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Fenofibrate (FF), a peroxisome proliferator-activated receptor-alpha

(PPAR-a) agonist and a lipid-lowering agent, can decrease experimental pul-

monary fibrosis. However, the mechanisms underlying the antifibrotic effect

of FF remain unknown. Hence, this study was conducted to evaluate the

effects of FF on transforming growth factor-beta (TGF-b)-induced myofi-

broblast differentiation and activation in lung fibroblasts. The results showed

that FF inhibited alpha-smooth muscle actin (a-SMA) and connective tissue

growth factor expression, collagen production, cell motility, SMAD3 phos-

phorylation and nuclear translocation, and metabolic reprogramming in

TGF-b-exposed cells. The inhibitory effect of FF did not decrease with the

addition of a PPAR-a antagonist. Moreover, the inhibitory effect given by

FF could not be reproduced with the addition of an alternative PPAR-a ago-

nist. FF inhibited mitochondrial respiration. However, rotenone, a complex I

inhibitor, did not suppress TGF-b-induced myofibroblast differentiation.

Furthermore, the TGF-b-induced nuclear reduction of protein phosphatase,

Mg2+/Mn2+-dependent 1A (PPM1A), a SMAD phosphatase, was inhibited

by FF. These results showed that FF suppressed TGF-b-induced myofibrob-

last differentiation and activation independent of PPAR-a activation and

impaired mitochondrial respiration. In conclusion, this study provides infor-

mation on the effects of FF on anti-TGF-b mechanisms.

Myofibroblast differentiation and activation are the

key pathogenic events involved in many pulmonary dis-

eases, such as asthma, chronic obstructive pulmonary

disease, and idiopathic pulmonary fibrosis [1–4]. In

these diseases, airway or parenchymal fibrosis is mech-

anistically mediated by common and/or disease-specific

pathways, among which transforming growth factor-

beta (TGF-b) signaling plays a central role. TGF-b
induces the phosphorylation of SMAD proteins,

stimulating signal transduction pathways that lead to

myofibroblast differentiation and transcription factor

activation and alpha-smooth muscle actin (a-SMA)

and collagen production [5–7].
Fenofibrate (FF) is a widely used antihyperlipidemic

agent exhibiting a lipid-lowering effect by activating per-

oxisome proliferator-activated receptor-alpha (PPAR-

a) [8]. In addition, FF exerts pleiotropic actions on mul-

tiple pathways to reduce inflammation, oxidative stress,
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apoptosis, angiogenesis, and fibrosis [9,10]. Notably,

recent clinical studies on patients with diabetes have

revealed that FF has protective effects on retinopathy

and nephropathy [11,12]. Moreover, several animal

studies have shown that FF inhibits experimental

fibrosis in different organs, including the retina, heart,

liver, kidney, and lung [13–20]. For example, the oral

administration of FF in rats has been shown to atten-

uate the severity of bleomycin-induced pulmonary

fibrosis [20]. Since the overexpression of TGF-b is crit-

ical in fibrotic disease, we hypothesized that FF inhi-

bits the TGF-b signaling pathway. The molecular

mechanism of action of FF appears to be complex,

which includes not only PPAR-a-dependent but also

PPAR-a-independent mechanisms [21–31]. Thus, this

study was conducted to assess the effects of FF on

TGF-b-induced myofibroblast differentiation and acti-

vation in vitro and to determine whether the effects of

FF depend on PPAR-a.

