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Abstract

Motivation: Metabolomics has shown great potential to improve the understanding of complex

diseases, potentially leading to therapeutic target identification. However, no single analytical

method allows monitoring all metabolites in a sample, resulting in incomplete metabolic finger-

prints. This incompleteness constitutes a stumbling block to interpretation, raising the need for

methods that can enrich those fingerprints. We propose MetaboRank, a new solution inspired by

social network recommendation systems for the identification of metabolites potentially related to

a metabolic fingerprint.

Results: MetaboRank method had been used to enrich metabolomics data obtained on cerebro-

spinal fluid samples from patients suffering from hepatic encephalopathy (HE). MetaboRank

successfully recommended metabolites not present in the original fingerprint. The quality of

recommendations was evaluated by using literature automatic search, in order to check that rec-

ommended metabolites could be related to the disease. Complementary mass spectrometry

experiments and raw data analysis were performed to confirm these suggestions. In particular,

MetaboRank recommended the overlooked a-ketoglutaramate as a metabolite which should be

added to the metabolic fingerprint of HE, thus suggesting that metabolic fingerprints enhancement

can provide new insight on complex diseases.

Availability and implementation: Method is implemented in the MetExplore server and is available

at www.metexplore.fr. A tutorial is available at https://metexplore.toulouse.inra.fr/com/tutorials/

MetaboRank/2017-MetaboRank.pdf.
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1 Introduction

Untargeted metabolomics studies allow monitoring a large range of

small molecules (metabolome) in a tissue, an organism or a biofluid

(Fiehn, 2002). When applied to human health research, a subset of

this metabolome is considered as a metabolic fingerprint of a given

pathology if it is statistically shared by a homogeneous group of

patients in comparison to control subjects or another group of

patients not affected by the pathology under study. These finger-

prints constitute valuable supplementary knowledge that can be

used for instance for patient stratification (Sreekumar et al., 2009).

Metabolic fingerprints also provide important clues for drug discov-

ery and precision medicine since they reflect the biochemical modu-

lations of human metabolism induced by a pathology (Hocher and

Adamski, 2017).

A commonly used approach to establish a link between metabol-

ic fingerprints and endogenous metabolism consists in applying en-

richment analysis (Chagoyen and Pazos, 2011; Persicke et al., 2012)

on biochemical pathway collections provided by publicly available

databases such as KEGG (Kanehisa et al., 2014). This technique

aims at finding which metabolic pathways contain a significant

number of metabolites that belong to the fingerprint. The notion of

metabolic pathway is informative since it assigns functions to a set

of reactions. Nevertheless, the definition of their functional bounda-

ries (input and output compounds) often varies from one database

to another (Altman et al., 2013) potentially leading to different

interpretations when analyzing the same fingerprint in various data-

bases. Fragmented view of metabolism offered by metabolic path-

ways is also a major limitation in global interpretation of

fingerprints, especially when the systemic biochemical modulation

associated with a disease is spanning several pathways.

To overcome these limits and take into account the full complex-

ity of metabolism, metabolic fingerprints can be interpreted by con-

sidering them in the context of genome scale metabolic network

which gathers all the biochemical reactions that can occur in a given

organism (Mo and Palsson, 2009). Regarding human metabolism,

networks reconstructed from genome annotation and manual cur-

ation had been made available to the community (Swainston et al.,

2016; Thiele et al., 2013). However, the size of these networks (e.g.

Recon2 human metabolic network contains 7440 reactions) makes

the visual interpretation difficult and time-consuming. It thus

requires the development of algorithms which reduce this complex-

ity by finding the subset of reactions and metabolites (subnetwork)

that are related to the metabolic fingerprint. Several of these meth-

ods have been proposed (Frainay and Jourdan, 2017) and applied to

interpret metabolic fingerprints (Milreu et al., 2014). The results

strongly support the use of network topology combined with graph-

theory algorithms to give biological insight from a list of

metabolites.

Most of these methods are based on path search between pairs of

compounds in the fingerprint, based on the assumption that the

sources and end products involved in the mechanism are known.

However, in contrast to gene or protein studies, no single metabolo-

mics technology allows monitoring every small molecule in a sample

leading to potentially incomplete fingerprints. Moreover, due to

technological or biological artifacts, the annotation of detected mol-

ecules is a challenging task which may discard some parts of the

fingerprint before downstream interpretation (Creek et al., 2014;

Neumann and Böcker, 2010). Fingerprint incompleteness can also

be due to the fact that the matrix sampled to decipher metabolic

modulations is not the tissue where the biochemical perturbations

are occurring [e.g. metabolites are measured in cerebrospinal fluids

(CSF) to study brain afflictions]. This gap may overshadow potential

metabolic shifts and, consequently, leave aside important metabo-

lites from the fingerprint, leading to misleading interpretations.

