
Received: 30 June 2020; Revised: 30 June 2020; Accepted: 16 July 2020

© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1

Cerebral Cortex Communications, 2020, 1, 1–15

doi: 10.1093/texcom/tgaa037
Original Article

O R I G I N A L A R T I C L E

Neural and Behavioral Evidence for
Frequency-Selective Context Effects in Rhythm
Processing in Humans
Tomas Lenc 1, Peter E. Keller 1, Manuel Varlet 1,2 and
Sylvie Nozaradan 1,3,4

1MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, Sydney, NSW
2751, Australia, 2School of Psychology, Western Sydney University, Penrith, Sydney, NSW 2751, Australia,
3Institute of Neuroscience (IONS), Université Catholique de Louvain (UCL), Brussels 1200, Belgium and
4International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal QC H3C 3J7, Canada

Address correspondence to Tomas Lenc, The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797,
Penrith, Sydney, NSW 2751, Australia. Email: T.Lenc@westernsydney.edu.au.

Abstract

When listening to music, people often perceive and move along with a periodic meter. However, the dynamics of mapping
between meter perception and the acoustic cues to meter periodicities in the sensory input remain largely unknown. To
capture these dynamics, we recorded the electroencephalography while nonmusician and musician participants listened to
nonrepeating rhythmic sequences, where acoustic cues to meter frequencies either gradually decreased (from regular to
degraded) or increased (from degraded to regular). The results revealed greater neural activity selectively elicited at meter
frequencies when the sequence gradually changed from regular to degraded compared with the opposite. Importantly, this
effect was unlikely to arise from overall gain, or low-level auditory processing, as revealed by physiological modeling.
Moreover, the context effect was more pronounced in nonmusicians, who also demonstrated facilitated sensory-motor
synchronization with the meter for sequences that started as regular. In contrast, musicians showed weaker effects of recent
context in their neural responses and robust ability to move along with the meter irrespective of stimulus degradation.
Together, our results demonstrate that brain activity elicited by rhythm does not only reflect passive tracking of stimulus
features, but represents continuous integration of sensory input with recent context.
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Introduction
One of the biggest challenges in understanding brain function
is to explain how stable perception is experienced from
continuously changing, ambiguous sensory input. To achieve
such robustness, it has been proposed that the brain uses prior

experience to instantiate expectations, which dynamically
interact with the incoming input to shape perception (Dolan et al.
1997; Ahissar and Hochstein 2004; Eger et al. 2007; Esterman and
Yantis 2010; Melloni et al. 2011; Holdgraf et al. 2016; de Lange et al.
2018). In particular, stimulus history, that is, recent context, plays
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a key role in supporting stable perception, especially in the face
of degraded sensory input (Snyder et al. 2015). Effects of recent
context involve a form of attraction, whereby the perception of
the current sensory input is biased towards recently encountered
stimuli (Liberman et al. 2016; Cicchini et al. 2018). Such effects
have been reported in perception of simple features (Raviv et al.
2012; Fischer and Whitney 2014; Arzounian et al. 2017; Chambers
et al. 2017), but also higher-level attributes (Cicchini et al. 2014;
Liberman et al. 2014; Suárez-Pinilla et al. 2018; Xia et al. 2018),
scene perception (Snyder and Weintraub 2013; Manassi et al.
2017), and reproduction of single temporal intervals (Jazayeri
and Shadlen 2010; Cicchini et al. 2012).

Similar robustness to input degradation seems to be present
in perception of rhythms (sequences of events in time). When
listening to rhythms, particularly in musical contexts, humans
often spontaneously organize the incoming sounds in time
according to a perceived nested set of periodic pulses, usually
referred to as meter (Cohn 2020). Meter perception is considered
a cornerstone of temporal prediction and sensory-motor
synchronization with rhythm (Toiviainen et al. 2010; Vuust et al.
2018). Traditionally, it has been assumed that whether (and what)
metric structure is perceived depends on the acoustic cues in
the stimulus, namely distribution of salient acoustic events with
respect to the putative pulse positions (Essens and Povel 1985;
Parncutt 1994; Toiviainen and Snyder 2003; Tomic and Janata
2008; Large and Snyder 2009). In other words, the more “pulse-
like” the physical structure of the sensory input (i.e., the more
salient acoustic events are preferentially concentrated at pulse
positions), the more likely a meter is perceived. However, recent
evidence shows that meter perception is quite robust to input
deviations from a pulse-like template (Repp et al. 2008; Sioros
et al. 2014; Witek et al. 2014; Câmara and Danielsen 2018), and
mapping between the sensory input and perceptual experience
not straightforward (London et al. 2017; van der Weij et al. 2017).
This indicates that meter constitutes a high-level perceptual
phenomenon that shows a degree of flexibility and stability with
respect to the physical stimulus.

In line with this view, a growing body of evidence suggests
that meter perception is related to fluctuations of neural activity
time-locked to the perceived metric pulses (Nozaradan et al.
2011, 2012, 2018; Chemin et al. 2014; Tierney and Kraus 2014;
Nozaradan, Mouraux, et al. 2016a; Nozaradan, Peretz, et al.
2016b; Tal et al. 2017; Nozaradan, Keller, et al. 2017a; Nozaradan,
Schwartze, et al. 2017b; Lenc et al. 2018; Hickey et al. 2020;
Kaneshiro et al. 2020). Importantly, instead of passively tracking
the rhythmic structure of the acoustic input, the elicited neural
activity is transformed towards selectively tracking the perceived
meter, particularly when input deviates from the pulse-like
template (Nozaradan, Keller, et al. 2017a). This is manifested as
selective enhancement of brain activity elicited at frequencies
corresponding to the rates of the perceived metric pulses,
relative to activity at other frequencies that are unrelated to
the perceived meter but can be nonetheless prominent in the
acoustic input (Nozaradan et al. 2011, 2012; Tal et al. 2017). This
transformation has been observed already in the human auditory
cortex (Nozaradan, Mouraux, et al. 2016a; Nozaradan et al. 2018),
and possibly involves functional connections within an extended
cortico-subcortico-cortical network (Nozaradan, Schwartze, et al.
2017b). However, how sensory and endogenous signals are
continuously weighted to build this neural representation of
rhythm remains unknown. The current study addresses this
question by directly testing the influence of recent history of
auditory stimulation on the selective neural tracking of the
perceived meter.

Similarly to other perceptual domains, effects of recent con-
text are arguably at play during meter perception (London 2004).
It has been proposed by a number of music theorists that once
a stable meter has been established, it tends to withstand ambi-
guities produced by the continuously changing rhythmic surface
of music (Cooper and Meyer 1963; Lerdahl and Jackendoff 1983).
While there is evidence suggesting that meter induced by a
recent input can affect perception of subsequent time intervals
(Desain and Honing 2003; McAuley and Jones 2003), the persis-
tence of meter in the face of a degraded sensory input remains
unclear (the general term “degradation” refers here to an input
deviation from a template, i.e., how much sensory cues support
a particular perceptual interpretation).