Methods

Cell culture

Human fetal lung fibroblasts (IMR-90; American Type Cul-

ture Collection, Manassas, VA, USA) were cultured and

maintained in Dulbecco’s modified Eagle’s medium (DMEM;

Gibco�; Thermo Fisher Scientific, Inc., Waltham, MA, USA)

containing 25 mM glucose, 4 mM glutamine, and 10% FBS at

37 °C in a humidified incubator (CO2 incubator 900EX; Wak-

enyaku Co., Ltd., Tokyo, Japan) saturated with a gas mixture

containing 5% CO2, ~ 20% O2, and 75% N2. Upon reaching

confluence, the cells were cultured in serum-free DMEM for

24 h, pretreated with FF (25 lM unless otherwise indicated;

Sigma-Aldrich Japan, Tokyo, Japan) or vehicle alone for 1 h,

and then treated with 5 ng�mL�1 TGF-b (PeproTech., Cran-

bury, NJ, USA) in the presence or absence of FF. In the rele-

vant experiments, WY14643 (50 lM; Cayman Chemical, Ann

Arbor, MI, USA), GW6471 (20 lM; Cayman Chemical), or

rotenone (0.5 lM; Sigma-Aldrich) was added to the culture

medium. The concentrations of FF, TGF-b, WY14643, and

GW6471 used in this study were adopted from previous

studies [32–34].

Immunofluorescence staining

Cells in the Nunc� Lab-Tek� eight-well chamber slides

(Thermo Fisher Scientific K.K., Yokohama, Japan) were

fixed with 10% formalin and permeabilized with 0.3% Tri-

ton� X-100 in PBS for 5 min. After blocking the nonspecific

binding sites with 3% BSA, the slides were incubated with

mouse monoclonal anti-a-SMA antibody (Novus Biologicals

USA, Centennial, CO, USA) or rabbit monoclonal anti-

SMAD3 (Abcam Japan, Tokyo, Japan). Next, the primary

antibody was allowed to react with a secondary anti-mouse

immunoglobulin G antibody conjugated with Alexa Fluor

488 (Invitrogen, Carlsbad, CA, USA). Then, the cell nuclei

were counterstained with 40,6-diamidino-2-phenylindole. Flu-

orescence images were obtained using a microscope (Olym-

pus IX71; Olympus Optical Co., Ltd., Tokyo, Japan)

equipped with a digital camera.

Western blotting

Cell samples were lysed in a radioimmunoprecipitation

assay buffer (50 mM Tris hydrochloride, pH 7.4, 150 mM

sodium chloride, 0.4 mM ethylenediaminetetraacetic acid,

0.5% Nonidet P-40, and 0.1% SDS) containing a protease

inhibitor cocktail (Sigma-Aldrich Japan) and 1 mM sodium

orthovanadate. According to the manufacturer’s instruc-

tions, nuclear proteins were extracted using a nuclear

extraction kit (Active Motif, Carlsbad, CA, USA). The

samples were centrifuged at 10 000 g for 30 min, and the

total protein concentrations in the supernatants were

assessed using the DC protein assay kit (Bio-Rad Labora-

tories, Hercules, CA, USA). Then, the samples (20 lg pro-

tein�lane�1) were then fractionated by SDS/PAGE,

transferred to a polyvinylidene difluoride membrane (EMD

Millipore Immobilon�-P; Millipore Co., Billerica, MA,

USA), and probed with the primary antibodies, such as

rabbit polyclonal anti-actin (Sigma-Aldrich Japan), rabbit

polyclonal anti-lamin B1 (ProteinTech Group Inc., Rose-

mont, IL, USA), mouse monoclonal anti-a-SMA (Novus

Biologicals USA), goat polyclonal anti-connective tissue

growth factor (CTGF; Santa Cruz Biotechnology, Inc.,

Santa Cruz, CA, the USA), rabbit monoclonal anti-

SMAD3 (Abcam Japan), rabbit monoclonal anti-phospho-

SMAD3 (Ser423/425) (Abcam Japan), and rabbit poly-

clonal anti-protein phosphatase, Mg2+/Mn2+-dependent 1A

(PPM1A; GeneTex, Inc., Irvine, CA, USA). The primary

antibodies were detected using a horseradish peroxidase-

conjugated antibody, which was, in turn, visualized on

enhanced chemiluminescence (SuperSignal West Pico;

Pierce, Rockford, IL, USA). The signal intensities were

quantified by densitometric scanning using IMAGEJ (version

1.49V; National Institutes of Health, Bethesda, MD, USA).

