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Abstract

We consider the recently introduced edge-based compartmental models (EBCM) for the spread of susceptible-infected-
recovered (SIR) diseases in networks. These models differ from standard infectious disease models by focusing on the status
of a random partner in the population, rather than a random individual. This change in focus leads to simple analytic models
for the spread of SIR diseases in random networks with heterogeneous degree. In this paper we extend this approach to
handle deviations of the disease or population from the simplistic assumptions of earlier work. We allow the population to
have structure due to effects such as demographic features or multiple types of risk behavior. We allow the disease to have
more complicated natural history. Although we introduce these modifications in the static network context, it is
straightforward to incorporate them into dynamic network models. We also consider serosorting, which requires using
dynamic network models. The basic methods we use to derive these generalizations are widely applicable, and so it is
straightforward to introduce many other generalizations not considered here. Our goal is twofold: to provide a number of
examples generalizing the EBCM method for various different population or disease structures and to provide insight into
how to derive such a model under new sets of assumptions.
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Introduction

The social contact network of a population plays a significant

role in controlling the spread of directly transmitted infectious

diseases. The accuracy of our predictions about the course of an

epidemic or the effectiveness of an intervention is thus tied closely

to our ability to accurately model the impact of the contact

network on disease transmission. Two of the features that are most

notable in network observations are that partnerships may have

significant duration and different individuals have different

numbers of partners. Recent work [1–3] has provided a modeling

approach referred to as ‘‘edge-based compartmental modeling’’

(EBCM) which incorporates both partnership duration and

heterogeneities in numbers of partners for susceptible-infected-

recovered (SIR) epidemics. These studies find surprisingly simple

equations governing the macroscopic dynamics as the disease

spreads through random contact networks. The EBCM models

are expected to be exact in the large-population limit when the

population satisfies appropriate assumptions, and have been

proved exact in the special case of static Configuration Model

populations [4].

Mechanistic infection-spread models which explicitly incorpo-

rate interactions between infected and susceptible individuals

typically fall into one of two classes. We will refer to the most-

common of these as ‘‘mass-action’’ models. In the simplest mass

action model of a homogeneous population, the probability that

two individuals u and v interact in a short time interval is the same

for any pair of individuals, and does not depend on previous

interactions. In more complex versions, we may stratify the

population by demographic group (or other ‘‘type’’). The

probability that u and v interact in a short time interval is given

by the expected number of interactions between a pair of

individuals in each of their groups but is independent of whether

they have interacted previously. This allows us to capture biased

mixing among children and adults or simply heterogeneities in

numbers of partners e.g., [5–9].

An important but often unrecognized assumption of mass-

action models is that they implicitly assume partnerships have zero

duration, so that at any moment the partners are randomly chosen

from a large pool of potential partners. We can highlight the

significance of this assumption by considering a married couple.

These models assume that if a man gives his wife influenza, then

an arbitrarily short time later he has a new wife who may still be

susceptible and his original wife has a new husband who may be

susceptible. The deterministic equations that result are exact for a

population that satisfies these assumptions, but the failure of the

assumptions may have important implications. In real populations,

we expect that over time, infected individuals tend to infect those

surrounding them, leading to local depletion of susceptibles. We

cannot use these models to study any effect which depends on the
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duration of a partnership. For example, we cannot use mass-action

models to investigate the effect of concurrency, i.e., having

partnerships that overlap in time, on the HIV epidemic because

the mass-action equations assume that all partnerships are fleeting.

The majority of mechanistic models that are not mass action

models are instead network-based. Rather than assuming

partnerships have negligible duration, usually (but not always)

these assume partnerships are permanent. Many of these use ‘‘pair

approximations’’ [10–14]. Pair approximation models typically

derive equations for the number of susceptible-susceptible and

susceptible-infected partnerships, and often (but not always)

assume that the population has homogeneous degree. The

equations that arise are exact, but rely on knowledge about

longer-range connections, such as the number of susceptible-

susceptible-infected triples in the population. Typically an

approximation is used whereby the frequency of each type of

triples is expressed in terms of the pairs. For a commonly-used

model network (the Configuration Model network, the simplest

network model which allows for heterogeneous degree) it is

possible to estimate the number of triples of various types exactly

so long as the central individual is susceptible [14,15] and the

initial conditions are small. If the central individual is infected or

recovered, the usual estimates for the number of triples are

incorrect, but these do not feed back into the equations for the

pairs and so the calculations for the pairs remain correct. These

models frequently require many equations, with the number of

equations being O(K2) where K is the number of distinct degrees

in the population. Although it has recently been shown that the

number of equations can be reduced dramatically without

introducing errors, the approach is not obvious [14,15], and the

more obvious simplifications introduce errors. With the reduction

in dimension coming from [14,15] the equations reduce to the

equations of the EBCM approach.

Other exact mathematical models exist that also allow for

epidemics in (Configuration Model) networks having heteroge-

neous degree, but typically the number of equations is propor-

tional to the maximum degree of the network or the square of the

maximum degree [16,17]. If however we are willing to assume all

individuals have the same number of partners, it is possible to

write down a relatively simple system of equations that captures

epidemic dynamics [18]. Other approaches allow us to capture the

impact of dynamic partnerships, but these assume very uniform

behavior across the population and occassionally assume no more

than one partnership at a time [19–22].