In the current study, we tested the impact of recent con-
text on meter processing by creating auditory sequences grad-
ually changing from a regular rhythm (onset structure match-
ing the pulse-like template of a given meter) to a degraded
rhythm (irregular onset structure completely ambiguous with
respect to the given meter). We also created flipped versions
of these sequences, yielding sequences gradually changing from
degraded to regular. Electroencephalography (EEG) activity was
recorded from participants while listening to these sequences
without overt movement. After the EEG session, participants
were asked to tap with the hand in time with the perceived
pulse of an additional set of sequences constructed with the
same algorithm as those used in the EEG session. This behavioral
measure therefore indicated the induced metric periodicities
across both sets of sequences. Because the envelope spectra
of the stimuli were strictly identical across the original and
flipped sequences, different EEG spectra across the two sequence
directions would provide direct evidence for context-dependent
neural representations of rhythm. This context effect would be
informative about how the relative contribution of sensory and
endogenous signals continuously shapes neural representation
of dynamic input, particularly when the sensory information is
degraded. We compared groups of musicians and nonmusicians,
with the hypothesis that formal musical training would provide
the listener with robust ability to perceive meter irrespective of
sensory input degradation, thus decreasing sensitivity to recent
context (Cicchini et al. 2012).

Materials and Methods
Participants

Thirty-two healthy volunteers participated in the study after
providing written informed consent. The sample consisted of
a group of individuals with no formal musical training (N = 16,
mean age = 21.1 years, SD = 5.1 years, 9 females), and a group
of musically trained participants (N = 16, mean age = 24.1 years,
SD = 5.4 years, 13 females) with various levels of musical training
(mean = 7.2 years, SD = 4.9 years). All participants reported nor-
mal hearing and no history of neurological or psychiatric disease.
The study was approved by the Research Ethics Committee of
Western Sydney University.

Data and Code Availability

Experimental stimuli and data are publicly available online
at https://doi.org/10.6084/m9.figshare.11366120.

Auditory Stimulation

We created rhythmic patterns by assigning a grid of 12 200-
ms events, wherein 8 events were filled with sounds (440 Hz
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pure tone, 10 ms linear onset and offset ramp) and 4 events
with silence in all possible permutations. After removing phase-
shifted versions of the same pattern, this resulted in 43 unique
patterns. To quantify how well the arrangement of sound events
matched a pulse-like metric template, each pattern was analyzed
with a model of syncopation proposed by Longuet-Higgins and
Lee (1984), as implemented in the synpy package (Song et al.
2015). The syncopation scores were calculated assuming metrical
structure comprising nested pulses with rates corresponding
to 2, 4, and 12 events respectively (such as in a 3/4 meter).
Given these particular pulse rates (i.e., meter frequencies), there
were 12 possible ways to align the metric template with each
analyzed rhythmic pattern (i.e., 12 meter phases, starting on
either of the 12 events constituting the rhythmic patterns). For
patterns with highly regular arrangements of sound intervals,
the close match of the rhythmic structure and metric template
for certain alignments would necessarily result in poor match for
other alignments. In contrast, for patterns with highly ambigu-
ous structure, there would be no single alignment resulting in
close match between the rhythmic structure and the metric tem-
plate. Therefore, we used the range of syncopation scores across
the 12 possible meter phases (the highest minus the lowest score)
as a measure of the regularity of each rhythmic pattern. This
value also describes the degree of phase-stability of the meter
induced by each pattern. While patterns with large ranges of
syncopation strongly encourage perception of particular meter
phases over others, there is no such preference for patterns
with small syncopation ranges (Povel and Essens 1985; Fitch and
Rosenfeld 2007). Based on this analysis, the 43 patterns were then
categorized into 8 groups (syncopation ranges {8, 7, 6, 5, 4, 3, 2, 1},
omitting the single rhythm with range of 9), that is, from large
syncopation range (regular patterns) to small syncopation range
(ambiguous patterns).

Next, we created 57.6-s long sequences, by concatenating
24 patterns randomly chosen (with repetition) from the 43 pat-
terns in such a way that the range of syncopation decreased
continuously throughout the sequence. To do so, three different
patterns were chosen in each of the eight syncopation range
groups from range value 8 to 1. This yielded 3 × 8 = 24 patterns
per sequence in total, with gradually decreasing meter phase
stability. After randomly choosing a pattern within the desired
syncopation-range group, its particular phase was chosen so
that the syncopation score continuously increased throughout
the sequence, that is, increasing degradation with respect to the
meter induced by the patterns (syncopation scores {1, −1, 0, 1, 2,
3, 4, 4} for the eight syncopation range groups). This resulted in
a sequence that gradually transformed from regular to degraded
without structural changes likely to trigger mental phase-shifts
that would markedly reduce the perceived syncopation (e.g.,
Fitch and Rosenfeld 2007).

In order to construct sequences with a gradual change in the
opposite direction (from degraded to regular), we created a time-
inverted version of each 57.6-s sequence, so that the first event
became the last event. We also added two sound events at the
beginning and end of the sequence, which were excluded from
the analyses (see Fig. 1). This prevented spurious differences in
the neural response between sequence directions, which could
otherwise arise due to increased transient responses to sound
events at the beginning of each sequence.

Fifteen unique sequences and their respective inverted
versions were generated, forming stimuli for two experimental
conditions: the original sequences that evolved from low to high
syncopation (regular-to-degraded condition) and their inverted
versions that progressed from high to low syncopation (degraded-
to-regular condition). Five additional sequences and their

inverted versions were constructed for the tapping session. The
auditory stimuli were created in Matlab R2016b (The MathWorks)
and presented binaurally through insert earphones (ER-2;
Etymotic Research) at 75 dB SPL using PsychToolbox, version
3.0.14 (Brainard 1997).

Stimulus Analysis

Syncopation Score

To calculate the evolution of syncopation scores across the gen-
erated sequences, the sequences were divided into 14.4-s-long
segments (72 events per segment) with 50% overlap, yielding
seven distinct segments per sequence. To evaluate whether the
corresponding segments in the original and inverted sequences
differed in their degree of degradation with respect to the metric
template, syncopation scores proposed by Longuet-Higgins and
Lee (1984) were calculated for each segment, assuming meter
with nested pulses at the rates of 2 and 4 events. This corre-
sponded to the meter used during sequence construction with-
out the slowest pulse, as the individual constituent patterns were
not repetitively looped in the sequence. Importantly, syncopa-
tion scores are dependent on the particular alignment of the
metric template with the analyzed rhythmic pattern (i.e., meter
phase). However, the phase of the perceived metric structure
was unknown in the current experimental design. Therefore,
syncopation scores for each segment were calculated separately
after moving the analysis window by −2 to 2 events relative
to the first event of the segment (thus including the padding
sounds for the first and last segment of each sequence). The
minimum syncopation score across the phase shifts was taken,
assuming that listeners have a tendency to align their perceptual
metric organization in a way that yields the lowest syncopa-
tion (Povel and Essens 1985; Fitch and Rosenfeld 2007). Synco-
pation scores were compared across conditions using a linear
mixed model with direction (regular-to-degraded vs. degraded-
to-regular) and segment (1–7) as fixed effects. In this test and
further statistical tests, for all models including the factor seg-
ment as a fixed effect, the order of segments from the degraded-
to-regular condition was always reversed in order to compare
responses with the exact inverted versions of the same rhythmic
stimulus.