Collagen assay

The collagen content in the culture medium was assessed

using the Sircol� Soluble Collagen Assay Kit (Biocolor,

Carrickfergus, UK).

In vitro wound closure assay

The cells were cultured to reach confluence in 24-well

plates. After serum starvation for 24 h, they were scratched

in a straight line using a sterile 200-lL tip and were washed

twice with PBS. Thereafter, the cells were incubated in
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serum-free DMEM with or without TGF-b (5 ng�mL�1) in

the presence or absence of FF (25 lM). After 24 h, the cells

were fixed with 10% formalin and were washed twice with

PBS. Wound healing was assessed under a phase-contrast

microscope (Olympus IX71; Olympus Optical Co., Ltd.)

equipped with a digital camera. The wound area was mea-

sured using image analysis software (Lumina Vision;

Mitani Corporation, Fukui, Japan) on a Microsoft XP

computer. Five measurements were taken from five fields of

each well obtained from six wells in each experiment.

Metabolic flux analysis

Cells were cultured in eight-well XF assay plates and then

treated with or without TGF-b (5 ng�mL�1) in the presence

or absence of FF (25 lM) or WY14643 (50 lM) for 48 h.

The oxygen concentration rate (OCR) and extracellular

acidification rate (ECAR) were measured using the Sea-

horse XFp Extracellular Flux Analyzer (Seahorse Bio-

science, North Billerica, MA, USA).

Assessment of glucose consumption

Glucose concentrations in the culture and original medium

(not cultured with cells) were assessed using an amperomet-

ric blood glucose sensor (Nipro Care Fast C; Nipro Co.,

Osaka, Japan).

Statistical analysis

Statistical analyses were performed using Microsoft Excel

X with Statcel 3 (OMS; Tokyo, Japan) as an add-in soft-

ware. Data were expressed as means � standard error of

the mean. Equality of variance was examined using Bar-

tlett’s test. Data with equality of variance rejected were log-

arithmically transformed and retested. When equality of

variance was recognized, statistical significance was ana-

lyzed using ANOVA. If significant results were obtained,

the Tukey–Kramer test was used as a post hoc test for mul-

tiple comparisons. P-values < 0.05 were used to denote sta-

tistically significant differences.

Results

First, we examined whether FF modulates the effects

of TGF-b on IMR-90 cells, a human lung fibroblast

cell line. The treatment of IMR-90 cells with TGF-b
(5 ng�mL�1) for 48 h enhanced the expression of

a-SMA, indicating myofibroblast differentiation

(Fig. 1A,B). However, cotreatment with FF (1–25 lM)
reduced the enhanced expression of a-SMA in TGF-b-
treated cells in a dose-dependent manner. This finding

showed that FF inhibits myofibroblast differentiation

induced by TGF-b. Moreover, treatment of IMR-90

cells with TGF-b increased the expression of CTGF

(Fig. 1C), an important mediator of myofibroblast

activation and extracellular matrix synthesis [35], and

the production of collagen (Fig. 1D). Similar to the

inhibition of a-SMA expression by FF, cotreatment

with FF also reduced the aforementioned enhanced

CTGF expression and collagen production induced by

exposure to TGF-b (Fig. 1C,D). Since the activation

of myofibroblasts is associated with increased cell

motility [36], the effects of FF on cell migration were

evaluated. The in vitro wound closure assay showed

that the mobility of TGF-b-treated IMR-90 cells was

significantly decreased in the presence of FF (Fig. 1E).

SMADs, including SMAD3, were found to play a crit-

ical role in TGF-b signaling pathways leading to

myofibroblast differentiation and extracellular matrix

protein production [5]. Western blotting and

immunofluorescence revealed that pretreatment with

FF inhibited TGF-b-induced phosphorylation and

nuclear translocation of the SMAD3 (Fig. 1F,G).