Recent studies addressed the problem, inferring hidden paths in

sparsely observed network (Lages et al., 2018; Massucci et al.,

2016). However, none of them specifically assesses this problem in

the context of metabolic networks, in particular regarding metabo-

lomics results interpretation, where the unobserved part of the net-

work can be difficult to accurately define. By taking into account

the specificity of metabolism and its observation, the network ap-

proach presented in this article will on one hand help in biological

interpretation, and on the other hand recommends candidate metab-

olites to enrich metabolic fingerprints.

Recommendation method development is an active research field

in information retrieval community. The proposed algorithms have

been intensively and successfully used for many applications, such as

content recommendation in social networks like TwitterTM

(Backstrom and Leskovec, 2011; Gupta et al., 2013; Liang et al.,

2014; Liben-Nowell and Kleinberg, 2007). These algorithms typical-

ly suggest new people one might be interested in, based on its con-

nections with people already present in its personal list of interest.

We propose to extend this concept to metabolic networks, thus sug-

gesting new metabolites of interest by taking into account how they

are connected to metabolites already present in the metabolic finger-

print. Our approach, in contrast to the pioneering method borrowed

from worldwide web analysis, does not assume that all the edges are

equivalent, since relationships between metabolites are more com-

plex to interpret than web page links. In fact, it is necessary to en-

sure the biological and chemical relevance of connections used to

compute the recommendations.

We show how this approach, called MetaboRank, was successful

in complementing the CSF metabolic fingerprint of the hepatic en-

cephalopathy (HE) disease described in (Weiss et al., 2016). HE cor-

responds to the neurological or neuropsychological symptoms of

acute or chronic liver failure and/or portosystemic shunt. The spec-

trum goes from mild neuropsychological symptoms to impaired

level of consciousness, often leading to coma. Even if the physiopa-

thology is still largely unrevealed, the major role of hyperammone-

mia in conjunction of inflammation is well established (Weiss et al.,

2018). As a consequence, glutamine levels increase in the brain.

However, the sole abundance of ammonemia does not scale with

symptoms’ severity and it has been shown that associated inflamma-

tion, increased levels of TNF-alpha and IL-6, were much better cor-

related to symptoms’ severity.

In order to better decipher EH metabolic alterations, Weiss et al.

used metabolomics to describe for the first time impaired metabolic

pathways. Nevertheless, like many metabolomic experiments related

to human health, the fingerprint was obtained from biofluid sam-

ples, overshadowing the importance of molecules that do not transit

through the blood–brain barrier. Moreover, the heterogeneity of dis-

ease severity has led to high inter-individual variability at the
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metabolic level, making many abundance shifts weakly trustworthy.

Those limitations emphasize the relevance of performing biological

interpretation including knowledge outside the bounds of metabolo-

mics scope.

In order to assess the relevance of hypotheses raised by our rec-

ommendation system, we applied automatic processing of literature

data to associate concepts described in the literature to the recom-

mended metabolites. We also reanalysed raw data and patient meta-

data to confirm some of the recommended metabolites.

MetaboRank is implemented in the freely accessible web server

MetExplore (Cottret et al., 2010), allowing interactive analysis of

the results.

2 System, methods and data

2.1 Centrality and recommendation systems
Many social network recommendation systems are based on the

concept of network centrality, which aims at measuring the import-

ance of a node. One of the best-known methods is the PageRank

(PR) algorithm, which was used by Google to rank web pages in a

search result according to their importance in the World Wide Web

(Brin et al., 1998; Page et al., 1999). Since its first application, it has

been successfully applied to many fields (Ma et al., 2008; Mihalcea

et al., 2004), including biology (Allesina and Pascual, 2009; Iván

and Grolmusz, 2011). PR defines the importance of a node as its

probability to be encountered during a random walk in the network.

In order to guarantee convergence of the random walk, stationary

probability is obtained by adding to each node a probability to

‘jump’ to any other target node, restarting the walk from this target

node. This ‘jump’ probability is specified in the algorithm through a

parameter referred to as the damping factor. When those jumps are

guided to favour some nodes according to a set of preferred ones,

the term Personalized PageRank (PPR) is used (Haveliwala, 2002).

PPR is well suited for fingerprint analysis since it has the ability to

identify metabolites that are likely to be reached (produced) from

molecules belonging to the fingerprint, by setting the jumps to target

those metabolites of interest. We choose to define each metabolite of

the fingerprint as equally important, thus with the same probability

to be chosen following a jump. However, it is possible to set for

each of them a different ‘restarting’ probability, based on prior as-

sumption regarding their importance. Such personalization could be

defined, for example, from fold changes or knowledge from the

literature.