The EBCM approach presented in [1] avoids many of the

problems of other approaches, and is thus more flexible. We

emphasize that this approach allows for heterogeneous degree in

the underlying network. It directly leads to a simple system of

equations which can be proven to exactly predict the disease

dynamics in the large-population limit for a Configuration Model

network [4]. The resulting system of equations has only a single

governing differential equation. Subject to a few restrictions, we

can adapt the assumptions so that the underlying population

model differs from a Configuration Model network. The model

can be adapted to include dynamic partnerships with only a small

increase in complexity. Despite these advantages over existing

approaches, the model retains some of the existing weaknesses. It

makes very simple assumptions about the disease progression and

additionally assumes that the only distinguishing feature of an

individual is the number of partners. Thus it misses a large number

of features: there may be a preferential direction to transmission

(e.g., a blood donor can infect, but not be infected by, the

recipient); some individuals may be more or less susceptible to

infection or more or less infectious per partnership than others (e.g.,

some may withdraw from society when ill while others may

continue as normal); there may be biased mixing by age or by

behavior (school children preferentially contact one another over

adults [23], or people with many sex-partners may preferentially

select partners who also have many partners); there may be

multiple modes of transmission (e.g., IV needle sharing, hetero-

sexual contacts, and homosexual contacts have different contact

structures and different transmission probabilities [24]); the disease

may have multiple phases of infection, each with different

transmission rates (e.g., the acute phase of HIV is widely believed

to be more infectious than the longer-lasting chronic phase [25]);

or even, the partnership dynamics may evolve in response to

knowledge about infection status (e.g., ‘‘serosorting’’ in response to

HIV). These and many other features have been previously

studied through mathematical models.

In this paper our goals are to show that many of the effects that

have been studied by other approaches under the assumption that

partnerships have zero duration can be captured by the EBCM

approach to incorporate the effect of long-lived partnerships and

to provide guidance to other researchers working with similar

questions. The resulting equations are simpler than those found by

other methods, do not require approximations inherent in many

competing approaches, and allow us to account for heterogeneity

in numbers of partners. The flexibility of this approach allows us to

develop exact models for a wide range of different situations. Our

scope is to show that for each effect considered the method results

in a simple system of equations which accurately reproduces

simulated epidemics rather than to perform a detailed investiga-

tion of the impact of each effect. We begin by demonstrating the

model in the simplest static network with minimal structure. We

next provide derivations for the cases described above, summa-

rized in table 1, which by themselves form a ‘‘recipe book’’ for use

by other modelers. The list is by no means exhaustive, and it is not

difficult to combine different effects. More generally these may be

used as exemplar models which can guide the derivation of models

for other behaviors not considered here. We focus primarily on

static networks and assume a very small initial condition; the

generalization to dynamic networks is straightforward following

[1], and the generalization to allow larger initial conditions is also

straightforward following [26]. For our final example of serosort-

ing we must turn to a dynamic network model as it is fundamental

to the process. We finally give a discussion of limitations of the

EBCM method, giving examples for which there appears to be no

simple model. We make no claim that we are the first to study

these effects, most of which have been studied in a mass-action

setting already. Rather, this is the first simple approach allowing us

to write down exact models for these and similar effects in a

network setting.

Method and Results

2.1 The basic model
The static network epidemic models we present here are all

generalizations of the basic Configuration Model (CM) network

epidemic model. To set the stage, we first define a CM network

[27–30]. Because we will use the same underlying approach, we

also briefly describe the underlying method of [1]. Generalizing

the models we develop to dynamic networks is straightforward

following [1].

In a CM network, each individual is represented by a node which

is connected to other nodes by edges which can transmit disease. To

construct the network, each node is assigned a number of edges (its

degree) k with probability P(k). The edges connect randomly to one

another using proportional mixing, so that the probability of
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selecting a partner of degree k is kP(k)=SKT where SKT denotes

the average of k. The generation of a CM network is illustrated in

figure 1. It is convenient to define

y(x)~
X

k

P(k)xk :

Note that y’(x)~
P

k kP(k)xk{1 and y’(1)~SKT.

We define S(t) to be the proportion of the population still

susceptible at time t, I(t) to be the proportion infected at time t,

and R(t) the proportion recovered at time t. We make the

assumption that these change deterministically at the population

scale. By assuming that the population scale dynamics are

deterministic, we are making one key assumption that we highlight

here. When we consider a single individual u in multiple

realizations of the epidemic, the time of infection of u or even

whether u is ever infected is a random event. However, if the

disease dynamics are deterministic at the population scale, then

the details of when u is infected and who u might later infect must

not matter at the population scale. This is analgous to the ‘‘price-

taker’’ assumption of economics in which, for example, a small

farmer could not produce enough wheat to affect the price of

wheat, and so the farmer must take whatever price the market is

offering. The value of the price-taker assumption mathematically

is that it allows us to ignore the impact an individual firm has on

the broader market and just focus on the impact of the market on

the firm’s actions. In our case, the corresponding assumption

allows us to focus our attention on the impact of the epidemic on u
and expicitly ignore the impact of u on the epidemic. Because u
cannot affect the dynamics of the epidemic, we can modify u by

not allowing it to transmit onwards without affecting the dynamics.

When we prevent u from transmitting onwards, it has no impact

on the status of u, but it simplifies the calculation of the status of u
since we can then ignore correlations of partners of u that are arise

from transmission through u.

Consider a random test node u chosen uniformly from the

population. We alter u so that if infected, u does not transmit to its

partners. Because u is chosen randomly, the probability that it is

susceptible, infected, or recovered at a given time must match S, I ,

and R. Thus our calculation proceeds by calculating the

probability u is in each state. We focus our attention on finding

the probability u is susceptible. Once we know it, we are able to

determine I and R by I~1{S{R, _RR~cI .