The analysis of the syncopation scores calculated for the
15 stimulus sequences used in the EEG session (Supplementary
Fig. 1) yielded a significant interaction between the factor direc-
tion and segment (F6,182 = 10.06, P < 0.0001, BF10 > 100), suggesting
that across trials, inversion of the sequences affected only certain
segments. Posthoc contrasts revealed that the syncopation score
was significantly higher for the degraded-to-regular condition
in segment 2 (β = −2.33, t182 = −4.7, P < 0.0001, 95% CI = [−3.31,
−1.35]) and 3 (β = −2.67, t182 = −5.37, P < 0.0001, 95% CI = [−3.65,
−1.69]), and for the regular-to-degraded condition in segment 4
(β = 1.60, t182 = 3.22, P = 0.01, 95% CI = [0.62, 2.58]). Even though
these results suggest that the inversion procedure did not per-
fectly preserve the theoretically expected amount of syncopation
in the sequences, the direction of the effect was opposite to the
effect of context we expected to find in the EEG responses. In
other words, according to the syncopation scores, there should
be slightly better match between the input and metric template
in the middle segment in the degraded-to-regular condition.

The procedure used to construct the auditory stimuli in
the current study was based on variations in syncopation that
assumed a specific metrical interpretation ({2,4} meter with
nested pulses at rates of 2 and 4 events). However, there are
other possible metrical interpretations of the sequences, which
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Figure 1. Illustration of the sequence generation method. (A) Examples of individual constituent patterns used to construct the sequences. Each pattern contains 8

sounds (depicted as “x”), and 4 silences (depicted as “.”). The patterns were categorized based on the range of syncopation across all 12 possible meter phases (calculated

separately for each pattern). Sequences were constructed by randomly sampling patterns according to their range of syncopation. After a pattern was selected, its

particular phase (i.e., starting point) was sampled according to the particular syncopation score required. Bottom part of the panel depicts an example of a beginning

and an end (padded with 2 sounds) of a single sequence. (B) Top panel. Schematic of the experimental design. In the first session, participants listened to 15 sequences

and their inverted versions without overt movement, and the EEG was recorded. This was followed by the second session, where participants tapped to 5 additional

sequences and their inverted versions. (B) Bottom panel. Examples of different signals (in the time domain) analyzed in the current study.

were not considered during stimulus construction. To ensure
that the stimulus sequences did indeed change, in theory, from
an unambiguous {2,4} meter into highly syncopated sequences
instead of converging onto a different meter, we calculated the
evolution of syncopation scores across the sequence for two
other possible metrical interpretations ({3,6} meter with nested
pulses at rates of 3 and 6 events; {2,6} meter with rates of 2 and
6 events). These three different metrical interpretations, ({2,4},
{3,6}, and {2,6}) constitute the simplest nested groupings of the
events based on grouping by two or three events. If the sequences
modulated into a different meter, then we would expect to find
monotonically decreasing syncopation scores for that meter as
the sequence progressed from regular to degraded. As shown
in Supplementary Figure 2, this was not the case for the two
other tested meters, further validating the stimulus construction
method that was used.

Cochlear Model

The main motivation for using the exact inversions of the
regular-to-degraded sequences to generate the degraded-to-
regular sequences was to ensure that the envelope magnitude

spectra of the original and inverted sequence were identical
(due to the properties of the discrete Fourier transform). This
way, differences between the original and inverted sequences
in the EEG response across corresponding segments can only
be explained by recent stimulus history. To ensure that other
nonlinearities in the auditory system (such as adaptation)
were not likely to explain the differences between the original
and inverted sequences in the EEG response, the stimuli
were analyzed with a cochlear model. The model consisted
of a Patterson-Holdsworth ERB filter bank with 100 channels
(Patterson and Holdsworth 1996), followed by Meddis’ hair-
cell model (Meddis 1986), as implemented in the Auditory
Toolbox for Matlab (Slaney 1998). The output of this model is
designed to approximate sound representation in the auditory
nerve, after narrowband filtering at the level of cochlea and
nonlinearities introduced at the hair-cell level (adaptation,
compression). The output of the cochlear model for each trial
and sequence direction was segmented into seven 14.4-s-long
segments with 50% overlap (as for calculation of the syncopation
scores). The obtained time-domain signals were averaged across
trials separately for each 14.4-s segment and sequence direction,
and transformed into the frequency-domain using fast Fourier
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Figure 2. Cochlear model, EEG, and tapping spectra. The data are averaged across trials and plotted separately for each segment and sequence direction. The segments

from the degraded-to-regular condition are displayed in reverse order to facilitate comparison across conditions (this way the segments with the same stimulus envelope

spectra are aligned). The cochlear model output (Left) shows highly similar spectra across sequence directions, with decreasing prominence of meter-related frequencies

(green) and increasing prominence of meter-unrelated frequencies (purple) as the sequence changes from regular to degraded. The EEG response (Middle) averaged across

all channels and participants contains peaks at the frequencies present in the cochlear model output, with decreasing prominence of meter-related frequencies in the

degraded segments. The tapping response (Right) averaged across participants shows prominent peaks at meter-related frequencies even in the degraded segments.

transform (FFT, yielding a spectral resolution of 1/14.4 s, i.e.,
∼0.069 Hz). The resulting magnitude spectra were then averaged
across cochlear channels.

As depicted in Figure 2, none of the obtained spectra showed
clear peaks emerging from the spectral background, except at the
frequency of individual events (5 Hz), and half this rate (2.5 Hz).
This was due to the fact that none of the patterns making up
the sequences were consistently repeated within the sequence,
thus yielding no prominent periodicities in the sequences
except those related to individual events and successions of two
events. As the sequences gradually transformed from regular
to degraded, the prominence of the peak at 2.5 Hz decreased
over the segments, and the spectral energy spread across
other frequencies, thus indicating, as intended, the absence of
prominent cues to any particular higher-order structure beyond
the event rate.

To make sure that the output of the cochlear model was not
significantly different between sequence directions, especially at
the frequencies related to the induced meter, we measured the

amplitude at specific frequencies in the obtained spectra. These
frequencies corresponded to different possible groupings of the
events comprising the sequence, that is, considering cycles of 12
events (0.416 Hz) and 16 events (0.312 Hz) and their harmonics
up to 5 Hz (individual event frequency). From this set (N = 21
frequencies), a subset of frequencies was categorized as related
to the induced meter (1.25, 2.5, and 5 Hz, as confirmed by the tap-
ping session; see section Tapping Analysis). These meter-related
frequencies represent nested grouping of the individual event
rate (5 Hz) by 2 (2.5 Hz) and 2 (1.25 Hz), thus corresponding to the
meter used to construct the sequences (as for the syncopation
score calculation). All other frequencies were considered meter-
unrelated. The amplitude at each frequency was extracted either
at the exact frequency, if a bin was centered at that frequency
(14 frequencies), or otherwise as a maximum value from the
two closest bins. The 21 extracted amplitudes were z-scored as
follows: (x − mean across the 21 frequencies)/SD across the 21
frequencies. This standardization evaluated the magnitude at
each frequency relative to the other frequencies, and therefore
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allowed us to quantify how much a particular subset of frequen-
cies (here meter-related frequencies) stood out relative to the
whole set of frequencies. Because this measure is invariant to
differences in unit and scale, it also enabled us to objectively
measure the relative distance between stimulus representation
at the earliest stages of the auditory pathway (estimated with the
cochlear model) and the elicited EEG response.