PPR can be considered as a downstream search that evaluates

the scope of a list of metabolites. However, metabolites can also be-

long to a fingerprint because they are the outcomes of modulated

metabolic processes. To enrich these results with upstream metabo-

lites (i.e. potential precursors of fingerprint metabolites), we propose

to compute the CheiRank (CR). CR and PR principles are similar

except that for CR the links in the network are taken in reverse dir-

ection (Ermann and Shepelyansky, 2015). We adapted CR to create

a Personalized CheiRank (PCR), which takes into account the list of

metabolites in the fingerprint.

We propose to consider node centrality as a combination of these

two measures. This two-dimension analysis combining PR and CR

had been successfully used to analyse Wikipedia pages network

(Zhirov et al., 2010) or world trade networks (Ermann and

Shepelyansky, 2015), but has never been applied to metabolic

networks.

Metabolic networks are usually highly centralized around few

hubs, such as Coenzyme A or ATP (Jeong et al., 2000). It can thus

be expected that these central nodes will always have a high PR or

CR regardless of the content of the metabolic fingerprints. In order

to limit this bias and emphasize metabolites whose centrality is

higher compared with the general case, the scoring function

is defined as the ratio between PPR (resp. PCR) and global PR

(resp. CR).

In order to obtain relevant results, analysis of metabolic net-

works requires taking into account biochemical properties related to

each reaction (Arita, 2004). To this end, MetaboRank is computed

on a probability matrix encoding biochemical knowledge as

described in the next section.

2.2 Adapting human genome scale metabolic network

and defining transition probabilities
The last two decades have seen an exponential growth of metabolic

network reconstructions, which are made available through public

databases (Wimalaratne et al., 2014) or alongside articles (Hucka

et al., 2003). However, for practical reasons, most methods designed

to analyse metabolomic results in the context of those networks are

database-dependent, restricting for example their use to KEGG

(Kanehisa et al., 2014). In order to apply our analysis to networks

coming from various sources as well as home-brewed networks, we

propose a generic method that can be applied to any network

described in the standard SBML format (Hucka et al., 2003) with

sufficient information on metabolites.

We applied our method to Recon2 human genome scale meta-

bolic network (Thiele et al., 2013). In this model, metabolites are

assigned to cellular compartments (mitochondria, cytoplasm, etc.).

Nevertheless, current global and untargeted metabolomics

approaches do not provide information on cellular localization of

metabolites. Hence, we created a modified version of Recon2 net-

work by considering a metabolite belonging to several compart-

ments as a single metabolite.

Metabolic networks can be turned into graph mathematical for-

malism by assigning network elements to nodes connected by edges.

Several ways to turn a metabolic network into a graph exist

(Lacroix et al., 2008). We chose to use the compound graph where

one metabolite is connected to another if they are respectively sub-

strate and product of a reaction from the network. This formalism

allows the integration of information about substrate-product tran-

sition on edges.

One of the main issues when analyzing metabolic graphs is the

presence of side compounds, which are ubiquitous compounds

involved in many biochemical reactions for annex purposes, such as

energy carrier or proton donor. This leads to create edges between a

‘main’ substrate node and a side product (like water) node. When

computing paths, these side compounds may cause an underestima-

tion of distances by creating irrelevant shortcuts (Arita, 2004;

Holme, 2009). One way to overcome this issue is to remove a set of

side compounds based on expert knowledge or using degree thresh-

old (Croes et al., 2005). However, several metabolites considered as

side-compounds in most reactions may be implicated as ‘main’ com-

pounds in other processes (typically their own biosynthesis path-

way). Systemically removing those compounds will lead to the loss

of relevant parts of the network. A more suitable approach consists

of comparing molecular structure of substrates and products by

using chemical similarity or atom mapping. This approach allows

dissociating side compounds from main ones on a chemical basis

(Blum and Kohlbacher, 2008; Rahman et al., 2005). In those cases,

side compounds are not defined globally for the entire metabolic

network, but in the context of each reaction they are involved in.
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Hence, we applied a pre-processing step on the Recon2 uncom-

partmentalized metabolic network to avoid irrelevant transitions by

computing atom-atom mapping using the Reaction Decoder Tool

(Rahman et al., 2016). For a reaction, atom-atom mapping consists

of establishing a one-to-one correspondence between the substrate

and product atoms. This method requires structural description of

the compounds which is encrypted using the SMILES format

(Weininger, 1988). Since this information was not available for all

metabolites in the Recon2 network, we automatically retrieved this

knowledge form chemical databases using web services [PubChem,

ChEBI (Davies et al., 2015), HMDB (Wishart et al., 2013)]. When

only the InChI identifiers (Heller et al., 2015) were available, we

converted them into SMILES using the Chemistry Development

Toolkit (Steinbeck et al., 2003). Finally, all substrate-to-product

transitions that do not involve the preservation of at least one car-

bon atom between the source and the target were removed.