We use h to be the probability that a random partner v of u has

not transmitted infection to u. We break h into three parts: wS , wI ,

and wR, which are respectively the probability v is still susceptible,

the probability v is infected but has not transmitted to u, and the

probability v is recovered and did not transmit to u. We have

h~wSzwIzwR.

The flow diagram of figure 2 gives the fluxes between the

various compartments. Because the infection rate within a

partnership is b and the recovery rate of an individual is c it is

relatively straightforward to see that the fluxes from wI to 1{h
and wR are bwI and cwI respectively. The calculation of the flux

from wS to wI is less obvious. We have two options. We can

calculate the flux directly or we can simply calculate wS explicitly

as was done in [1], in which case we can avoid the flux calculation

altogether. This second option is simpler, and we use it here.

We have

_hh~{bwI : ð1Þ

The remainder of our derivation focuses on finding wI . Because

h~wSzwIzwR, we have wI~h{wS{wR. Thus we simply need

to calculate wS and wR in terms of h to find wI in terms of h. To

calculate wS , we use the fact that the probability a partner v has

→ →

Figure 1. Sample generation of a Configuration Model
network. The steps to generate a Configuration Model network with
P(1)~P(3)~0:5. (Top left) Each node/individual is independently
assigned either 1 or 3 stubs with equal probability. (Successive plots)
Pairs of stubs are randomly chosen and joined into edges until no stubs
remain (bottom right). In the limit of a large population, about half of
the individuals have 3 partners, about half have just 1 partner, and a
random partner of a given individual is three times as likely to have 3
partners versus just 1. The number of triangles in the network is small;
there is little clustering. For this P(k) we have y(x)~(xzx3)=2.
doi:10.1371/journal.pone.0069162.g001

Table 1. Models investigated in this article.

Model Brief Description Section

Directed Networks Model for a disease in which some partnerships are not symmetric in terms of disease risk. 2.2.1

Heterogeneous Individuals Model for populations with heterogeneities in infectiousness and/or susceptibility that do not
correlate with population structure

2.2.2

Assortative mixing by type Model for populations with demographic groups that have heterogeneities in infectiousness
and/or susceptibility and partner selection is affected by an individual’s group.

2.2.3

Multiple transmission modes Model for a disease that can be transmitted by more than one type of behavior and the network
structure induced by each behavior is different.

2.2.4

Multiple infectious stages Model for a disease which has several infectious stages of possibly varying duration or infectiousness. 2.2.5

Serosorting Model for dynamic network where edges break or are created at rates dependent on the status of
partners.

2.3.1, 2.3.2

The edge-based compartmental models considered here. All of these except serosorting are presented using the (static) Configuration Model network structure.
Serosorting is presented in two different dynamic network contexts.
doi:10.1371/journal.pone.0069162.t001
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degree k is kP(k)=SKT. Since u is prevented from infecting v, the

probability v is susceptible given its k is hk{1. Thus wS is a

weighted average of this, wS~
P

k kP(k)hk{1=SKT~y’(h)=y’(1).

To calculate wR, we look at figure 2. The fluxes into wR and into

1{h are proportional to one another, with the proportionality

coefficient c=b. Since both variables begin at 0, this means

wR~c(1{h)=b. Consequently

wI~h{
y’(h)

y’(1)
{

c

b
(1{h) :

This leads to

_hh~{bhzb
y’(h)

y’(1)
zc(1{h) :

Thus we have the system of equations

_hh~{bhzb
y’(h)

y’(1)
zc(1{h) ð2Þ

_RR~cI S~y(h) I~1{S{R , ð3Þ

which has just two ordinary differential equations (ODEs). In fact

equation (2) does not depend on equation (3), so the system is

governed by the single ODE (2).

We show the variables and their definitions in table 2.

2.1.1 Initial Condition. Our derivation has implicitly

assumed that the epidemic is started by an infinitesimally small

initial condition, so that as t?{?, we find h?1, wS?1, wI?0,

and wR?0. By focusing on linear terms, we find that the vector of

1{wS , 1{h, wI , and wR can be expressed in terms of an

eigenvector of the associated matrix times ert for some r. Thus if

we know any one of these at t~0, we can find the other variables

by assuming that it has converged to this eigenvector. More

generally, if the initial condition is not small, we cannot assume

that it converges to the eigenvector before nonlinear terms become

important. In this case, we need to account for the initial condition

explicitly. This is discussed in [26]. The derivations below all

assume small initial condition and that the epidemic is above the

critical threshold, but the approach of [26] can account for a

larger initial condition in each case or the behavior if the disease is

not able to invade.

2.1.2 Dynamic Networks. We can adapt the approach

above to dynamic networks with relatively little difficulty. The

main addition is that we have additional fluxes from and to the

various w compartments as edges break or are formed. We must

include some additional variables showing the proportion of all

edges that belong to nodes of a given status as this determines the

probability that a new edge is with a susceptible, infected or

recovered node. Details are in [1,31].

2.1.3 Generalizing the model. In the remainder of this

section, we generalize the model for many static network

situations, and in section 2.3 we discuss some generalizations

specific to dynamic networks. The basic approach is to consider a

random test node u which is prevented from causing infection.

Then consider the edges which could transmit infection to u. We

determine the probability the edges have not transmitted to u,

which may depend on u, the partner, or details of the partnership.

Our approach to determining this probability is the same as above.

Once we know the probability any given edge has not transmitted

to the test node, we can calculate the probability that the test node

is susceptible, from which we can calculate the proportion of the

population that is susceptible, infected, or recovered.

Our approach is fairly general and will apply to a wide range of

populations. The generalizations we have here are by no means

exhaustive, and many of the effects we consider here could be

combined. The main property we require of the population is that

the partners of a given individual are independent of one another.

