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PURPOSE. To report molecular genetic findings in six probands with congenital hereditary
endothelial dystrophy (CHED) variably associated with hearing loss (also known as Harboyan
syndrome). Furthermore, we developed a cellular model to determine if disease-associated
variants induce aberrant SLC4A11 pre-mRNA splicing.

METHODS. Direct sequencing of the entire SLC4A11 coding region was performed in five
probands. In one individual, whole genome sequencing was undertaken. The effect of
c.2240þ5G>A on pre-mRNA splicing was evaluated in a corneal endothelial-like (CE-like) cell
model expressing SLC4A11. CE-like cells were derived from autologous induced pluripotent
stem cells (iPSCs) via neural crest cells exposed to B27, PDGF-BB, and DKK-2. Total RNA was
extracted, and RT-PCR was performed followed by Sanger and a targeted next generation
sequencing (NGS) approach to identify and quantify the relative abundance of alternatively
spliced transcripts.

RESULTS. In total, 11 different mutations in SLC4A11 evaluated as pathogenic were identified;
of these, c.1237G>A, c.2003T>C, c.1216þ1G>A, and c.2240þ5G>A were novel. The
c.2240þ5G>A variant was demonstrated to result in aberrant pre-mRNA splicing. A targeted
NGS approach confirmed that the variant introduces a leaky cryptic splice donor site leading
to the production of a transcript containing an insertion of six base pairs with the subsequent
introduction of a premature stop codon (p.Thr747*). Furthermore, a subset of transcripts
comprising full retention of intron 16 also were observed, leading to the same functionally
null allele.

CONCLUSIONS. This proof-of-concept study highlights the potential of using CE-like cells to
investigate the pathogenic consequences of SLC4A11 disease–associated variants.

Keywords: congenital hereditary endothelial dystrophy, SLC4A11, corneal endothelial-like
cells model, induced pluripotent stem cells

Congenital hereditary endothelial dystrophy (CHED, MIM
#217700) is a rare autosomal recessive disorder typically

presenting as corneal edema leading to severe visual impair-
ment from birth. A subset of patients with CHED suffers from
progressive, postlingual sensorineural hearing loss,1 in which
case the condition is referred to as Harboyan syndrome (MIM
#217400).

Both CHED and Harboyan syndrome are caused by bi-allelic
pathogenic variants in the solute carrier family 4 member 11,
SLC4A11 (MIM *610206) gene.2 SLC4A11 is a transmembrane
protein carrier facilitating Naþ-coupled OH� (or Hþ) transport,

Hþ-NH3 cotransport, as well as Hþ (OH�) flux.3–5 The protein
also promotes transmembrane water flux regulated by the
osmolarity of the extracellular environment.6 Studies in
Slc4a11 null mice and human corneal endothelial (CE) cell
cultures depleted of SLC4A11 using targeted small interfering
RNA have shown that impairment of SLC4A11 function
increased oxidative stress and decreased endothelial cell
viability.7,8

In humans, the SLC4A11 gene is expressed only in tissues
that are not readily amenable to biopsy, including the corneal
endothelium, salivary and thyroid gland, trachea, inner ear,
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kidney, and testis.9,10 Hence, the differentiation of induced
pluripotent stem cells (iPSCs) into various relevant cell types
represents an attractive option to characterize disease-associ-
ated variants.11 To date, there are only three studies
differentiating human iPSCs into CE-like cells.12–14 However,
iPSC-derived CE-like cells have not yet been used to investigate
the pathogenic consequences of any disease-associated
SLC4A11 variants.

In this study, we report the disease-causing mutations in six
families with CHED and demonstrate that in some instances
the onset of disease may be delayed until after the first few
years of life. Furthermore, using CE-like cells differentiated
from iPSCs, we have assessed the effect of a novel intronic
mutation on pre-mRNA splicing of SLC4A11.

METHODS

Editorial Policies and Ethical Considerations

The study adhered to the tenets set out in the Declaration of
Helsinki and was approved by the ethics committee of the
General University Hospital in Prague (151/11 S-IV) and
Moorfields Eye Hospital (13/LO/1084 and 09/H0724/25). All
participants or their legal representatives signed informed
consent before inclusion in the study.