The previously described steps allow building the graph on

which PPR and PCR will be computed. The algorithm used to com-

pute PPR considers every outgoing edges of a node to have the same

probability to be traversed in the random walk. This model can in-

duce a bias when applied to compound graphs. In fact, using equi-

probable edges implies that a reaction with many products will be

favoured against a reaction consuming the same compound but pro-

ducing fewer metabolites. For instance, in Figure 1A, the network

contains two reactions R1 and R2. If we consider a compound cen-

tric weighting policy, all corresponding edges in the compound

graph will have the same probability of 1/3, as shown in Figure 1B.

A more proper way would be to spread probabilities between reac-

tions and then subdivide the probabilities of compound graph edges

as it is shown in Figure 1C.

We define the probability policy for substrate-to-product

transition as follows, with m1 and m2 as two connected nodes,

wðm1 ! m2Þ the edge weight: 1 by default, proportion of atoms of

m1 mapped on m2 in our study, Mr the set of all products of reaction

r, and Rm1 the set of reactions consuming m1:

Pðm1!
r

m2Þ ¼
wðm1 ! m2ÞX

mi2Mr
wðm1 ! miÞ

� 1

jRm1
j

By applying this probabilistic approach, random walks will go

through edges as if computation was performed on the bipartite

graph representation of the network. However, this policy still

allows to benefiting from the compound graph capability, namely

adding information about substrate-product chemical transitions in

the probability computation, such as chemical similarity (Rahman

et al., 2005), RPAIR tags scoring (Faust et al., 2009) or atom conser-

vation (Blum and Kohlbacher, 2008), which has been chosen in this

study, using atom mapping results. Each of those weighting strat-

egies have been shown to produce meaningful results and can be

chosen depending on the context of the study and data availability

(see Frainay and Jourdan, 2017 for in depth comparison). This prob-

ability policy also allows weighting at reaction level, considering

data obtained from transcriptomic or proteomic experiments for ex-

ample, by changing the reaction factor in the first equation. The

weight of an edge would be the probability of the substrate-to-

product transition, multiplied by the probability of the reaction

defined from data.

Finally, this policy can also be applied to multi-graphs where

two metabolites can be connected by several edges when a chemical

transition can be catalyzed by several enzymes.

The metabolic network adaptation of PPR (resp. PCR) will be

called in the following MetaboRankout (resp. MetaboRankin). The

combination of both ‘in’ and ‘out’ measures form the MetaboRank

recommendation system.

2.3 Metabolic fingerprint of HE
Metabolomics experiments have been conducted on CSF samples

from 14 patients suffering from HE against samples from 27 control

patients without any proven neurological disease (Weiss et al.,

2016). The CSF metabolome was analysed by LC/MS [Orbitrap-

Exactive and Q-Exactive Plus: Positive and negative ESI Scanning

from m/z 75 to m/z 1000. Mass resolution: 100 000 FWHM. The

relevant LC/HRMS features were kept by applying analytical filters

from XCMS data matrix as followed: correlation between dilution

factor of diluted QC (Quality Control, mix of all sample) and their

area corresponded and area. r2 > 0:7, Mean QC/mean Blank>3,

CV (QC)<30%; Feature annotation using public databases,

CAMERA R package and ESI-MS and HCD MSMS spectral in-

house database] and the discriminating fingerprint was built using

multivariate [SIMCA-P software (version 11.0, Umetrics, Umea,

Sweden)] and univariate statistical analyses.

In order to focus on metabolites confidently identified and pre-

senting the most trustworthy abundance changes, we extracted a

core fingerprint from the one presented in (Weiss et al., 2016). We

only kept metabolites with a relative abundance fold change be-

tween patient and control >2 times the standard deviation, a level 1

or 2 identification (Sumner et al., 2007) and considered as signifi-

cant regarding Mann–Whitney test (P-value<0.005) (see the full

list in Supplementary Table S1).

2.4 Mining literature to corroborate and enrich

suggestions
Social-network recommendation system efficiency is commonly

evaluated by measuring the number of suggestions followed by a

user during future web browsing. Unfortunately, this methodology

cannot be applied to metabolic recommendation system assessment

since recommendations in our case is not part of a decision process

but is involved in data interpretation. More generally, assessing the

quality of methods providing support to biological interpretation is

still a key challenge in the field. In fact, since the disease mechanisms

are still partially known, we do not have gold standard datasets

(other validated biomarkers) to compare with our recommendation

system suggestion.