More precisely we require that we be able to assume that if we

know the population scale details of the epidemic, then knowing

the status of one partner of the test individual u gives no

information about the status of another partner of u.

2.2 Epidemics on generalized static networks
2.2.1 Directed Networks. There are a number of realistic

scenarios where infection can transmit in only one direction.

Examples include blood transfusions, a food handler infecting a

consumer, and even a patient infecting a doctor where they come

into contact only because of the patient’s infection. The

probability and final size of epidemics for this scenario have been

studied previously [32], but not the dynamics. Other researchers

have investigated the dynamic spread of disease through

asymmetric networks using pair-approximation based techniques

Figure 2. Flow diagram for Configuration Model networks. Given a test individual u and a random partner v, the probability v has not
transmitted to u is h. We divide h into three compartments based on the status of v: h~wSzwIzwR where the subscript gives the status of v. The
flow diagram on the left gives the flux between these subcompartments within h and the flux from h to 1{h (which comes specifically from the wI

subcompartment of h). The flow diagram on the right shows the flux of individuals through the S, I , and R compartments. To find h, we must find wI ,
which is h{wS{wR. We find wS~y’(h)=y’(1). Because the flux into wR and 1{h are proportional, we can find wR~c(1{h)=b. Thus
wI ~h{y’(h)=y’(1){c(1{h)=b, and we are able to find a differential equation for h in terms of h. To find S, I , and R, we note that the probability u is
in each state is equal to the proportion of the population in each state, so the susceptible proportion is equal to the probability that u is susceptible,

which is y(h). We determine I by I~1{S{R and R by _RR~cI .
doi:10.1371/journal.pone.0069162.g002
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[33]. The resulting pair-approximation model relies on a large

number of equations. The model we derive here predicts the

dynamics of an epidemic in a directed network, requires only a

handful of equations, and is exact for the assumed network class.

We can investigate the dynamics in almost the same manner as

before. Assume that the network consists of both directed and

nondirected edges. The disease can transmit along a directed edge

only following the edge direction, while nondirected edges may be

followed in either direction. Let bd and bn denote the rate of

transmission along directed and nondirected edges respectively.

Recovery occurs at rate c regardless of how infection was received.

We refer to edges pointing to a node of interest as in-directed, and

those pointing away as out-directed edges. The probability of having

ki in-, ko out-, and kn nondirected edges is given by P(ki,ko,kn).
We define

y(x,y,z)~
X

ki ,ko,kn

P(ki,ko,kn)xki yko zkn :

We again consider a random test node u which is prevented from

causing infection. We define hd (t) and hn(t) to be the probability

an in-directed edge or nondirected edge to u respectively has not

transmitted infection to u. The probability that u is still susceptible

is y(hd ,1,hn). We use the variables wS,d , wI ,d , and wR,d to be the

equivalent of wS , wI , and wR seen before for in-directed edges.

Following the same approach as before we arrive at the flow

diagrams in figure 3.

Consider a partner v with a directed edge to u. Because of how

v is chosen, the probability it has ki in-, ko out-, and kn

nondirected edges is koP(ki,ko,kn)=SKoT. The probability that v

is still susceptible is wS,d~
P

ki ,ko ,kn
koP(ki,ko,kn)hki

d hkn

n =SKoT

~
L
Ly

y(hd ,1,hn)=
L
Ly

y(1,1,1). The probability that v has recov-

ered without infecting u is wR,d~c(1{hd )=bd . Because

wI ,d~hd{wS,d

{wR,d we have wI ,d in terms of hd and hn. This gives us _hhd in

terms of hd and hn. A similar expression holds for _hhn. We have

_hhd~{bdhdzbd

L
Ly

y(hd ,1,hn)

L
Ly

y(1,1,1)

zc(1{hd ) ð4Þ

_hhn~{bnhnzbn

L
Lz

y(hd ,1,hn)

L
Lz

y(1,1,1)

zc(1{hn) : ð5Þ

To this we add

_RR~cI S~y(hd ,1,hn) I~1{S{R ð6Þ

to give us the proportion of susceptible, infected, and recovered

individuals.

If the system only has directed edges, then we can drop hn from

the analysis and y(x,y,z) reduces to y(x,y). Such a model could

be used to study the impact of superspreaders where the

probability of receiving infection from an infected node is similar

for all nodes (in-degrees are similar), but some nodes have many

more partners to infect than others (high variance in out-degree).

With minor modifications, we can adapt this method to edges

which may transmit in both directions but have asymmetric

transmission rates.

We now demonstrate the equations in a concrete example.

Consider a population for which the average in-degree, out-

degree, and nondirected degrees are each k̂k as follows: Each node

has in-degree k̂k. The out-degree ko is uniformly chosen from 0 up

to 2k̂k inclusive, and the nondirected degree is 2k̂k{ko. For this

population,

y(x,y,z)~xk̂k z2k̂kz1{y2k̂kz1

(2k̂kz1)(z{y)
:

Figure 4 shows results for k̂k~4, bd~0:2, and bn~0:4.
2.2.2 Heterogeneous infectiousness and

susceptibility. Assume now that there is a parameter j which

measures a node’s ability to become infected and cause infection,

but does not influence the contact structure of the population. We

refer to the value of j for a node as its type, and the probability a

node has a given type j is Q(j). Although we assume the type is

discretely distributed, it could be continuous with no significant

complications. The recovery rate cj of a type-j node and the

transmission rate bj,l from a type-l node to a type-j node are type

dependent. The final size for a special case of this model where a

node’s infectiousness and susceptibility are uncorrelated is given in

Table 2. Variables and equations for the basic EBCM approach.