The relative prominence of meter-related frequencies in the
cochlear model output (considering the whole set of 21 extracted
frequencies) was calculated as a mean z score at 1.25, 2.5, and
5 Hz. These meter-related z scores were compared between the
two sequence directions across segments to ensure that the
inversion of the stimulus was unlikely to introduce significant
differences in the prominence of meter frequencies at the earli-
est stages of the auditory pathway. For this comparison, the z-
scored amplitudes were extracted in the way described above
but separately for each trial (i.e., without first averaging across
trials in the time domain), and fitted with a mixed model (fixed
effects direction and segment). There were no significant differ-
ences between the original and inverted condition (main effect of
direction, F1,182 = 0.01, P = 0.92, BF10 = 0.15; interaction of direction
and segment, F6,182 = 0.64, P = 0.7, BF10 = 0.07). This result suggests
that nonlinearities at the early stages of the auditory pathway
are unlikely to account for any effects of context in the EEG
responses.

The same analyses performed on the five sequences used in
the tapping session suggested similar differences in syncopa-
tion scores, including higher syncopation score for degraded-to-
regular condition in segment 2 (β = −2.8, t52 = −2.96, P = 0.03, 95%
CI = [−4.7, −0.9]) and 3 (β = −3, t52 = −3.17, P = 0.02, 95% CI = [−4.9,
−1.1]), and no significant effects involving the factor direction for
the analysis with cochlear model (Ps > 0.82, BFs10 < 0.25).

Experimental Design and Procedure

The experiment consisted of an EEG and a tapping session
directly following each other. In the EEG session, participants
were presented with the 15 sequences and their inverted ver-
sions in random order with regular-to-degraded and degraded-
to-regular trials alternating (counterbalanced across partici-
pants). Participants were seated in a comfortable chair with their
head resting on a support, and asked to avoid any unnecessary
movement. The support made contact with the head just below
the most inferiorly positioned electrodes in order to prevent
artifacts in the recorded EEG signals. Participants were asked
to focus on the regular pulse in the auditory stimuli, and after
each trial, to rate (on a scale from 1 to 5) how difficult on average
they thought it would be to tap along the pulse in that trial. To
further encourage attention to the temporal properties of the
stimuli, participants were also asked to detect slight transient
decrease of tempo randomly inserted in two additional trials
that were not included in the analyses. Before the EEG session,
the experimenter provided examples of pulse in popular music
and artificially constructed rhythms, to make sure participants
understood the task.

After the EEG session, participants were presented with five
additional sequences and the respective inverted versions (as for
the EEG session, with random order, sequence direction alternat-
ing, counterbalanced across participants), and were asked to tap
the regular pulse they perceived in the sequences using the index
finger of the preferred hand. Participants were instructed to tap
any pulse they perceived in the rhythmic sequence, as long as
the pulse they tapped was (1) isochronous and (2) synchronized

to the stimulus sequence. They were allowed to start and stop
tapping within a trial depending on whether they perceived a
periodic pulse or not, and change the period or phase of the
pulse at any point. Tapping was performed on a custom-built
response box containing a piezoelectric sensor that converted
the mechanical vibrations of the box due to the impact of the
finger into electrical signals, which were recorded as audio files.

EEG Recording and Preprocessing

The EEG was recorded using a Biosemi Active-Two system
(Biosemi) with 64 Ag-AgCl electrodes placed on the scalp
according to the international 10/20 system, and two additional
electrodes attached to the mastoids. Head movements were
monitored using an accelerometer with two axes (front-back and
left–right) attached to the EEG cap and recorded as two additional
channels. The signals were digitized at a 2048-Hz sampling rate
and downsampled to 512 Hz offline.

The continuous EEG signals were high-pass filtered at 0.1 Hz
(fourth order Butterworth filter) to remove slow drifts from the
signal. Independent component analysis (Bell and Sejnowski
1995; Jung et al. 2000) was used to identify and remove artifacts
related to eye blinks and horizontal eye movements based on
visual inspection of their typical waveform shape and topo-
graphic distribution (two components removed for 14 partici-
pants, one component for 18 participants). Channels contain-
ing excessive artifacts or noise were linearly interpolated using
the three closest channels (one channel interpolated for two
participants, four channels for 1 participant). The cleaned EEG
data were segmented into 57.6-s long epochs, starting from 0.4 s
relative to trial onset (i.e., discarding the two padding sound
events, see above section Auditory Stimulation and Fig. 1). If an
epoch contained excessive artifacts it was discarded from further
analyses (1 epoch for 1 participant), as well as the epoch for
the trial with inverted version of the corresponding stimulus
sequence. The epochs were then further segmented into seven
14.4-s long segments with 50% overlap (as for the auditory stimu-
lus analysis), rereferenced to the common average, and averaged
across trials in the time domain separately for each sequence
direction, segment, and participant. Time-domain averaging was
performed to increase the signal-to-noise ratio of the neural
response by canceling signals that were not time-locked to the
stimulus (Mouraux et al. 2011; Nozaradan et al. 2011, 2012). The
EEG preprocessing was carried out using Letswave6 (www.letswa
ve.org) and Matlab.

Frequency-Domain Analysis of EEG Response

For each participant, sequence direction, and segment, the EEG
signals were transformed into the frequency domain using FFT.
The obtained EEG spectra can be assumed to consist of a super-
position of (1) responses to the stimulus concentrated into nar-
row peaks and (2) residual background noise smoothly spread
across the entire frequency range. To obtain valid estimates
of the responses, the contribution of noise was minimized by
subtracting, at each frequency bin, the average amplitude in the
second neighboring bin either side of it (Mouraux et al. 2011;
Xu et al. 2017).

Because the meter-unrelated frequencies did not form promi-
nent narrow peaks in the output of the cochlear model, it was
important to ensure that the noise subtraction would not selec-
tively suppress meter-unrelated frequencies in the EEG spectra
(which could lead to spurious increase in the relative prominence

www.letswave.org
www.letswave.org
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of meter frequencies if there was an overall increase in response
gain). A control analysis conducted on the EEG spectra obtained
without noise subtraction yielded similar results to the analy-
sis incorporating noise subtraction (see Supplementary Results),
showing that this processing step alone could not explain our
results. The noise-subtracted spectra were averaged across all
channels to avoid electrode-selection bias and to account for
individual differences in response topography.

To assess the relative prominence of the specific frequencies
in the EEG responses elicited by the auditory stimuli, amplitudes
at the 21 frequencies corresponding to different possible metric
interpretations were then extracted from the spectra and z-
scored in the same way as for the auditory stimulus analysis. A
higher z score at a specific frequency indicates more prominent
amplitude at that frequency relative to the whole set of 21
frequencies in the EEG response. Mean z-scored amplitude at
frequencies related to the induced meter (5, 2.5, and 1.25 Hz, as
theoretically expected based on the sequence generation algo-
rithm and as indicated by tapping analysis) was taken as a
relative measure of selective neural tracking of the meter period-
icities (control analysis with raw EEG amplitudes yielded similar
results to the analysis with z scores, see Supplementary Results).
The mean meter-related z-scored amplitudes were compared
across sequence directions and segments, by fitting a mixed
model (fixed effects direction, segment, and musical training).
We expected to find a decrease in the prominence of meter-
related frequencies in the segments with higher degradation,
as in the auditory stimulus. Importantly, we used additional
posthoc contrasts to test whether the EEG response was affected
by the direction of the sequence, by comparing the prominence
of meter frequencies in segment one (most regular rhythm) with
all subsequent segments, separately for each sequence direction.
We hypothesized that in the regular-to-degraded condition, the
decrease would take place in segments with higher amounts
of degradation compared with the degraded-to-regular condi-
tion. We also directly compared segments that had identical
sound envelope spectra across sequence directions, to assess
whether the EEG response at meter-related frequencies would
be enhanced for particular segments in the regular-to-degraded
condition.