In order to establish a link between metabolites of interest and

HE, we used the Metab2MeSH tool (Sartor et al., 2012). MeSH

(Medical Subject Headings) is a controlled vocabulary thesaurus

Fig. 1. Effect of the number-of-product bias on compound graph transition

probabilities. By overshadowing the reaction levels, seen on the bipartite

graph (A), the use of compound graph will favour reactions that involve more

products than other consuming reactions (B). The hybrid weighting policy (C)

allows suppressing that bias
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hierarchically structured used to index scientific publications from

the MedLine and PubMed databases. Metab2MeSH performs en-

richment analysis to identify MeSH terms significantly associated

with metabolite names, based on their occurrences in scientific pub-

lications. Compound names from the Recon2 model were converted

to PubChem entry names using the Chemical Translation Service

web service (Wohlgemuth et al., 2010) and used to retrieve associ-

ated MeSH terms using the Metab2MeSH web service.

3 Results

On the basis of HE core fingerprint, MetaboRankout and

MetaboRankin were computed on all metabolites from the pre-

processed metabolic graph. Isolated metabolites, including metabo-

lites without structural information, where ignored from the final

ranking, resulting in two ranked lists of 1450 metabolites (see

Supplementary Table S2). In the following we will focus on com-

pounds ranked in top 50th of MetaboRankout and MetaboRankin.

The union of these two lists contains 72 metabolites and will be

called in the following ‘suggestion list’.

To assess the quality of this suggestion list, we compared it to a

list obtained by performing an automatic literature search. 38 com-

pounds in recon2 were associated with the MeSH term ‘hepatic en-

cephalopathy’ (MeSH id D006501) (see Fig. 2). Ten of them were

found in the original metabolic fingerprint. Four others were found

in the MetaboRankin 50th top ranked compounds, and eight were

found in the MetaboRankout 50th top ranked compounds. Overall,

the suggestion list allowed enriching the original fingerprint with 10

compounds known in the literature to be related to the disease.

Fisher exact test has revealed that the suggestion list is significantly

associated with the list of compounds found in the literature, with a

P-value of 3.119e�07. The receiver operating characteristic (ROC)

curve presented Figure 3 suggests that the ranking makes solid per-

formance at retrieving the metabolites associated with the disease,

with an area under the curve (AUC, computed using trapezoidal ap-

proximation) of 0.768 for the MetaboRankout and 0.745 for the

MetaboRankin. The best performance was achieved using the com-

bination of the two ranking, where metabolites are ranked accord-

ing to their best rank in any of the two other rankings, with an AUC

of 0.812.

Among the remaining 18 HE-related compounds found in the

network, four were completely disconnected from the fingerprint,

meaning that no single path can be found in the metabolic graph be-

tween them and any compound from the fingerprint (see grey lines

in Fig. 2). The ammonium cannot be reached because we consider

only substrate-to-product transitions that involve carbon atom con-

servation (see Section 2).

The presence of the D-forms of aspartate, ornithine and arginine

in the literature based HE-related list might be due to erroneous

compound annotations in literature, as they are very rare in nature.

In fact, D and L-forms of those compounds match exactly the same

HE-related publications in Pubmed, where the chirality is rarely

specified.

The literature based HE-related list may also contain molecules

associated with the disease which are not involved in the pathogen-

icity, but rather mentioned in literature for their intake effect on HE

patients. Therefore, the endogenous form of the molecule might not

be part of the modulated metabolic mechanism, and will not be

related to the fingerprint. This could be the case for compounds like

benzoate and Diazepam present in the Recon2 network and absent

from our suggestion list. Sodium benzoate has been used for HE

treatment (Misel et al., 2013) in order to activate an alternative

pathway of waste nitrogen removal. Diazepam overdose has been

shown to induce progressive encephalopathy (Rupasinghe and

Jasinarachchi, 2011), and the administration of benzodiazepine

medication to cirrhotic patient has been suggested contributing to

neurological impairment (Perney et al., 1998). Diazepam has been

detected in CSF samples, but has not been included in the HE meta-

bolic fingerprint (Weiss et al., 2016). The input fingerprint was built

from cirrhotic patient, mainly due to alcohol consumption. This

drug-induced form of the disease would likely yield a different meta-

bolic fingerprint and could explain why this compound is not sug-

gested by the recommendation system. Finally, HE-related

compounds might be missing from the suggestion list because of net-

work incompleteness or too sparse fingerprint.