Myofibroblast differentiation is associated with

metabolic reprogramming, which was proposed as a

molecular target of TGF-b action [37,38]. According

to previous reports [37,38], treatment with TGF-b
increased both OCR, as evidenced by augmented basal

respiration (Fig. 1H) and mitochondrial ATP produc-

tion (Fig. 1I), and glycolysis, as indicated by increased

ECAR (Fig. 1J) and glucose consumption (Fig. 1K).

Cotreatment with FF decreased TGF-b-induced mito-

chondrial respiration (Fig. 1H,I). However, interest-

ingly, it enhanced TGF-b-mediated stimulation of

glycolysis (Fig. 1J,K). Taken together, these results

showed that FF suppressed SMAD activation, myofi-

broblast differentiation, collagen production, cell

mobility, and mitochondrial respiration in human lung

fibroblasts treated with TGF-b.
The lipid-lowering effect of FF is mediated by the

activation of PPAR-a, a nuclear receptor to which FF

binds as a ligand [39]. Thus, we next examined whether

the inhibition of TGF-b-induced myofibroblast differen-

tiation by FF was attributed to the activation of PPAR-

a. The results showed that treatment with GW6471

(20 lM), a PPAR-a antagonist, did not change the inhi-

bitory effect of FF on TGF-b-induced a-SMA expres-

sion (Fig. 2A). Furthermore, treatment with WY14643

(50 lM), a PPAR-a agonist, did not inhibit TGF-b-
induced a-SMA expression (Fig. 2B,C). These findings

showed that the inhibition of TGF-b-induced myofi-

broblast differentiation by FF is mediated by a mecha-

nism independent of PPAR-a activation.

FF inhibits complex 1 of the mitochondrial electron

transfer chain [40]. In this study, in contrast to FF,

WY14643 did not suppress the high mitochondrial
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respiration induced by TGF-b (Fig. 3A,B). Hence,

it was unlikely that the inhibition of mitochondrial res-

piration by FF was caused by PPAR-a activation.

Then, we addressed the possibility that the PPAR-a-
independent inhibition of mitochondrial complex I by

FF is mechanistically involved in inhibiting TGF-b-
induced myofibroblast differentiation. However, treat-

ment with rotenone, a complex I inhibitor, did not

inhibit either a-SMA expression (Fig. 3C) or SMAD3

phosphorylation (Fig. 3D) in TGF-b-treated cells. This

result indicated that the inhibition of TGF-b-induced
myofibroblast differentiation by FF is not attributed

to the inhibition of mitochondrial respiration.

A time-course analysis of FF inhibition of TGF-b-
induced phosphorylation of SMAD3 revealed that FF

reduced the cellular levels of phosphorylated SMAD3

after 1 h or thereafter but not as early as 30 min after

treatment with TGF-b. This result showed that FF

might have reduced TGF-b-induced SMAD3 phospho-

rylation at a later time by dephosphorylating SMAD3

Fig. 1. FF inhibits TGF-b-induced myofibroblast differentiation, collagen production, cell migration, SMAD3 phosphorylation, and metabolic

reprogramming. IMR-90 cells were pretreated with FF (25 lM unless otherwise indicated) or vehicle alone for 1 h and were treated with or

without TGF-b (5 ng�mL�1) in the presence or absence of FF for 1 h (F, G), 24 h (E), or 48 h (A–D, H–K). (A) Representative images of anti-

a-SMA immunofluorescence (green, a-SMA; blue, nuclear staining; n = 3). Insets are magnified images. Scale bar: 100 lm. (B, C) Detection

of a-SMA (B) and CTGF (C) using western blot analysis. The relative protein expression levels were evaluated using densitometry and were

normalized to the expression level of b-actin as the control (n = 4). (D) Extracellular collagen production assessed using the Sircol� Soluble