Clinical Assessment

Ophthalmic assessment included distant Snellen best-corrected
visual acuity (BCVA) or V2000 Linear kays in children younger
than 4 years extrapolated to decimal values, Jaeger cards for
near vision, slit-lamp biomicroscopy, IOP, and keratometry.
Central corneal thickness was measured with ultrasonic
pachymetry (Pachmate 2; DGH Technology, Exton, PA, USA)
or by spectral-domain optical coherence tomography (SD-
OCT), (Spectralis; Heidelberg Engineering GmbH, Heidelberg,
Germany), which was also used for retinal imaging.

SLC4A11 Screening

DNA was isolated from peripheral venous blood according to
the manufacturer’s protocols with the Gentra Puregene TM
Blood Kit (Qiagen, Hilden, Germany) or from saliva using an
Oragene DNA kit OG-500 (DNA Genotek, Inc., Ottawa,
Ontario, Canada). All SLC4A11 coding exons (RefSeq
NM_032034.3) including intron/exon boundaries were se-
quenced by conventional Sanger sequencing using primers
listed in Supplementary Table S1. One proband was analyzed
by genome sequencing performed using a TruSeq Nano DNA
library preparation kit and a HiSeq X Ten sequencer (Illumina,
Inc., San Diego, CA, USA). The reads were aligned with the
SeqMan NGen version 11 (DNAStar, Madison, WI, USA) using
the default parameters. Mutation description followed recom-
mendations of the Human Genome Variation Society (http://
varnomen.hgvs.org/).15 The frequency of the detected
SLC4A11 variants was established from the Genome Aggrega-
tion Database (gnomAD; http://gnomad.broadinstitute.org/)16

providing data on more than 120,000 individuals and in 4528
Czech chromosomes available through the NGS projects of the
National Centre for Medical Genomics (https://ncmg.cz/en).

The effect of missense variants was evaluated in silico by
using six software tools (Supplementary Table S2). Four tools
were used to assess variants potentially affecting pre-mRNA
splicing (Supplementary Table S3).

Identified novel variants were submitted to the Locus
Specific Database (https://databases.lovd.nl/shared/genes/
SLC4A11).

iPSCs Generation

Peripheral blood mononuclear cells (PBMCs) obtained from a
heterozygous carrier with an intronic SLC4A11 variant
c.2240þ5G>A, and a healthy control were isolated with
Histopaque (Sigma-Aldrich, St. Louis, MO, USA) according to
the manufacturer’s instructions. They were then frozen in 10%
dimethyl sulfoxide (Sigma-Aldrich) and inactivated fetal bovine
serum (BenchMark Fetal Bovine Serum; Gemini Bio-Products,
West Sacramento, CA, USA) and stored in liquid nitrogen.

Reprogramming of PBMCs into iPSC line was performed
using the Cyto Tune-iPS 2.0 Sendai Reprogramming Kit
(Invitrogen, Carlsbad, CA, USA) as previously described.17

Briefly, the cells were transduced at an appropriate multiplicity
of infection (MOI) with each of the three reprogramming
vectors MOI ¼ 5:5:3 (hKOS:hc-Myc:hKlf4). Colonies of iPSCs
were grown in the presence of feeder cells (irradiated mouse
embryonic fibroblasts) in human embryonic stem cell (HES)
medium containing Dulbecco’s modified Eagle’s medium-F12,
20% knockout serum replacement, 1% nonessential amino
acids (all from Thermo Fisher Scientific, Waltham, MA, USA),
100 U/mL penicillin–100 lg/mL streptomycin (Merck, Darm-
stadt, Germany), 0.1 mM 2-mercaptoethanol (Sigma-Aldrich),
and with 8 ng/mL bFGF (PeproTech, Rocky Hill, NJ, USA).

iPSCs Differentiation into CE-like Cells

To achieve differentiation of iPSCs into CE-like cells, we
modified a previously published protocol originally devised to
differentiate human embryonal stem cells into CE-like cells.18