Some metabolites in the suggestion list may not yet be mentioned

in literature focusing on HE, but they may be present in articles

mentioning symptoms or diseases related to HE. To address this

Fig. 2. 2D-rank of HE related compounds found in Recon2. HE related com-

pounds were found using Metab2Mesh tool. Ten of them were present in the

core fingerprint obtained from LCR metabolomic profile (blue cells), 10 others

were present in the list of recommendations (union of top 50 MetaboRankout

and MetaboRankin) (orange cells). The light grey cells contain compounds

that are disconnected from the input list (NC), dark grey cells contain com-

pounds that have been removed from the network (Color version of this fig-

ure is available at Bioinformatics online.)
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issue and enlarge the scope of our interpretation, we performed the

literature analysis by starting from compounds in the suggestion list

to decipher the ones that are not yet associated to HE in the litera-

ture, but which could be related to health impacts and symptoms

strongly associated with HE. MeSH terms related to HE were

extracted using a similarity metric that consider the number of co-

occurrences between MeSH terms compared with an expected num-

ber of co-occurrences appearing ‘by chance’ (Smalheiser and

Bonifield, 2016). Only MeSH terms with an odds ratio above 3

were considered. Figure 4 shows main MeSH terms from categories:

diseases, signs and symptoms associated with HE. By overlaying the

suggestion list onto this graph (size of nodes in Fig. 4) it appears that

brain, liver and metabolic diseases are the main categories of dis-

eases related to HE.

Figure 5 shows in more details how the 53 metabolites of the

suggestion list, annotated with at least one MeSH term (see

Supplementary Material, Table S3), are related to liver and nervous

system diseases and symptoms.

The largest part of the suggestion list is associated with terms

belonging to the ‘brain diseases’ category (31) and ‘liver diseases’

category (21) in which HE is classified. Twenty compounds were

found associated with both liver and brain diseases. Fisher exact test

reveals that the high-ranked list is significantly associated with brain

and liver disease groups (significance level a¼0.01).

By looking to more detailed levels of the MeSH thesaurus in

Figure 5, we can see that four compounds were associated with

MeSH terms related to HE symptoms: coma, confusion and

Fig. 4. Suggested compounds mapped onto HE-related disease MeSH subnetwork. Nodes represent Mesh terms. Edges represent tie in the MeSH ontology. The

strength of the association with HE is represented as the label font size. Node size represents the number of suggested compounds associated with the corre-

sponding term and/or sub-term. For readability purpose the whole relationships of the MeSH ontology are not represented, only shortest path between each

term is considered

Fig. 3. ROC curves for MetaboRanks. The True Positive Rate (TPR) corresponds

to the proportion of metabolites associated with HE literature retrieved in the

recommendation list. The False Positive Rate (FPR) corresponds to the propor-

tion of metabolites non-significantly associated with the HE literature retrieved

in the recommendation list. The curves represent the TPR and FPR of a recom-

mendation list for different rank cutoffs. The black diagonal line corresponds to

the expected value obtained from a random ranking (Color version of this figure

is available at Bioinformatics online.)
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consciousness disorders. One is also associated with intracranial

hypertension and brain oedema which often occurs in HE patients.

Few compounds were significantly associated with ‘liver failure’

tagged articles. However, many are overrepresented in corpus

related to diseases causing the liver failure, and by extension causing

HE: five were found associated with hepatitis, five with cirrhosis

and other alcohol-related diseases.

Besides association with pathological status, the suggestion list is

more generally associated with organs and cellular types (astrocytes,

neurotransmitters, blood–brain barrier) that play a central role in

the HE (additional MeSH terms from chemical and anatomy catego-

ries are provided in Supplementary Table S3).

Regarding association with chemicals related MeSH, 15 were

associated with MeSH terms Glutamine, Glutamic acid or

Ammonia, which are suggested to play a central role in the patho-

genicity of the disease. Fifteen (six more) were associated with mole-

cules used as treatment (Branched-chain amino-acids, Lactulose and

sodium benzoate). One (plus one also associated with HE) is associ-

ated with bilirubin, which is a marker of liver failure, the main cause

of the HE.

Some suggested metabolites are of particular interest in the con-

text of HE. Kynurenic acid (glutamate receptor antagonist) synthesis

is inhibited by hyperammonemia and it has been suggested to ex-

acerbate neuro-excitatory effect of ammonia in HE(Albrecht and

Jones, 1999). Kynurenic acid (kynurenate in the metabolic network)

was not added to the original HE fingerprint because of mass spec-

trometry detection limit issues, and consequently a high variability

of fold changes between patient and control group. However, a

closer look to raw data shows a clear homogeneity in the control

group and suggests deregulation specific to the HE patient group,

corroborated by Mann–Whitney test (P-value<0.0001) (Fig. 6).

Moreover, N-X-Hydroxyarginine and N-X-L-Arginosuccinate are

both involved in the pathway arginine-nitric oxide. It has also been

suggested that the N-X-Hydroxyarginine inhibit the arginase that

produces ornithine and urea from arginine. Finally, Serotonin (PR

24, CR 72) (Knell et al., 1974) and noradrenaline have been shown

to increase extracellularly and could be related to the early neuro-

psychiatric symptom of HE (Shawcross and Jalan, 2005). However,

none of these metabolites was detected using our LC/MS methods.