Variable Definition Equation

h The probability that v has not transmitted to u. _hh~{bwI

wS The probability that v has not transmitted to u and is susceptible. wS~ y’(h)
y’(1)

wI The probability that v has not transmitted to u and is infected. wI ~h{wS{wR

wR The probability that v has not transmitted to u and has recovered. wR~ c(1{h)
b

S The probability u is susceptible or equivalently the proportion of the population that is susceptible. S~y(h)~
P

P(k)hk

I The probability u is infected or equivalently the proportion of the population that is infected. I~1{S{R

R The probability u is recovered or equivalently the proportion of the population that is recovered. _RR~cI

P(k) The proportion of individuals within the population having degree k. Not Applicable

Equations and variables assuming a negligibly small initial proportion infected. In each case u is a randomly chosen test individual (prevented from transmitting to
others) and v is a random partner of u.
doi:10.1371/journal.pone.0069162.t002
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[34]. Similar problems have been considered for well-mixed mass

action populations (e.g., [35,36] and many others).

Consider a random test node u of type j. Let hj,l denote the

probability that an edge from a type-l partner v to u has not

transmitted infection from v to u, and similarly wS:j,l the

probability v is still susceptible, wI :j,l the probability v is infected

but the edge has not transmitted, and wR:j,l the probability that v

has recovered without transmitting. We define hj~
P

l hj,lQ(l)

as the probability that a random edge to u has not transmitted

infection to u. We use the original definition of y(x)~
P

k P(k)xk.

We find that v is susceptible with probability wS:j,l~P
k kP(k)h

k{1

l =SKT~y’(hl)=y’(1). We also find that wR:j,l~

cl(1{hj,l)=bj,l . Then the flow diagram in figure 5 shows that

_hhj,l~{bj,lhj,lzbj,l

y’(hl)

y’(1)
zcl(1{hj,l) : ð7Þ

The probabilities a type-j node is still susceptible, infected, or

recovered satisfy

_RRj~cj Ij Sj~y(hj) Ij~1{Sj{Rj : ð8Þ

The total population in each state is given by

S~
X

j

SjQ(j) I~
X

j

IjQ(j) R~
X

j

RjQ(j) : ð9Þ

We now demonstrate the equations in a concrete example. One

application of this model is to the impact of a partially effective

vaccination. Vaccination generally reduces the susceptibility of a

node, but could either increase or decrease the infectiousness of a

node by reducing the severity of symptoms (less sick individuals

may shed less virus but also maintain stronger contact intensity

while symptomatic). If only part of the population is vaccinated,

then the population can be divided into those who have or have

not received vaccination.

Figure 3. Directed CM model. Flow diagram for a network with directed and nondirected edges. We consider the two edge types separately. The
evolution of edges is similar to figure 2. We can assign different infection rates for each edge type.
doi:10.1371/journal.pone.0069162.g003

Figure 4. Directed CM example. Results for the directed networks described in section 2.2.1 using k̂k~4, bd~0:2, and bn~0:4. We choose t~0 to
correspond to 1% cumulative incidence. Theory (dashed) correctly predicts dynamics of simulations in a population of 5|105 individuals (solid).
doi:10.1371/journal.pone.0069162.g004
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Consider a population with a negative binomial degree

distribution NB( 3=2,8=9) with size r~3=2 and probability

p~8=9, giving an average degree of pr=(1{p)~12 and variance

of pr=(1{p)2~108. For a negative binomial distribution NB( r,p)

we have y(x)~½(1{p)=(1{px)�r, so

y(x)~(9{8x){3=2 :

Assume that half of the population has received a leaky vaccine

such that vaccinated nodes have reduced susceptibility, and — if

infected — reduced infectiousness and infection duration. Let c be

the rate of recovery for unvaccinated nodes and b the rate of

infection between unvaccinated nodes. Vaccinated nodes recover

at rate 2c, and the rate of infection between a vaccinated and

unvaccinated node (in either direction) is b=2 while the rate of

infection between two vaccinated nodes is b=4. The vaccine is

distributed uniformly. Results for b~0:3, c~0:5 are shown in

figure 6.

2.2.3 Populations with assortative mixing by type. In

many instances there is biased mixing between or within

demographic groups, and the transmission/recovery parameters

for the different groups may differ. For example, the spread of

influenza is strongly affected by the increased level of mixing

and increased infection rates between children. Many sexually

transmitted diseases are strongly affected by differences in mixing

rates and risk behavior among MSM and heterosexual groups. For

this reason it is useful to have a model accommodating different

levels of mixing within and between groups. Others have applied a

pair-approximation approach for which assortative mixing is

dependent on degree [10]. Here we generalize to also allow for

assortative mixing that results from other demographic features

such as age. The model we derive is equivalent (though simpler) to

that of [24].

Assume that the population is made up of M groups, and let

Pj(k1,k2, . . . ,kM ) denote the probability a node of group j has kl

partnerships with nodes of group l for l~1, . . . ,M. To simplify

notation, we denote this by Pj(k) where k~(k1,k2, . . . ,kM ). We

similarly set x~(x1,x2, . . . ,xM ) and use xk to denote

xk1

1 xk2

2 � � � x
kM

M . We set

yj(x)~
X

k

Pj(k)xk ,

and let bj,l be the rate of transmission across an edge from group l

to group j. We similarly define cj to be the recovery rate of a group

j node.

We define hj,l to be the probability an edge to a test node in

group j coming from a group l node has not transmitted infection.