To further show that cochlear processing was unlikely to
explain the effect of context in the EEG responses, the two
signals were directly compared after standardization (z-scoring).
In order to use the same processing pipeline for the EEG and
cochlear model (see section Stimulus Analysis), the cochlear
model spectra were noise-subtracted (second bin on each side)
before z-scoring the magnitudes across the meter-related and
meter-unrelated frequencies. Subsequently, the difference in
meter-related z scores between the cochlear model and the EEG
response was calculated separately for each sequence direction,
segment, and participant. The difference scores were compared
between sequence directions, segments, and levels of musical
training with a mixed model, and posthoc contrasts compared
the difference score between directions separately for each
segment. Hence, if the EEG responses were fully explained by
cochlear processing, the obtained scores should not significantly
differ between the two sequence directions.

Tapping Analysis

Tap times were extracted by locating points in the continuous
signal from the tapping sensor, where the (1) amplitude was
increasing, (2) amplitude exceeded a threshold set manually for

each participant, and (3) the amount of time from the previous
detected point was larger than a constant set manually for each
participant. These points corresponded to the tap onsets, that is,
the times where the finger hit the response box.

To quantitatively evaluate the meter periodicities participants
synchronized to, the median intertap interval (ITI) was calcu-
lated separately for each sequence direction and participant.
The value was then compared with three possible meters each
consisting of three nested periodicities (nested pulses at rates
of {2,4}, {2,6}, and {3,6} events, corresponding to periods {200,
400, 800}; {200, 400, 1200}; and {200, 600, 1200} ms, respectively)
by taking the minimum percent difference between the median
ITI and the three possible periodicities comprising each meter.
This minimum difference score was compared across meters and
sequence directions using a mixed model. The meter that yielded
the smallest difference score was considered to be the meter
predominantly induced by the stimulus construction method.

To assess how well participants synchronized to the meter
periodicities, it was important to consider the challenges stem-
ming from the nature of the tapping task, whereby participants
were free to tap any periodic pulse they perceived and could
start and stop tapping at different points within a trial. Therefore
there was no a priori information about the particular period and
phase they were tapping, and the number of executed taps could
differ between trials. Additionally, the tapped period and phase
could change between and within individual analysis windows,
without necessarily implying poor synchronization to the meter.

To provide a measure of synchronization insensitive to infre-
quent changes in tapping phase within the analysis windows,
an ITI-error index was calculated separately for each participant,
sequence direction, segment, and trial. This was done by first
removing ITIs longer than 2 s and finding the minimum percent
difference between the median ITI and the three periodicities
within the predominantly induced meter (i.e., 200, 400, 800 ms,
see Results section). The period closest to the median ITI was
considered the pulse chosen by the participant for the ana-
lyzed window, and ITI-error was calculated as percent difference
between this period and each individual ITI. The ITI-errors were
averaged across trials and analyzed using a mixed model with
direction, segment, and musical training as fixed effects. If the
participant tapped with a fixed period corresponding to one of
the metric pulses, but changed the alignment of this pulse with
respect to the rhythmic stimulus at some point in the analysis
window, ITI-error would remain low. Hence, the main advantage
of this measure was its robustness to changes in tapping phase.
However, if the participant changed the tapping period within
the analysis window to another metric pulse, the ITI-error would
become high.

Thus, in order to account for this, the tapping was also ana-
lyzed in the frequency domain. This evaluated synchronization
at meter-related frequencies at the level of behavioral output
with a method directly comparable with the auditory stimuli
and EEG responses. The main advantage this frequency-domain
analysis was its robustness to changes in tapping period within
the analysis window, as tapping either metrical pulse would
result in energy distributed solely across meter-related frequen-
cies. However, the method was sensitive to phase changes, as
changes in tapping phase within the analysis window would lead
to decreased Fourier magnitude at the tapping frequency. This
is in contrast with ITI-error, which was robust to phase changes
but sensitive to changes in tapping period. Moreover, continu-
ous signals from the tapping box contained information about
tapping intensity (amount of accentuation of each tap), thus
potentially revealing periodicities in the behavioral response that
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would remain hidden when analyzing ITIs. Continuous signals
from the response box recorded during the tapping session were
segmented the same way as the EEG signals, averaged across
trials in the time domain, and transformed into the frequency-
domain using FFT. The contribution of background noise was
minimized, as for the EEG, by subtracting the average magnitude
in the second neighboring bin either side of each frequency-
bin. The resulting magnitude spectra were averaged across tri-
als, and magnitudes at meter-related and meter-unrelated fre-
quencies were extracted and z-scored as for the EEG analysis.
Mean z-scored amplitudes at meter-related frequencies were
compared across segments, sequence directions, and levels of
musical training, by fitting a mixed model. The persistence of
the tapping synchronization across different amounts of syn-
copation was assessed using posthoc contrasts that compared
the prominence of meter-related frequencies in the first segment
with all subsequent segments. To further understand the evolu-
tion of the tapping response over segments, the prominence of
meter frequencies was also compared across all pairs of succes-
sive segments.

Head Movement Analysis

To evaluate the extent to which unintentional head movement
artifacts could explain the observed EEG results, the data from
the accelerometer were segmented the same way as EEG signals
and transformed into the frequency-domain separately for each
movement axis. The resulting spectra were averaged across the
two axes, and mean magnitudes at meter-related frequencies
were extracted and further analyzed as for the EEG responses.
This control analysis confirmed that the observed EEG effects
were unlikely to be explained by head movement artifacts (see
Supplementary Results).

Statistical Analyses

The statistical analyses were performed using linear mixed mod-
els with lme4 package in R (Bates et al. 2015). Each participant was
included as a random-effect intercept (in case of stimulus anal-
yses, the intercept was modeled as a random variable across tri-
als). For models including the factor segment as a fixed effect, the
order of segments from the degraded-to-regular condition was
always reversed in order to compare responses with the inverted
version of the same acoustic stimulus. Posthoc multiple compar-
isons were computed using emmeans package (Lenth 2018). The
Kenward–Roger approach was used to approximate degrees of
freedom and Bonferroni correction was used to adjust for multi-
ple comparisons. Complementary to the null-hypothesis signifi-
cance tests with mixed models, we also calculated Bayes factors
to quantify the evidence in favor of the alternative hypothesis
over the null hypothesis (BF10), as implemented in the package
BayesFactor for R (Morey and Rouder 2014).