Some other suggested compounds appear to be of interest despite

no significant association with relevant MeSH terms. For example,

a-Ketoglutaramate, which has been found in CSF of patients with

hepatic coma and has been suggested as a biomarker of HE

(Halámková et al., 2012). However, very few studies investigated its

mechanism, explaining the lack of association with disease MeSH

term. This metabolite as well as the enzyme producing it have re-

spectively been described as ‘overlooked’ and ‘underappreciated,

but important’, regarding HE and other hyperammonemic diseases

(Cooper and Kuhara, 2014).

4 Discussion

PR based methods have recently gained much interest for protein-

protein interaction networks. For instance, the Protein Rank

(Freschi, 2007) is designed for protein functional annotation, using

PPR favouring protein with a selected function as random walk

seeds. Another example is the SubNet approach, providing a sub-

network extraction from interaction network based on PR scoring

(Zhang and Zhang, 2013). It uses a ‘global’ PR implementation

where random walks can start from any compounds, but favour

starts from nodes of interest by adding a constant parameter to bias

Fig. 6. Kynurenic acid concentrations (arbitrary units) in CSF samples from

HE and control patients. Data were obtained by LC/MS using a HILIC column

and ESI mass spectrometry detection in the negative mode. Kynurenic acid

identification level 1 according to (Sumner et al., 2007) (i.e. the same chroma-

tographic retention time, accurate measured mass and MS/MS spectrum as

those of the reference compound)

Fig. 5. Association between brain and liver diseases MeSH terms and sug-

gested compounds. Black and grey cells represent an unexpected number of

co-occurrences between the compound name and the MeSH annotation in

PubMed, defined accordingly to Smalheiser and Bonifield’s metric, with an

odds ratio threshold of 3. Only suggested compounds that are found by

Metab2Mesh tool are represented
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the damping. Previously, Iván and Grolmusz also proposed to use

PPR for protein-protein interaction networks (Iván and Grolmusz,

2011) and successfully retrieved cancer related proteins from proteo-

mics data of melanoma patients. A similar approach, known as

GeneRank (Morrison et al., 2005), has been proposed for gene can-

didate priorization, using gene correlation networks.

In contrary to protein or gene association networks, centrality-

based method has been far less applied to metabolic networks. Faust

and colleagues also proposed a random walks based approach

[available through the NeAT web server (Brohée et al., 2008)] to ex-

tract relevant sub-networks from metabolic networks (Faust et al.,

2010), using reactant-pair information to avoid side compounds

[RPAIR (Kotera et al., 2004)]. However, this method is mainly

focused on KEGG networks and assumes that the list of input

metabolites is complete (as it considers only walks linking them) and

therefore serves a different purpose than the method proposed here.

The closest implementation was introduced by Bánky et al.

(2013) who also used PPR. However, the computation is done on re-

action graph and is dedicated to protein target identification. They

avoid overscoring hubs by dividing the PPR by the degree of the

node. We chose to divide by the global PR, because the carbon con-

servation rule drastically changes the topology of the network

(water is no longer a hub for example) and makes the degree less

straightforward to interpret. Finally, they do not use the PCR thus

potentially missing upstream metabolites which could be of interest

for the interpretation.

Our method is based on a PPR implementation (also known as

PageRank with prior) combined with a PCR for precursor sugges-

tion. To the best of our knowledge, this is the first method that

allows identifying potential precursors since most of previous studies

were limited to PPR. Since our method is focused on metabolic net-

works, we also added a network pre-processing and a custom transi-

tion probability matrix to avoid metabolic network pitfalls, namely

side compounds shortcuts and reactions number of product bias. To

the best of our knowledge, MetaboRank is the first recommendation

system for interpretation of list of metabolites and the first use of

the two-dimensional PPR-PCR computation applied to metabolic

networks.

A recent study, also took advantage of the PR/CR for providing

biological insights (Lages et al., 2018). By analysing the rewiring of

signalling networks from cancer cell line and healthy cell line, using

PR/CR variations, the authors were able to successfully recover can-

cer related proteins and suggest meaningful hidden relationships.

Though the shared use of 2D analysis using PR and CR, the two

methods serve different aims and scopes. While the work of Lages

et al. uses a reduced version of the Google matrix, the method pro-

posed in this article uses a personalized version of the two metrics,

with several adjustments specific to the analysis of metabolic net-

works. Other approaches not related to PageRank nor path search

could serve similar purpose. The recent work of Massucci et al.