Collagen Assay (n = 4). (E) Wound closure assay. The migration of cells toward the wound was expressed as the percentage of wound

closure (n = 4). (F) Western blot detection of phosphorylated SMAD3 and total SMAD3 (n = 4, left) and nuclear SMAD3 (n = 4, right). The

relative protein expression levels were normalized to the expression level of b-actin or lamin as the control. (G) Representative images of

anti-SMAD3 immunofluorescence (green) and nuclear staining with 40,6-diamidino-2-phenylindole (DAPI, blue; n = 3). Scale bar: 50 lm (H)

Basal OCR (n = 3). (I) Adenosine triphosphate (ATP)-linked OCR (n = 3). (J) ECAR (n = 3). (K) Glucose consumption rate (n = 4). Data were

expressed as means � standard error of the mean. *P < 0.05 and **P < 0.01 using the Tukey–Kramer test. Co, control; p-SMAD3,

phosphorylated SMAD3.

Fig. 2. Inhibition of TGF-b-induced myofibroblast differentiation by FF was not attributed to the activation of PPAR-a. (A) IMR-90 cells were

pretreated with vehicle alone, FF (25 lM), or FF plus GW6471 (20 lM) for 1 h and were treated with or without TGF-b (5 ng�mL�1) for 48 h

in the presence or absence of FF or GW6471. The expression of a-SMA protein was evaluated using western blot analysis (n = 4). (B, C)

IMR-90 cells were pretreated with WY14643 (50 lM) or vehicle alone for 1 h and were then treated with or without TGF-b (5 ng�mL�1) for

48 h in the presence or absence of WY14643. The expression of a-SMA protein was evaluated using western blot analysis (B, n = 4) or

immunofluorescence staining (C, n = 4). green, a-SMA; blue, nuclear staining. Insets are magnified images. Scale bar: 100 lm. Data were

expressed as means � standard error of the mean. *P < 0.05 and **P < 0.01 using the Tukey–Kramer test. n.s., not significant. Co, control;

GW, GW6471; WY, WY14643.
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(Fig. 4A). Studies have shown that PPM1A dephospho-

rylates and promotes the nuclear export of SMAD3 to

terminate TGF-b signaling [41]. Lastly, we found that

treatment with TGF-b decreased the nuclear levels but

not the total levels of PPM1A, which was partially

recovered after cotreatment with FF (Fig. 4B). These

findings suggest that FF partially inhibited TGF-b-
induced reduction of nuclear PPM1A.

Discussion

This study showed that treatment with FF inhibits

TGF-b-induced myofibroblast differentiation and acti-

vation, as evidenced by the suppression of a-SMA and

CTGF expression, collagen production, cell mobility,

SMAD3 phosphorylation and nuclear translocation,

and mitochondrial respiration in human lung fibrob-

lasts treated with TGF-b. The lipid-lowering effect of

FF is reportedly mediated by activating PPAR-a [39].

However, this study revealed that the inhibition of

TGF-b-induced myofibroblast differentiation by FF is

not caused by PPAR-a activation because the PPAR-a
antagonist GW6471 did not suppress the inhibitory

effect of FF on TGF-b-induced myofibroblast differen-

tiation and treatment with the PPAR-a agonist

WY14643 did not inhibit TGF-b-induced myofibrob-

last differentiation.

Accumulating evidence indicates that PPAR-a-
independent mechanisms are involved in the pleiotro-

pic effects of FF on various physiological and patho-

logical processes [21–31,42]. For example, FF has been

shown to inhibit tumor cell proliferation [21,23,28] and

diapedesis [25], angiogenesis [24], endothelin-1 expres-

sion by endothelial cells [26], renal organ cation trans-

porter [27], and insulin secretion [30], which are

reportedly mediated independently of PPAR-a. Con-

cerning the mechanism of the independent PPAR-a
action of FF, many molecular targets have been pro-

posed, such as nuclear factor-kappa B [23], Akt

[21,28], Stat3 [22], cytochrome P450 2C [24], glycogen

synthase kinase-3 [26], growth differentiation factor-15

[29], and ATP-sensitive potassium channel [30].