Results
Tapping

Median ITI Analysis

The tapping task confirmed theoretical expectations about the
meter periodicities induced by the auditory stimulus sequences.
The difference between the median ITI and possible meter
periodicities varied significantly across the different possible
meters (F2,155 = 19.65, P < 0.0001, BF10 > 100). Posthoc comparisons

Figure 3. Mean z-scored amplitudes at meter-related frequencies in the cochlear

model, EEG, and tapping response. The order of segments in the degraded-to-

regular condition (red) is reversed to aid the comparison of segments with iden-

tical stimulus envelope spectra across conditions. Arrows indicate the direction

of time for each condition. Mean values are shown as points, and error bars

represent 95% confidence interval (Morey 2008). (Top) Cochlear model output.

As intended, the prominence of meter frequencies decreased as the degrada-

tion of the sequence increased. (Middle) EEG responses plotted separately for

nonmusicians (Left) and musicians (Right). Nonmusicians showed enhanced

EEG responses at meter frequencies in the middle segments of the regular-to-

degraded condition (blue). The EEG responses of musicians were more similar

across conditions. (Bottom) Tapping responses. For nonmusicians (Left), the

prominence of meter frequencies in the tapping decreased rapidly with increas-

ing degradation. Musicians (Right) showed prominent meter frequencies in their

tapping even in the degraded segments.

showed that the median ITI was significantly closer to the {2,2}
meter than the {3,6} meter (β = −13.22, t157 = −5.39, P < 0.0001,
95% CI = [−19.15, −7.28]) and {2,6} meter (β = −13.54, t157 = −5.52,
P < 0.0001, 95% CI = [−19.47, −7.61]). These results further justify
the selection of meter-related frequencies (5 Hz, 5 Hz/2 and
5 Hz/4, corresponding to the rates of one, two, and four individual
events respectively) for the frequency-domain analyses.

Frequency-Domain Analysis

The spectra of continuous signals from the tapping sensor
exhibited prominent peaks at meter-related frequencies (Fig. 2).
As depicted in Figure 3, the prominence of these frequencies
in the tapping spectra evolved across segments differently for
musicians and nonmusicians (F6,390 = 5.53, P < 0.0001, BF10 > 100).
When comparing the two groups separately for each segment,
meter frequencies were more prominent for musicians in
segments 5 (β = 0.62, t55.83 = 3.39, P = 0.009, 95% CI = [0.25, 0.99]), 6
(β = 0.77, t55.83 = 4.2, P = 0.001, 95% CI = [0.4, 1.14]) and 7 (β = 0.91,
t55.83 = 4.94, P < 0.0001, 95% CI = [0.54, 1.28]). This was due to
the fact that for nonmusicians, meter frequencies significantly
decreased in segments 5 (β = −0.44, t396 = −4.29, P = 0.001, 95%
CI = [−0.65, −0.24]), 6 (β = −0.79, t396 = −7.61, P < 0.0001, 95%
CI = [−0.99, −0.58]) and 7 (β = −0.9, t396 = −8.66, P < 0.0001, 95%
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CI = [−1.1, −0.69]) when compared with segment 1, while for
musicians there was only a trend towards a decrease in segment
6 (β = −0.31, t396 = −2.97, P = 0.04, 95% CI = [−0.51, −0.10]). This
indicates that the ability of nonmusicians to synchronize their
tapping at meter frequencies deteriorated significantly once the
degradation in the sensory input exceeded a critical level.

There was also a significant interaction between musical
training and condition (F1,390 = 6.25, P = 0.01, BF10 = 2.4). While
the overall prominence of meter frequencies was larger in the
tapping of musicians for both sequence directions, this differ-
ence was more pronounced in the degraded-to-regular condition
(β = 0.63, t33.82 = 3.87, P = 0.001, 95% CI = [0.3, 0.96]) than the regular-
to-degraded condition (β = 0.43, t34.11 = 2.66, P = 0.02, 95% CI = [0.1,
0.76]). This was due to the fact that nonmusicians showed overall
smaller prominence of meter frequencies in the degraded-to-
regular condition compared with the regular-to-degraded condi-
tion (β = 0.16, t396 = 2.95, P = 0.01, 95% CI = [0.05, 0.27]).

ITI-Error Analysis

ITI-error index values further confirmed the results from the
frequency domain analysis (interaction between direction and
musical training, F1,390 = 10.97, P = 0.001, BF10 = 28.31), by revealing
significantly less tapping error in the regular-to-degraded condi-
tion compared with the degraded-to-regular condition (β = −0.04,
t396 = −4.66, P < 0.0001, 95% CI = [−0.05, −0.02]) for nonmusicians
(Supplementary Fig. 3). Interestingly, there was no effect of seg-
ment in the analysis of ITI-error (Ps > 0.25, BFs10 < 0.09). This
suggests that the fast deterioration of nonmusicians’ tapping in
the degraded segments, as observed in the frequency-domain
analysis of tapping, was partly related to frequent changes in
tapping phase. Taken together, these results suggest that non-
musicians’ tapping to the meter generally improved when the
rhythm evolved from regular to degraded compared with the
opposite direction, whereas musicians showed precise and stable
tapping synchronization across all levels of degradation.

Frequency-Domain Analysis of EEG

EEG responses were elicited at frequencies that were expected on
the basis of the auditory stimulus analysis (Fig. 2), with typical
fronto-central topographies (Fig. 4), as previously observed for
responses to repeating auditory rhythms (Nozaradan et al. 2012;
Lenc et al. 2018).

The main aim of the current study was to examine the
effect of context on the relative amplitude of EEG responses at
meter-related frequencies (Fig. 3). The direction of the sequence
affected the prominence of meter-related frequencies (mean z-
scored amplitudes) in the EEG response (interaction between
direction and segment, F6,390 = 4.26, P = 0.0004, BF10 = 33.70).
Directly contrasting the corresponding segments between the
two sequence directions revealed significantly larger meter
frequencies for segment 4 (β = 0.37, t396 = 4.16, P = 0.0002, 95%
CI = [0.20, 0.55]) in the regular-to-degraded condition compared
with the opposite sequence direction. This was due to greater
persistence of the response in the regular-to-degraded condition,
as degradation increased. Table 1 shows the response across
segments compared with the first segment, separately for
musicians and nonmusicians. For nonmusicians, the response
significantly decreased in segment 5, 6, and 7 in the regular-
to-degraded condition. However, for the degraded-to-regular
condition, there was a significant decrease already in segment
4, followed by segment 5, 6, and 7. In other words, in the
segment with medium amount of degradation, the meter-related
frequencies were more prominent in the EEG when regular, as

Figure 4. Topographies of the mean EEG amplitude at meter-related frequencies.

Scalp distributions of responses across conditions and segments are shown

separately for nonmusicians (Left) and musicians (Right).

opposed to degraded, input preceded this segment. Similar,
although less pronounced, pattern of results was observed
for musicians (decrease in segments 5 and 6 for regular-to-
degraded and segments 4, 5, and 6 in the opposite direction).
However, despite this apparent difference between musicians
and nonmusicians, the three-way interaction between sequence
direction, segment, and musical training was not significant
(F6,390 = 0.71, P = 0.64, BF10 = 0.07), suggesting that context affected
the neural response similarly across groups.