(2016), despite not specifically aiming at suggesting nodes of inter-

est, proposes a general Bayesian framework for the inference of per-

turbation propagation in a network with unobserved nodes, which

could allow ranking metabolites according to their probability of

being affected by a perturbation. Further development would still be

required to extend this general method to metabolic networks, by

taking into account reaction directions and side compounds.

Furthermore, the use of information regarding observed unaltered

nodes to lower the perturbation probability of its unobserved neigh-

bours can be problematic in the context of a metabolomics experi-

ments. In fact, the alteration of a metabolite can only be assessed in

the particular biological compartment sampled, at a specific time,

making the interpretation of a non-altered metabolite far from

trivial.

The damping factor parameter used during the computation of

PR and CR is usually chosen empirically, and most applications fol-

low the suggestion of 0.85 from the seminal paper by Brin and Page

(Page et al., 1999). Some studies, designed to reveal the impact of

the damping factor choice on the ranking of web pages, suggest that

the algorithm is not excessively sensitive to the variation of the

damping factor (at least on web graphs) and that the value of 0.85

seems appropriate when avoiding false negative constitute a priority

(Boldi et al., 2005). Unfortunately, it has never been assessed on

metabolic networks and there is no clear recommendation for this

type of network. Intuitively, we can see that choosing a low damp-

ing factor will decrease the likelihood of encountering long walks.

The lack of consensus for an appropriate length of a metabolic path-

way complicates the definition of a criterion for choosing the most

appropriate damping factor. However, we have shown that the de-

fault value proposed in the original paper was still sufficient to ob-

tain meaningful suggestions well related to HE.

One criticism against topological methods applied to metabolic

networks is the incompleteness and erroneousness of those net-

works. Metabolic network content is likely to change over time

given that reactions are continually edited, removed or added during

manual curation loops (Thiele and Palsson, 2010). The PageRank

seems to be relevant for dealing with this instability since it has been

claimed to be more robust to small changes in the network topology

(Ng et al., 2001) thanks to the damping process that obfuscates less

relevant parts of the network (far from the nodes of interest).

5 Conclusion

MetaboRank is a new method to interpret metabolic fingerprints

obtained from metabolomics experiments, in the form of a recom-

mendation system. Several adjustments to the original PageRank ap-

proach had been made to ensure the biological relevance of obtained

results. MetaboRank suggested metabolites that could be related

to the disease, from which several were confirmed by the literature.

In particular, MetaboRank recommended the overlooked

a-Ketoglutaramate as a metabolite that should be added to the fin-

gerprint of HE, thus suggesting that strengthening metabolic finger-

prints can provide new insight on complex diseases.

Notably, obtained results show great value for the interpretation

of metabolites that were on the edge of significance due to high

inter-individual variability. In fact, beside the different level of dis-

ease severity between patients, high inter-individual variability may

come from pathogenic metabolites involved in highly dynamic proc-

esses. This variability makes it difficult to distinguish them from un-

related metabolites, leading to discard them during mechanistic

interpretation while still tightly connected to other molecules from

the fingerprint. Highly dynamic processes are therefore a key chal-

lenge in metabolomics. The recommendation system was able to em-

phasize two metabolites falling in that case, Taurine and Carnitine,

that also appear to play a critical role in the disease according to the

literature.

MetaboRank can be applied to metabolomics results from a

large range of organisms as it can take any network from a SBML

file as input. Furthermore, the proposed mathematical model allows

integrating various data at the compound, reaction and reactant pair

level. We believe that this method has the potential to facilitate

metabolic network exploration by focusing on most relevant metab-

olites and could help the elucidation of perturbed metabolic
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mechanisms and the identification of new drug targets. It can also

be combined with mechanistic interpretation methods such as path-

way enrichment or sub-network extraction. Computed scores can be

used as a weighting scheme before subnetwork extraction, such as

paths or Steiner Tree computation, which would prior high-scored

compounds (Frainay and Jourdan, 2017).

MetaboRank also shows a great potential in the metabolite tedi-

ous identification process. In the HE application, some suggested

metabolites, like kynurenic acid, had been a posteriori added to the

metabolic fingerprint by going back to raw data. Iterative loops be-

tween the manual identification from raw data and the suggestion

algorithm thus allow refining the metabolic fingerprint and increas-

ing confidence in the mechanistic interpretations inferred from the

suggestion list. Cross validation of the algorithm in the missing data

prediction context can be found in Supplementary Material.

This work could be extended by integrating various data at the

compound level, reaction level and reactant pair level, using custom

transition probabilities based on other omics data or by modifying

the topology of the network. The prior vector can also be set to fa-

vour some starting nodes among others during the damping phase,

based for example on the fold changes obtained from metabolomics

results.
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