The iPSCs were seeded onto Geltrex coated plates (Life
Technologies, Grand Island, NY, USA), grown in mTeSR1
medium (STEMCELL Technologies, Inc., Vancouver, Canada)
and cultured for at least one passage to adapt to feeder-free
culture conditions. Once the cells reached approximately 80%
confluency, they were cultured with HES medium supple-
mented with dual Smad inhibitors, 500 ng/mL Noggin
(PeproTech), and 10 mM SB431542 (Sigma-Aldrich), starting
on day 0 for 2 days with daily media changes. On day 2, the
media was replaced with ‘‘cornea medium’’ containing HES
medium with the addition of 0.1X B27 supplement (Thermo
Fisher Scientific), 10 ng/mL human recombinant platelet-
derived growth factor-BB (PeproTech), and 10 ng/mL recom-
binant mouse Dkk-2 (PeproTech). The iPSC-derived CE-like
cells were then maintained in cornea media for additional 8
days with daily changes. In addition to showing expression of
SLC4A11 by RT-PCR (as described below), the presence of CE
cell status was evaluated after 10 days with primary antibodies
against commonly used markers ZO-1 (Invitrogen), N-cadherin
(Abcam, Cambridge, UK), and CD166 (BD Pharmingen, San
Jose, CA, USA).19,20

Transcript Analysis

RNA was extracted from iPSC-derived CE-like cells and tissue
obtained from a patient with Fuchs endothelial corneal
dystrophy who underwent Descemet membrane endothelial
keratoplasty using standard phenol-chloroform extraction.21

cDNA was reverse transcribed using SuperScript III kit
(Thermo Fisher Scientific). GAPDH was used as positive
control (using primers Forward 50-GCCAAGGTCATCCATGA
CAAC-30, Reverse 50- GTCCACCACCCTGTTGCTGTA-30). Prim-
ers spanning SLC4A11 exons 16 to 19 were designed (Forward
50-CACAGGGCTGTCTCTGTTTG-30, Reverse 50-CAGAGCAGT
CACCCACACAC-30) and cDNA-derived PCR products were
sequenced by conventional Sanger sequencing using Big Dye
terminator chemistry on an ABI PRISM 3100 genetic analyzer
(Applied Biosystems, Forester City, CA, USA).
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A targeted next generation sequencing (NGS) approach was
subsequently used to verify and quantify the identity of
alternatively spliced transcripts present within the iPSC-
derived CE-like cells originating from a control individual and
a heterozygous carrier of the c.2240þ5G>A SLC4A11 variant.
Library was prepared by KAPA HyperPlus Kit (Roche,
Pleasanton, CA, USA) using RT-PCR primers spanning exons
16 to 19 (see above) and standard adaptors (KAPA Dual-
Indexed Adapter Kit; Roche) according to the manufacturer
instructions and sequenced on Illumina sequencing platform
(NextSeq 550). Reads were then aligned to GRCh37 using
STAR software22 and visualized with the Integrated Genomics
Viewer (Broad Institute, Berkeley, CA, USA).23

RESULTS

Six probands with CHED were investigated. None of the
affected families reported a history for corneal disease or
consanguinity. In four individuals, the disease was associated
with hearing loss (Table 1). Five of the six patients were noted
to have cloudy corneas since birth (Figs. 1A, 1B). The BCVA in
eyes that had not had corneal transplantation ranged from 0.64
in the proband from family B1 aged 3 years to 0.01 in a 70-year-

old proband from family C3 (Fig. 1E). Corneal thickness
measurements were available for six eyes and ranged from
1032 lm to 1098 lm. Probands from families C2 and C5 had an
SD-OCT examination of the posterior pole, which confirmed a
normal macula architecture and no retinal pathology. A
summary of clinical findings is provided in Table 1.

Of note, the reduced visual acuity in the proband from
family C5 was only detected at routine review at the age of 5
years. Retrospectively, the parents admitted noticing mild
corneal clouding of variable intensity; however, this did not
prompt them to have the child examined by an ophthalmol-
ogist. At the age of 10 years, the distance visual acuity was 0.4
in both eyes, but with normal near vision of J1 with Jaeger
cards. At age 10, both corneas were hazy and markedly
thickened (Figs. 1C, 1D; Table 1).