Furthermore, there was an interaction between musical train-
ing and segment (F6,390 = 4.35, P = 0.0003, BF10 = 41.70). However,
this effect seemed primarily driven by greater selective response
at meter-related frequencies in segment 7 for musicians, which
did not reach significance in the posthoc contrasts (β = 0.30,
t109.06 = 2.57, P = 0.08, 95% CI = [0.07, 0.54]). Finally, musical train-
ing interacted with sequence direction (F1,390 = 9.03, P = 0.003,
BF10 = 6.51). However, posthoc contrasts did not reveal significant
differences between musicians and nonmusicians in either con-
dition (Ps > 0.13).

A number of control analyses were done to confirm that
the sequence direction effects observed here were not spurious
(see Supplementary Results). Specifically, these control analyses
showed that the context effect (1) could not be explained by head
movement artifact or (2) low-level nonlinear auditory processing
of the inputs, and (3) was not a spurious effect of the standardiza-
tion, or (4) noise subtraction procedure applied to the EEG data.

Discussion
Our results show direct evidence for sensitivity to recent auditory
context in neural responses to rhythmic inputs. In the EEG, we
observed a selective enhancement of meter-related frequencies
that persisted when the acoustic cues guiding meter percep-
tion were gradually degraded in the stimulus. Conversely, these
meter-related frequencies were less prominent in the neural
response when the preceding input lacked acoustic cues to guide
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Table 1. Prominence of meter-related frequencies in the EEG response compared between the first and all subsequent segments, separately for
the two sequence directions, and for musicians (N = 16) and nonmusicians (N = 16)

Musical training Direction Contrast
segments

Estimate df t Lower CI Upper CI P-value

Nonmusicians Regular-to-degraded 2–1 −0.15 390 −1.19 −0.49 0.19 1.00
3–1 −0.21 390 −1.63 −0.54 0.13 1.00
4–1 −0.17 390 −1.36 −0.51 0.16 1.00
5–1 −0.43 390 −3.40 −0.77 −0.09 0.02∗
6–1 −0.79 390 −6.21 −1.12 −0.45 <0.0001∗
7–1 −0.84 390 −6.62 −1.18 −0.50 <0.0001∗

Degraded-to-regular 2–1 −0.12 390 −0.91 −0.45 0.22 1.00
3–1 −0.09 390 −0.69 −0.42 0.25 1.00
4–1 −0.55 390 −4.33 −0.89 −0.21 0.0004∗
5–1 −0.76 390 −5.95 −1.09 −0.42 <0.0001∗
6–1 −0.63 390 −4.98 −0.97 −0.30 <0.0001∗
7–1 −0.74 390 −5.81 −1.07 −0.40 <0.0001∗

Musicians Regular-to-degraded 2–1 −0.12 390 −0.94 −0.46 0.22 1.00
3–1 −0.06 390 −0.50 −0.40 0.27 1.00
4–1 −0.01 390 −0.06 −0.34 0.33 1.00
5–1 −0.57 390 −4.45 −0.90 −0.23 0.0003∗
6–1 −0.55 390 −4.35 −0.89 −0.22 0.0004∗
7–1 −0.34 390 −2.68 −0.68 0.00 0.18

Degraded-to-regular 2–1 −0.18 390 −1.41 −0.52 0.16 1.00
3–1 −0.03 390 −0.21 −0.36 0.31 1.00
4–1 −0.38 390 −3.01 −0.72 −0.05 0.07
5–1 −0.53 390 −4.21 −0.87 −0.20 0.0008∗
6–1 −0.39 390 −3.09 −0.73 −0.06 0.05
7–1 −0.19 390 −1.52 −0.53 0.14 1.00

Note: CIs represent 95% confidence intervals.
∗P < 0.05.

meter perception. Moreover, this context effect seemed stronger
in participants with no formal musical training, who (1) demon-
strated sensitivity to context in their ability to tap along with the
meter, and (2) whose tapping deteriorated when it was not sup-
ported by acoustic cues in the stimulus. In contrast, the context
effect appeared weaker in musicians, whose ability to maintain
a meter was robust to stimulus degradation, and independent
of context, as observed in the tapping session. Together, these
results demonstrate that perceptual organization of a rhythmic
stimulus is not solely determined by low-level features of the
sensory input but also involves integration of prior experience,
as reflected in the elicited neural activity.

Importantly, our stimulus design ensured that low-level input
properties such as envelope spectra could not fully account
for the observed neural responses. Moreover, the context effect
observed here was unlikely to be explained by nonlinearities at
the early stages of the auditory pathway (as indicated by the
analysis of our stimuli with a biologically plausible model of the
auditory periphery), or the overall gain (as we used a relative
measure of response prominence). Instead, the context effect
could be explained by selective neural enhancement of meter-
related frequencies as a function of prior prominence of these
frequencies in the sensory input.

No One-to-One Mapping Between Sensory Input and
Perception

Robust Perception

Human perception shows remarkable robustness to degraded
sensory input across domains (Shannon et al. 1995; Schwiedrzik
et al. 2018). For instance, while under certain conditions the

perception of a visual object or a speech utterance can be largely
determined by the physical features of the sensory input, in
real-world noisy situations the mapping between the input and
perceptual experience is far from trivial. Our results show that
similar processes may be at work in perceptual organization
of rhythm, especially for individuals with musical training. We
found that musicians were able to precisely synchronize their
tapping to the perceived meter even when this meter could not
be clearly determined from the stimulus features alone. This is in
line with previous evidence that musical training generally leads
to superior precision of meter representation (Rüsseler et al. 2002;
Brochard et al. 2003; Geiser et al. 2010; Lappe et al. 2011), with a
high degree of invariance with respect to the rhythmic stimulus
(Repp 2007, 2010; Repp et al. 2008; Su and Pöppel 2012).

Sensitivity to Context

Further evidence against a one-to-one mapping between acous-
tic input and perceptual output is provided by the effect of recent
context we observed in the tapping and in the EEG response.
These results suggest that perception of meter in degraded
rhythmic input can be facilitated when the directly preceding
input provides clear sensory cues to the meter periodicities.
While effects of recent context have been investigated in single-
interval timing (Drake and Botte 1993; Large 2000; McAuley and
Jones 2003; Jazayeri and Shadlen 2010; Cicchini et al. 2012) and
rhythmic pattern perception (Desain and Honing 2003), they
remain under-explored with respect to perceptual organization
of rhythmic patterns (Cameron and Grahn 2016). The current
results thus constitute a step forward in our understanding of
how the brain dynamically builds representation of complex
patterns of time intervals.
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The fact that these context effects were stronger in partici-
pants with no musical training is consistent with the hypothesis
that influence of prior context increases as the uncertainty of
the current representation increases (Cicchini et al. 2018; Cicchini
and Burr 2018). Nonmusicians, whose meter perception was
overall less robust to input degradation, would rely more on the
recent context to make better sense of the degraded input (see
Cicchini et al. 2012 for similar findings in single time interval
reproduction). The context effect observed here is also similar to
widely studied phenomena in visual object recognition and lan-
guage domains, where perception of objects from impoverished
inputs can be enhanced by prior exposure to the intact version
of the stimulus (Bruner and Potter 1964; Dolan et al. 1997; Klein-
schmidt et al. 2002; Ahissar and Hochstein 2004; Melloni et al.
2011; Teufel et al. 2015), or even through higher-level semantic
context (Eger et al. 2007; Hervais-Adelman et al. 2008; Esterman
and Yantis 2010; Sohoglu et al. 2014; Stein and Peelen 2015). Both
types of perceptual enhancements have been linked to neural
responses across a widespread network, involving sensory and
frontal cortices (Kleinschmidt et al. 2002; Hegdé and Kersten
2010; Sohoglu et al. 2012; Sohoglu and Davis 2016). Moreover,
there is evidence suggesting that the underlying mechanism
might involve top–down modulations biasing processing of input
features in sensory areas towards greater similarity with the
expected category (Hsieh et al. 2010; Holdgraf et al. 2016; Leonard
et al. 2016; St. John-Saaltink et al. 2016). While our method
does not address the neural network mediating the context
effects observed here, our results provide a new critical piece of
knowledge on the integration of sensory input with context. That
is, brain activity elicited at behaviorally relevant frequencies is
significantly modulated by the prominence of these frequencies
in recent input. These findings may thus provide a basis to
further investigations of the nature of neural representations of
rhythmic input, using a similar design combined with a range of
neuroimaging methods including intracerebral EEG (Grahn and
Rowe 2013; Chemin et al. 2014; Rajendran et al. 2017; Mendoza
et al. 2018; Narain et al. 2018; Gámez et al. 2019; Sohn et al. 2019).