This study showed that FF inhibits mitochondrial

respiration via a PPAR-a-independent mechanism.

However, the inhibition of TGF-b-induced myofibrob-

last differentiation by FF was not attributed to the

inhibition of mitochondrial respiration because rote-

none did not suppress TGF-b-induced myofibroblast

differentiation. This study also showed that FF par-

tially inhibits TGF-b-induced reduction of nuclear

Fig. 3. Inhibition of TGF-b-induced myofibroblast differentiation by FF was not attributed to the inhibition of mitochondrial respiration. (A, B)

The effects of WY14643 on the basal OCR (A, n = 3) and ATP-linked OCR (B, n = 3). IMR-90 cells were pretreated with WY14643 (50 lM)

or vehicle alone for 1 h and were then treated with or without TGF-b (5 ng�mL�1) for 48 h in the presence or absence of WY14643. (C, D)

Effects of rotenone on the expression of a-SMA (C) and phosphorylation of SMAD3 (D). IMR-90 cells were pretreated with rotenone

(0.5 lM) or vehicle alone for 1 h and were then treated with or without TGF-b (5 ng�mL�1) in the presence or absence of rotenone for 1 h

(D) or 48 h (C). The a-SMA expression (C) and SMAD3 phosphorylation (D) levels were evaluated using western blot analysis (n = 4). Data

were expressed as means � standard error of the mean. *P < 0.05 and **P < 0.01 using the Tukey–Kramer test. n.s., not significant. Co,

control; WY, WY14643; Rot, rotenone; p-SMAD3, phosphorylated SMAD3.
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PPM1A, a SMAD phosphatase that terminates TGF-b
signaling [41]. Thus, the FF-mediated regulation of

PPM1A may mechanistically be accounted at least in

part for the FF-mediated inhibition of TGF-b-induced
myofibroblast differentiation. Interestingly, Paw et al.

[32] have recently shown that FF inhibits TGF-b-
induced myofibroblast differentiation by disturbing the

organization of actin cytoskeleton architecture. They

have found that FF inhibits TGF-b-stimulated incor-

poration of a-SMA into stress fibers by reducing con-

nexin 43, a protein that constitutes gap junctional

channels. However, in contrast to this study, they have

found that FF does not suppress TGF-b-induced

a-SMA expression despite the inhibition of SMAD2/3

signaling. The discrepancy between their study and this

study may be attributed to different sources of fibrob-

lasts: We used fibroblasts derived from normal fetal

lungs, whereas Paw et al. used bronchial fibroblasts

derived from patients with asthma. Although the

results of this study indicated PPAR-a-independent
mechanisms by which FF suppresses TGF-b-induced
myofibroblast differentiation, we still considered the

possibility that PPAR-a activation has some antifi-

brotic effects because PPAR-a-knockout mice treated

with bleomycin had more severe inflammation and

injury than wild-type mice [43].

Fig. 4. Effects of FF on SMAD3 phosphorylation (A) and the total and nuclear levels of PPM1A (B). IMR-90 cells were pretreated with FF

(25 lM) or vehicle alone for 1 h and were then treated with or without TGF-b (5 ng�mL�1) in the presence or absence of FF for 30 min, 1, 2,

and 4 h (A, n = 4) or 1 h (B, n = 4). Total cell lysates (A; B, right) or nuclear lysates (B, left) were analyzed using western blot analysis. Data

were expressed as means � standard error of the mean. *P < 0.05 and **P < 0.01 using the Tukey–Kramer test. n.s., not significant. Co,

control; p-SMAD3, phosphorylated SMAD3.
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Recent animal studies have shown that treatment

with FF decreases experimental fibrosis in the retina,

lungs, liver, heart, and kidneys [13–20]. FF is a rela-

tively safe and inexpensive agent widely used in clinical

practice for treating hyperlipidemia. This study pro-

vided a better understanding of the antifibrotic effect

of FF, which can be used as a basis for its clinical

application for treating fibrotic disorders.
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