error (RPE) (cm) on the KITTI dataset. Bold numbers represent the
best performances.

Sequence 00 04 07 08

Ours 5.223 2.220 4.545 9.584
ORB-SLAM2 3.020 2.229 4.805 4.492

Figure 15 plots the trajectories estimated by different algorithms on the KITTI sequence
with the ground-truth provided by the dataset. It can be seen in Figure 15 that in sequences
04 and 07, the accuracy of our approach does not differ much from that of ORB-SLAM2,
but in sequences 00 and 08, a large deviation is produced. This is due to the presence of
dynamic objects that occupy large areas in the image of sequences 00 and 08.
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Figure 15. Performance of different algorithms on typical trajectories from the KITTI dataset. (a) is
the 00 sequence with multiple loops, (b) is the 04 sequence with a short straight line, (c) is the 07
sequence with one loop, and (d) is the 08 sequence with a long line and no loops.

The experimental results illustrate that applying the results of semantic invariance to
the SLAM system in outdoor scenes is not necessarily effective in reducing the trajectory
drift of the system. The reason for this result may be that the accuracy of semantic segmen-
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tation in outdoor scenes is not high enough, the division of semantic categories is not fine
enough, and there is influence from dynamic objects.

5.4. Timing Results

In order to complete the evaluation of the proposed system, we present in Table 4
the timing results in each part of the system, for each of the tested datasets. It can be seen
that our system and PL-SLAM consume more time than ORB-SLAM in the visual ranging
threads. This is due to the addition of the extraction and processing part of the line segment
in this thread. Secondly, in the local mapping thread, our system takes the most time,
mainly due to the addition of the solving and optimization part of the fusion semantic
invariant error function to the pose optimization process. In the loop closing part, since
the bag-of-words model based on point and line features is used for loop detection, this
increases the time consumption of the system to some extent. Note that the three threads
are running in parallel. Finally, on the experimental equipment in this paper, the time
consumption of the visual odometry part of the KITTI dataset is 108.49ms, which is about
9 frame/s, whereas the time consumption of the visual odometry part of the TartanAir
dataset is 43.84 ms, which is about 22 frame/s. Therefore, our system can basically meet
the real-time requirements.

Table 4. Average runtime of each part of the system.

TartanAir, 640 × 480, 25 fps KITTI, 1241 × 376, 10 fps

Visual Odometry
ORB-SLAM2 36.09 ms 100.07 ms

PL-SLAM 46.66 ms 123.11 ms
OURS 43.84 ms 108.49 ms

Local Mapping
ORB-SLAM2 142.31 ms 239.03 ms

PL-SLAM 105.91 ms 160.93 ms
OURS 169.40 ms 253.71 ms

Loop Closing
ORB-SLAM2 4.12 ms 9.36 ms

PL-SLAM 4.67 ms 24.60 ms
OURS 4.89 ms 38.61 ms

6. Conclusions

In this paper, a point-line stereo SLAM system incorporating semantic invariants is
proposed. Semantic category labels are given to line segments in order to improve the accu-
racy of line segment data association. The reprojection error function on the line segment is
defined by joint semantic invariants to achieve the mid-term tracking of the line segment,
which enables the system to obtain better results when performing local optimization,
and reduces the generation of cumulative errors in the trajectory. The effectiveness of our
method was verified on the TartanAir dataset and KITTI dataset. The experimental results
were compared with those of the ORB-SLAM2 and PL-SLAM system. It is concluded that
our proposed algorithm is effective in improving the robustness of the system and reducing
the drift of the trajectory in most sequences. However, since the semantic segmentation
information is pre-processed, there is no direct real-time segmentation of the original image
in the system. Therefore, the subsequent application of real-time semantic segmentation
will be considered to further improve the integrity of the system.
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