If our test node u is of type j, then the probability that a partner v

of type l is still susceptible is wS:j,l~
P

k kjPl(k)hk1

l,1hk2

l,2 � � �

h
kj{1

l,j � � � hkM

l,M=
P

k kjPl(k)~
L

Lxj

yl(hl)=
L

Lxj

yl(1) where hl de-

notes the vector (hl,1,hl,2, . . . ,hl,M ) and 1 denotes the vector

(1,1, . . . ,1). We can also show that v has recovered without

transmitting to u with probability wR:j,l~cl(1{hj,l)=bj,l .

Figure 5. Heterogeneous infectiousness/susceptibility model. We separate nodes by type j, but assume that j has no effect on connectivity.
Both infectiousness and susceptibility may depend on j. We must consider edges between each pair of types j and l separately. The evolution of
edges is similar to before.
doi:10.1371/journal.pone.0069162.g005

Figure 6. Heterogeneous infectiousness/susceptibility example. Epidemics spreading in a population for which half have received a leaky
vaccine described in section 2.2.2. Vaccinated individuals are half as infectious and half as susceptible. We choose t~0 to correspond to 1%
cumulative incidence. Simulations in a population of 5|105 individuals (solid) and theory (dashed) are in good agreement.
doi:10.1371/journal.pone.0069162.g006
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Figure 7 gives

_hhj,l~{bj,lhj,lzbj,l

L
Lxj

yl(hl)

L
Lxj

yl(1)

zcl(1{hj,l) : ð10Þ

The denominator
L

Lxj

yl(1) is simply the average of kj for nodes of

group l. We find

_RRj~cjIj Sj(t)~yj(hj) Ij~1{Sj{Rj : ð11Þ

As a special case, we can consider a population where the

number of partnerships a node has with one group is assigned

independently of the number that node has with any other group.

We set Pj,n(k) to be the probability a node of group j has k edges

to a node of group n and define yj,n(x)~
P

k Pj,n(k)xk. Then

yj(hj) factors and may be written as yj,1(hj,1)yj,2(hj,2) � � �
yj,M (hj,M ). In this special case we get

_hhj,l~{bj,lhj,lzbj,l

yl

0
,j(hl,j)

y
0
l ,j

(1)
P
i=j

yl,i(hl,i)

� �
zcl(1{hj,l) : ð12Þ

We now demonstrate the equations in a concrete example. To

demonstrate the ability to capture demographic information, we

consider a population made up of two groups, which we arbitrarily

label children and adults. The between-group degrees are binomially

distributed with Bi( 4,1=2), so that the average between-group

degree is 2. An adult’s within-group degree equals its between-

group degree. In contrast, a child’s within-group degree is given by

5 times its between-group degree. Thus people with higher

between-group degree have higher within-group degree. We get

ya(xa,xc)~(0:5xaxcz0:5)4

yc(xa,xc)~(0:5xax5
cz0:5)4 :

We set the disease parameters to be

cc~1 ca~0:1

bc,c~0:3 bc,a~0:1 ba,a~0:1 ba,c~0:1 :

The results are shown in the top of figure 8.

We repeat with the same parameters, but this time with the

correlations in degree switched so that higher between-group

degrees implies lower within-group degrees. An adult’s within-

group degree is 4{k̂k where k̂k is its between-group degree. A

child’s within-group degree is 5(4{k̂k) where k̂k is its between-

group degree. We have

ya(xa,xc)~(0:5xaz0:5xc)4

yc(xa,xc)~(0:5xaz0:5x5
c)4 :

The results are shown in the bottom of figure 8.

The distribution of within and between-group partnershipss in

the two populations are the same. The only distinction is that the

correlations of within and between-group partnerships are

different. This results in differences in the course of the epidemics.

A mass action model could not distinguish between the

populations.

In both cases the disease spreads quickly through the child

population. Early on the spread in adults is driven largely by the

explosive growth in children. Because of the correlations of adults’

within and between-group degrees, those adults who are infected

by children in the first scenario tend to have more adult partners

and infect high-degree adults who in turn infect more high-degree

children. In the second scenario however, infected children tend to

infect fewer adults who tend to have fewer adult partners. The

disease does not grow as quickly, but it also decays less quickly

because more high degree nodes remain.

2.2.4 Multiple modes of transmission. Rather than having

different types of nodes, there may be multiple modes of

transmission with different mixing and infection rates for each

mode. For example, HIV may spread through sexual contact and

needle-sharing. The sexual contact network may have little to no

relation to the needle-sharing network. Previous attempts to

analyze such effects in a network context have typically assumed

that there are two types of contacts: mass action-like contacts and

partnerships within a network [37]. The model we derive here

allows each mode of transmission to have its own underlying

network structure and the equations are simpler. Assume there are

M types of partnerships and that the rate of transmission along

partnerships of type j is given by bj . Let the joint distribution of the

number of each partnership type be given by P(k) where

Figure 7. Assortative mixing by type model. We separate nodes by type. We assume that type may influence infectiousness and susceptibility
as well as connections. For simplicity, we assume a finite number of groups. The resulting system is similar to our system for correlated infectiousness
and susceptibility.
doi:10.1371/journal.pone.0069162.g007
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k~(k1,k2, . . . ,kM ). Assume recovery rates are independent of

how infection was acquired. We set x~(x1, . . . ,xM ) and denote

the product xk1

1 � � � x
kM

M by xk. We define

y(x)~
X

k

P(k)xk :

We can apply the same method to each edge type as shown in

figure 9. We set wS,j to be the probability that an edge of type j

connects the test node to a susceptible partner. If hj is the

probability a partnership of type j has not yet transmitted

infection, we set h~(h1,h2, . . . ,hM ). We find wS,j~
L

Lxj

y(h)=

L
Lxj

y(1) and similarly the probability an edge of type j connects to

a recovered partner which did not transmit is wR,j~c(1{hj)=bj .