Evidence Against Evoked Responses Passively Tracking
Low-Level Acoustic Features of the Rhythmic Input

Increasing evidence converges towards the view that during
meter perception, the brain transforms the sensory input (a
sequence of events in time) towards the metrical category (a
nested set of periodic pulses), and this transformation can be
observed as a selective increase of brain response at meter-
related frequencies (Nozaradan et al. 2012, 2018; Nozaradan,
Mouraux, et al. 2016a; Nozaradan, Keller, et al. 2017a). Impor-
tantly, this transformation is not fixed or mechanistic, but can be
flexibly shaped by the spectral acoustic context (Lenc et al. 2018),
prior body movement (Chemin et al. 2014), or behavioral goals
(Nozaradan et al. 2011). Here, we add to this evidence by showing
that this transformation can be dynamically shaped by preceding
input and even without overt movement. Together, these results
thus provide strong evidence against the view that this selective
increase of brain response at meter-related frequencies reflects
passive tracking of low-level features of the rhythm (Large et al.
2015; Daube et al. 2019; Rimmele et al. 2020). Instead, the data
suggest that this measure is (1) behaviorally relevant, and (2)
reflects transformation from acoustic features towards higher-
level categories, in line with recent work on speech (Ding and
Simon 2012; Mesgarani and Chang 2012; Di Liberto et al. 2015,
2019; Brodbeck et al. 2018; Broderick et al. 2018) and melody
perception (Di Liberto et al. 2020; Sankaran et al. 2020).

Moreover, the approach used in the current study goes
beyond the common assumption that better alignment of
neural response with stimulus envelope necessarily reflects
better processing (Park et al. 2015; Etard and Reichenbach
2019; Harding et al. 2019; Herff et al. 2019; Fiveash et al. 2020;
Wollman et al. 2020). Specifically, instead of looking for precise
reconstruction of low-level features such as envelope periodicity
using, for example, input–output coherence or regression
analysis, the current study aimed to investigate dynamic
processes that continuously transform sensory input towards
invariant perceptual categories (Ley et al. 2014; Kuchibhotla and
Bathellier 2018; Broderick et al. 2019; Yi et al. 2019). The input–
output mapping approach used here allowed us to uncover these
processes while ensuring that the results are not driven by (1)
acoustic confounds, (2) overall gain of the response, or (3) low-
level nonlinear auditory processes.

Context Effect is Short-Lived in Neural Activity but
Long-Lasting in Behavior

In the current study, the contextual enhancement of meter-
related frequencies in the EEG was relatively short-lived, that
is, lasting around one 14-s long segment. These observations
demonstrate that the influence of prior acoustic context on EEG
responses might have a short time constant, only affecting the
processing of directly following rhythmic material. Such short-
lived integrative mechanism would thus make the system both
robust to momentary changes in the sensory input (e.g., synco-
pation, Sioros et al. 2014) and flexible enough to adjust meter
perception under persisting counterevidence from the sensory
input (London 2004; Fitch and Rosenfeld 2007).

The short time constant observed here could also be due to
the stimulus sequence design combined with a context effect
restricted to inputs up to a certain level of input degradation.
Indeed, while perception across domains is remarkably robust to
sensory degradation, the perceptual system is limited in terms
of the minimal amount of sensory cues required to elicit a
percept (for evidence of these limits in meter perception see
e.g., Nozaradan et al. 2012; Witek et al. 2014; Vuust et al. 2018;
Matthews et al. 2020). Even though prior context may signifi-
cantly shift this limit, perceptual organization may be lost once
the cues in the sensory input are too degraded. Consequently, the
effects of prior context would be confined to inputs with medium
amounts of degradation, thus explaining why we did not observe
selective enhancement of meter frequencies in response to the
most degraded sections of the sequences.

In contrast to the neural response, the effect of recent
context in sensory-motor synchronization was spread across all
segments. This difference between neural response and sensory-
motor synchronization is in line with recent studies showing
that synchronized movement can directly (Nozaradan et al. 2013;
Nozaradan, Schönwiesner, et al. 2016c; Morillon and Baillet 2017;
Yon et al. 2018) and prospectively (Lahav et al. 2007; Chemin et al.
2014) affect sound processing in the brain. While it has been
previously shown that overt movement can facilitate extraction
of a periodic pulse from complex rhythmic sequences (Su and
Pöppel 2012), our results suggest that in certain situations, overt
movement may impede extraction of a periodic meter. This
could be specific to situations similar to the current study,
where the preceding movement is desynchronized, possibly
preventing extraction of regularities gradually emerging in the
sensory input. Alternatively, it could be that the location of
the prior-context benefit within the sequences was variable
across trials, yielding generally improved performance in the



12 Cerebral Cortex Communications, 2020, Vol. 1, No. 1

regular-to-degraded sequence after averaging. These possibilities
remain to be investigated with larger samples allowing for more
detailed tapping analyses.

Conclusion
Together, our results demonstrate that, similar to high-level per-
ceptual organization in other domains, meter can emerge from
highly complex and degraded sensory inputs. At the same time,
the robustness to input degradation is limited (Witek et al. 2014;
Vuust et al. 2018) and these limits depend on context and prior
experience. These observations highlight the predictive nature of
perceptual processing and the importance of endogenous infor-
mation (such as prior knowledge and expectations) in shaping
the processing of sensory signals across domains (de Lange et al.
2018; Demarchi et al. 2019; Koelsch et al. 2019).

A common assumption in the neuroscientific literature is that
meter perception can be predicted from the acoustic features
of the rhythmic stimulus. In other words, rhythms with a good
fit between the distribution of acoustic events and hypothetical
pulses comprising meter (i.e., regular rhythms) are assumed to
induce “strong” meter perception, whereas degraded rhythms
are expected to induce “weak” or no meter perception (Povel
and Essens 1985; Grahn and Brett 2007; Bengtsson et al. 2009;
Grube and Griffiths 2009; Kung et al. 2013). Together, our findings
caution against a too strict stimulus-centered view, suggesting
that prior experience at short and long timescales is critical to
understand the mapping between sensory input and perception
of rhythm.

Supplementary Material
Supplementary material can be found at Cerebral Cortex Commu-
nications online.
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