In total, 11 different SLC4A11 variants evaluated as
pathogenic were identified, including four novel mutations
(Table 2; Fig. 2). Segregation analysis confirmed that four of the
affected probands harbored compound heterozygous SLC4A11

variants (Fig. 2). DNA samples from families C3 and B2 were
not available for segregation analysis. The evidence to support
pathogenicity of each variant is listed in Table 2,24–30 including
a summary of previously performed functional studies in
cellular models. Novel missense mutations c.1237G>A,

TABLE 1. Clinical and Demographic Data Including Longitudinal Observations in Six Probands With CHED Variably Associated With Hearing
Impairment

Family/

ID

Age,

y*

BCVA CCT, lm

Other Information Hearing ImpairmentRE LE RE LE

C2/II:1 5 0.5 0.4 1098 1078 LE convergent strabismus Y - onset at 5 y, mild

C3/II:1 70 0.01 0 UA PK LE PK at 10 y, vision lost after injury at 36 y Y

C4/II:2 7 0.02† 0.03† UA UA Horizontal nystagmus

RE PK at 7 y

LE PK at 8.5 y, rePK

Y - onset at 14 y, mild

35 HM 0.05 PK PK

C5/II:2 10 0.4 0.4 1032 1032 Visual impairment noticed at 5 y Y - onset at 6 y, perceptive,

mild nonprogressive, hearing aid

since 8.5 y

Good near vision

B1/II:1 3 0.54 0.64 1046 1036 Nil N

B2/II:1 6 0.25† 0.25† UA UA RE exotropia

RE PK at 10 y, rePK, rePKþcataract

LE PK at 7 y, DMEKþcataract

N

10 0.05† 0.66 UA PK

47 0.66 0.66 PK PKþ DMEK

CCT, central corneal thickness; DMEK, Descemet membrane endothelial keratoplasty; HM, hand movement; LE, left eye; N, no; PK, penetrating
keratoplasty; RE, right eye; rePK, repeated penetrating keratoplasty; UA, unavailable data; Y, yes.

* At examination.
† Prior to PK.

FIGURE 1. Clinical findings in individuals with CHED. Slit-lamp photograph in a narrow beam of the right cornea of proband from family C2, aged 5
years (A) and readily visible bilateral corneal clouding in the same individual (B). Left corneal photograph of proband from family C5, aged 10 years
(C), and SD-OCT imaging documenting abnormal thickness and diffuse mild loss of transparency. Green arrow indicates where the cross-section
image was taken (D). Slit-lamp photograph of the right eye of proband from family C3, aged 70 years; note diffuse opacity and spheroidal
degeneration (E).
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p.(Gly413Arg), and c.2003T>C, p.(Leu668Pro) were predicted
to have a pathogenic effect using all six tools (Supplementary
Table S2). One novel mutation identified in the current study,
c.1216þ1G>A, was located in a canonical splice site and another
mutation near to an intron-exon boundary c.2240þ5G>A. Their
effect on pre-mRNA splicing was assessed in silico using four
different tools. All algorithms predicted that both variants abolish
splice donor sites (Supplementary Table S3).

However, because the c.2240þ5G>A variant was not located
within the canonical splice site, we wanted to generate
experimental evidence to support its potential pathogenicity.
SLC4A11 is not expressed in accessible tissue, hence we decided
to generate CE-like cells from patient-derived iPSCs to investigate
if the variant alters splicing. We deliberately selected a
heterozygous carrier of the c.2240þ5G>A SLC4A11 variant to
generate iPSCs given that bi-allelic SLC4A11 mutations have
previously been suggested to decrease cell viability.31,32

Importantly, the iPSC-derived CE-like cells were demonstrated
to express not only SLC4A11, but also additional CE cell markers
(ZO-1, N-Cadherin, and CD166) by immunocytochemistry,
confirming their endothelial cell-like status (Fig. 3A). RT-PCR
primers binding exons surrounding the variant of interest were
used to amplify the iPSC-derived CE-like cells cDNA (Fig. 3B).
Although PCR products generated from the c.2240þ5G>A-
positive and control CE-like cells appeared to be the same size
(Fig. 3C), Sanger sequencing revealed that at least two distinct
products were amplified in the c.2240þ5G>A-positive sample:
the wild-type product and an alternatively spliced product.
Examination of the Sanger sequencing trace confirmed that the
c.2240þ5G>A variant introduced a cryptic donor site 7 base
pairs (bp) downstream of the wild-type site, resulting in the
insertion of six nucleotides leading to a premature stop codon
p.Thr747* (Fig. 3D).