As before we find S(t)~y(h). We have

_hhj~{bjhjzbj

L
Lxj

y(h)

L
Lxj

y(1)

zc(1{hj) ð13Þ

_RR~cI S~y(h) I~1{S{R : ð14Þ

Figure 8. Assortative mixing by type example. Comparison of theory and simulated results for mixing with demographic groups described in
section 2.2.3. We also show the predicted levels of infection in each subgroup. Simulations in a population of 5|105 individuals (solid) and theory
(dashed) are in good agreement. The difference between the top and bottom result from changing the correlations of within and between-group
mixing. We choose t~0 to correspond to 1% cumulative incidence.
doi:10.1371/journal.pone.0069162.g008

Figure 9. Multiple modes of transmission model. Flow diagram showing the flux of edges for the j-th contact type for a disease which has
multiple modes of transmission.
doi:10.1371/journal.pone.0069162.g009
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In the case where the degree with respect to one partnership type

is independent of that with respect to another, we can simplify

equation (13) to be similar to equation (12).

We now demonstrate the equations in a concrete example. We

consider a population with three different types of partnerships.

We take k1, k2, and k3 to denote the number of each type of

partnership a node has. We assume that partnership type 1 is

binomially distributed with Bi (2,0:5) (giving a mean of 1).

Partnership type 2 is geometrically distributed, with mean 2.

Partnership type 3 has a negative binomial distribution NB( 1,1=4)

with mean 1=3 and variance 4=9. The numbers of partners an

individual has of each type are assigned independently. We find

y(x1,x2,x3)~
(x1z1)2

4

x2

2{x2

3

4{x3
:

We take c~1 and set b1~1, b2~0:5, and b3~3 for each

partnership type. We compare simulation and theory in figure 10.

This example is chosen so that the variables of y can be separated

into different terms. The theory still applies even when this

factorization of y is not possible.

2.2.5 Multiple infectious stages. There are a number of

diseases with multiple infectious stages such as Tuberculosis and

HIV. Some diseases begin with a non-infectious latent phase, some

begin with a highly infectious acute stage before settling into a

long-term chronic stage, and others oscillate between phases of

high and low infectiousness. To model such situations we adapt a

standard chain progression model, for which there are M

infectious phases shown in figure 11. We are not able to explicitly

solve for all variables in terms of h, so we must find the fluxes

between the compartments. We can still find wS~y’(h)=y’(1), so

we are able to find wI ,1 in terms of the other variables using

Figure 13. Fixed-degree serosorting model. Flow diagram showing the interplay involved in serosorting with fixed-degree. We do not consider
a recovered class, which simplifies the equations. The framework can be adapted to include a recovered class. The M variables represent the total
proportion of stubs involved in edges between the two types and the p variables are the proportion of dormant stubs belonging to nodes of each
type. The w variables are as before. For the right hand side, we are able to determine most of the variables analytically, so we only need the fluxes into
and out of pI . We expect that the edge breaking and rejoining rates g will depend on values of pS and pI .
doi:10.1371/journal.pone.0069162.g013

Figure 11. Multiple infectious stages model. Flow diagrams for a disease with several infected stages. When a disease progresses through
several states (or has an infectious period that is not exponentially distributed) it is convenient to use a stage-progression model to represent the
state of an edge.
doi:10.1371/journal.pone.0069162.g011
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wSzwRz
P

j wI ,j~h. We obtain

_hh~{
X

bjwI ,j ð15Þ

wI ,1~h{
y’(h)

y’(1)
{wR{

XM
j~2

wI ,j ð16Þ

_wwI ,j~cj{1wI ,j{1{cjwI ,j{bjwI ,j M§jw1 ð17Þ

_wwR~cMwI ,M ð18Þ

_II j~cj{1Ij{1{cj Ij M§jw1 ð19Þ

_RR~cM IM S~y(h) I1~1{S{R{
XM
j~2

Ij , ð20Þ

where Ij is the proportion of the population in the j-th infectious

class.

We now demonstrate the equations in a concrete example.

Consider now the spread of a disease for which there are three

infectious stages. The first stage is moderately infectious but not

long, with b1~0:2, c1~1. The second stage is much longer, but

has a substantially lower infectiousness, with b2~0:01 and

c2~0:08. The final stage has an intermediate duration but

substantially higher infectiousness, with b3~2 and c3~0:4. We

assume that the disease spreads in a population with degree

distribution NB( 1,4=5) having mean 4 and variance 20 with

y(x)~(5{4x){1 :

The results are shown in figure 12.

2.3 Dynamic Networks and Serosorting
For some diseases, it is not uncommon for individuals to actively

seek out partners of similar disease status (as in HIV [38] or

Leprosy [39]) or even discordant status (as in ‘‘chicken pox

parties’’ or ‘‘swine flu parties’’). This is commonly known as

serosorting. To study these populations, we must use dynamic

network models, which we developed in [1].

We study serosorting in two models. In the first, we use an

‘‘actual degree’’ model where an individual has a given number of

potential partnerships, of which only a proportion are active at any

given time. In the second, we use an ‘‘expected degree’’ model in

which individuals break any existing partnerships at a fixed rate,

but different individuals may find new partners at differing rates

leading to a variation in the expected number of partnerships

across the population.

For simplicity, we will assume that there is no recovered class

and once infected an individual remains infected. This restriction

is easily removed, but by using it, we are able to simplify the model

and reduce the number of parameters needed. We again consider

a test node, and as before we assume that if infected the test node

does not cause any infections. We make an additional assumption

that if infected the test node continues to behave as if it were

susceptible, and that its potential partners treat it as if it were

susceptible. We can think of the test node as an individual who is

immune, but is unaware of that immunity, and we track the

probability that the test node has not yet received a sufficient dose

to infect a non-immune individual.