TABLE 2. Summary of SLC4A11 Mutations Identified in Six Families with CHED

Family Population

Mutation

Zygosity GnomAD*

Czech

Alleles Pathogenicity Evidence ReferencesDNA Protein

C2 European Czech c.1216þ1G>A ‘‘p.?’’ HET 0 0 Predicted pathogenic Novel

c.2411G>A p.(Arg804His) HET 3/245,612 0 Decreased level of matured mutant

protein compared with wild type

24, 25

C3 European Czech c.2263C>T p.(Arg755Trp) HOM† 2/244,792 0 Endoplasmic reticulum retained,

misfolded protein

24, 26–28

C4 European Czech c.2527_2529del p.(Leu843del) HET 0 0 Predicted pathogenic 29

c.1237G>A p.(Gly413Arg) HET 0 1/4,528 Predicted pathogenic Novel

C5 European Czech c.625C>T p.(Arg209Trp) HET 3/246,062 0 Endoplasmic reticulum retained,

misfolded protein

24, 28

c.2240þ5G>A p.Thr747* HET 0 0 Splicing defect verified by cDNA

analysis (current study)

Novel

B1 European British c.2240þ1G>A ‘‘p.?’’ HET 6/276,692 0 Predicted pathogenic 27, 29

c.427G>A p.(Glu143Lys) HET 1/246,144 0 Endoplasmic reticulum retained,

misfolded protein

24, 27, 30

B2 European British c.2003T>C p.(Leu668Pro) HET† 4/244,724 0 Predicted pathogenic Novel

c.2528T>C p.(Leu843Pro) HET† 6/276,968 0 Endoplasmic reticulum retained,

misfolded protein

1, 24

p.? refers to unknown effect on protein structure. HET, heterozygous; HOM, homozygous.
* Heterozygous allele count/total number of alleles.
† Segregation analysis not performed, hence possibility of a deletion or existence of a possibly pathogenic intronic variant in a trans

configuration exists.

FIGURE 2. Detected SLC4A11 mutations and their segregation within six families with CHED. Sequence chromatograms of novel mutations (within
red boxes) are also shown. Individuals with hearing impairment are indicated by an asterisk.
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Targeted NGS sequencing was next performed to verify the
identity of the alternatively spliced product(s) and quantify
their relative abundance (Fig. 3E; Supplementary Fig. S1). In
summary, 32.75% (16,700/51,000 reads) of total generated and
mapped reads were identified to encompass the same 6-bp
insertion that had previously been characterized by Sanger
sequencing. Interestingly, a further 9.02% of reads (4600)
contained the entire sequence of intron 16 (Fig. 3E;
Supplementary Fig. S1). If translated, this transcript is
predicted to lead to insertion of 130 bp and subsequent a
premature stop codon p.Thr747*, as the first 6 bp are common
for both aberrant transcripts. Importantly, all reads comprising
intron 16 retention were noted to contain the c.2240þ5A
variant and are hence transcribed exclusively from the mutant
allele (Supplementary Fig. S1). Given the heterozygous status
of the sample, a minimum of 50% of total reads were
hypothesized to correspond to the wild-type transcript.

Interestingly, 58.23% of the total reads mapped to the wild-
type transcript, suggesting that some wild-type transcripts may
be transcribed from the mutant allele and/or that the mutant
transcripts are degraded by nonsense-mediated decay, resulting
in a shorter half-life than the wild-type transcript, and hence
potentially explaining their collective relatively lower abun-
dance (43.75%). However, it also must be acknowledged that
the relative difference observed also may be influenced by
different amplification efficiencies of the PCR products
generated from the alternatively spliced transcripts.

DISCUSSION

In this study, we report on clinical findings and molecular
genetic investigation in six probands with CHED. Furthermore,
we also have developed an iPSC-derived CE-like model system

FIGURE 3. Functional analysis of the effect of a novel mutation c.2240þ5G>A in SLC4A11 using cDNA derived from CE-like cells. (A)
Immunocytochemical staining of CE-like cells derived from iPSCs of a healthy heterozygous carrier of c.2240þ5G>A variant (individual I:1 from
family C5). The scale bar represents 20 lm. (B) Schematic representation of SLC4A11 transcript with marked variant functionally assessed and
primer annealing positions. (C) Electrophoresis of PCR product derived from different sources of cDNA; CE cells gained from a patient with Fuchs
endothelial corneal dystrophy (FECD CE), control iPSC CE-like cells and iPSC CE-like cells from subject C5 I:1. (D) Sequence chromatograms of a
PCR product spanning SLC4A11 exons 16 to 19 derived from cDNA from CE cells gained from a patient with FECD, CE-like cells from a healthy
control individual and from a healthy heterozygous carrier of c.2240þ5G>A variant. (E) Schematic representation of results obtained by targeted
NGS of cDNA from a heterozygous carrier of c.2240þ5G>A (individual I:1 from family C5) showing the precise number of different reads obtained
for each of the three transcript variants.
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to enable us to assess the effect of c.2240þ5G>A on SLC4A11

pre-mRNA splicing.
Because of the relative inaccessibility of tissues expressing

SLC4A11 in vivo, previous functional studies of SLC4A11

mutations have been performed using transiently transfected
human embryonic kidney cell lines (HEK293), involving the
overexpression of the transcript in its non-native cellular
context.24,33,34 Our use of a CE-like cells model importantly
enabled us to assess the variant of interest effect on pre-mRNA
splicing within its native genomic and cellular context. We
were able to verify the CE-like status of the model system by
demonstrating that endothelial markers SLC4A11, ZO-1, N-
Cadherin, and CD166 were all detected.19 This system could
be readily adopted in future to investigate not only the
consequence of other SLC4A11 variants on pre-RNA splicing,
but also other functional outcomes, such as SLC4A11 transport
function, protein stability, and localization. Likewise, mutations
altering the expression and/or function of other CE cell–
specific transcripts and proteins also could be investigated
using the same approach.

Two novel missense mutations p.(Gly413Arg) and
p.(Leu668Pro), found in a compound heterozygote state with
previously reported mutations,29,35 were predicted to be
pathogenic by our in silico analysis. The effect of other
missense mutations except for p.(Leu843del) has been
previously studied in transiently co-transfected HEK293
cellular model.24,30 The overall predicted effect of all three
splicing mutations identified in this study c.1216þ1G>A,
c.2240þ5G>A, and c.2240þ1G>A is degradation of the
transcript due to mRNA nonsense-mediated decay mechanism.
Although c.1216þ1G>A and c.2240þ1G>A were not studied
functionally, they are likely to cause aberrant pre-mRNA
splicing because of their location in canonical splice sites.

The proband from family C5 (compound heterozygote for
c.2240þ5G>A, p.Thr747* and c.625C>T, p.[Arg209Trp]) is the
only individual lacking clear congenital signs of CHED in this
series. Interestingly, p.(Arg209Trp) has previously been ob-
served in the homozygous state in a patient with a severe and
congenital disease onset.28 We therefore hypothesize that the
milder phenotypic presentation in our proband could be
attributed to the c.2240þ5G>A resulting in the introduction of
a ‘‘leaky’’ donor splice site, producing a mix of aberrantly
spliced transcripts and some residual wild-type product as
suggested by quantification of targeted NGS sequencing reads.
Alternatively, the notably reduced levels of mutant versus wild-
type transcripts may be attributed to nonsense-mediated decay;
both identified aberrantly spliced transcripts contain prema-
ture termination codon. Unfortunately, no informative hetero-
zygous polymorphism was present within the amplified coding
region to enable us to infer the phase of wild-type reads
generated.

Four of the six patients in our study had hearing impairment
and should therefore be classified as Harboyan syndrome.
However, a recent review has confirmed that premature deafness
is a feature of most, if not all, cases with CHED, supporting the
concept that Harboyan syndrome and CHED should not be
considered distinct clinical entities.36 At a minimum, periodic
audiometry is recommended for all individuals with CHED.

Our study further highlights the usefulness of molecular
genetic testing to decipher the diagnosis in patients with
bilateral corneal opacity as demonstrated in proband from
family C3 with advanced corneal changes and no past clinical
notes. Genetic testing also enables CHED to be distinguished
from other causes of early-onset corneal edema, such as
posterior polymorphous corneal dystrophy type 3, which in
contrast to CHED is inherited in an autosomal dominant
fashion. Thus, identification of disease-causing mutations has
direct implications for clinical management.37,38

In summary, we anticipate that the use of iPSC-derived CE-
like cells will be a useful tool to access the effects of variants of
unknown significance on pre-mRNA splicing of corneal
endothelial–specific proteins and other functional outcomes,
such as protein function, stability, and localization.
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