2.3.1 Actual Degree Serosorting model. In the actual

degree formulation, we think of an individual as having k stubs or

half-edges. These stubs may be active (and connected to another

node’s stub) or dormant (and available to form new edges).

When an edge breaks, the corresponding stubs enter a dormant

phase. We assume that the rate a dormant edge belonging to a

susceptible individual finds a new susceptible partner is g1,SS , and

the rate it finds a new infected partner is g1,SI . These may depend

on the density of susceptible and infected individuals in the

population. Similarly, active edges break at rates depending on the

status of the nodes. Edges between susceptible nodes break at rate

g2,SS, edges between a susceptible and infected node breaks at rate

g2,SI , and edges between infected nodes break at rate g2,II .

We define wS , wI , wR, and wD to be the probability that a stub

belonging to the test node u has never been part of an edge that

transmitted infection to u, and that the stub is currently connected

to a susceptible, infected, or recovered node or is dormant

respectively. The fluxes between these states are shown in figure 13.

Unlike in previous cases, we are unable to explicitly calculate wS ,

so we must track the flux into and out of wS . The fluxes between

Figure 12. Multiple infectious stages example. The spread of the disease described in 2.2.5 with three infectious stages. Simulations in a
population of 5|105 individuals (solid) and theory (dashed) are in good agreement. We choose t~0 to correspond to 1% cumulative incidence.
doi:10.1371/journal.pone.0069162.g012
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wS and wD are straightforward. However, the flux from wS to wI

requires more attention. We repeat our derivation from [1].

Consider a partner v of the test node u having the following

properties: the stub belonging to u never transmitted to u prior to

joining with the stub belonging to v, and similarly the stub

belonging to v never transmitted to v prior to joining with the stub

belonging to u. Given this, the probability v is susceptible is

q~
P

k kP(k)hk{1=SKT~y’(h)=y’(1). Thus, given that v is

susceptible, the rate v becomes infected is

{ _qq
q
~{

_hhy’’(h)=y’(1)
y’(h)=y’(1)

~bwI
y’’(h)
y’(h)

:

Thus the flux from wS to wI is bwSwI y’’(h)=y’(h), the product of

wS , the probability that a stub has not transmitted infection to the

test node and connects to a susceptible node, with bwI y’’(h)=y’(h),
the rate that the partner becomes infected given that the stub has

not transmitted and connects to a susceptible node. We need to

account for the number of stubs that are in edges between different

classes of nodes or are dormant. We use MSS to be the proportion

of all stubs that are in edges between susceptible nodes.

Equivalently this is the probability that a stub is active, connects

to a susceptible node, and belongs to a susceptible node:

MSS~wSy’(h)=y’(1). We similarly define MSI to be the

proportion of all stubs that are in edges between a susceptible

and infected node. We calculate this by finding the probability a

stub is active, connects to an infected node, but belongs to a

susceptible node but we must multiply by 2 because this only

counts one stub in each edge. We get MSI~2wI y’(h)=y’(1) . We

also define MII to be the proportion of all stubs in edges between

infected nodes. We will calculate its value later. We set pS to be the

proportion of stubs that are dormant and belong to susceptible

nodes and pI to be the proportion of stubs that are dormant and

belong to infected nodes. The value of pS can be calculated as for

the dormant contact case of [1] to be pS~wDy’(h)=y’(1). The

value of pI is calculated by finding the fluxes out of the other

states. Once we have all of these variables, we have

MII~1{MSS{MSI{pS{pI .

Following figure 13 we find

_hh~{bwI ð21Þ

_wwS~g1,SS(pS,pI )wD{g2,SS(pS,pI )wS{bwI wS

y’’(h)

y’(h)
ð22Þ

_wwI~g1,SI (pS,pI )wD{g2,SI (pS ,pI )wI{bwIzbwI wS

y’’(h)

y’(h)
ð23Þ

_wwD~g2,SS(pS,pI )wSzg2,SI (pS,pI )wI{½g1,SS(pS ,pI )

zg1,SI (pS,pI )�wD

ð24Þ

pS~wD

y’(h)

y’(1)
ð25Þ

_ppI~
g2,SI (pS,pI )

2
MSI{pSg1,SI (pS,pI )zg2,II (pS,pI )MII

{pI g1,IIzbwDyI

y’’(h)

y’(1)

ð26Þ

MSS~wS

y’(h)

y’(1)
ð27Þ

MSI~2wI

y’(h)

y’(1)
ð28Þ

MII~1{MSS{MSI{pS{pI , ð29Þ

where g1,SS , g1,SI , g1,II , g2,SS, g2,SI , and g2,II are likely to depend

on pI and pS and may depend on the other quantities. What form

that dependence takes is determined by the behavior of the

population. This completes the derivation of the equations for the

actual degree formulation of serosorting.

2.3.2 Variable Degree Serosorting model. In many

populations, it is reasonable to assume that individuals create

Figure 10. Multiple modes of transmission example. Disease spread in a population with three different types of partnerships, each with a
different degree distribution described in 2.2.4. Simulations in a population of 5|105 individuals (solid) and theory (dashed) are in good agreement.
We choose t~0 to correspond to 1% cumulative incidence.
doi:10.1371/journal.pone.0069162.g010
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and break contacts without regard to whether contacts already

exist. Consequently, the concept of having a fixed number of stubs

is inappropriate. For these populations, we assume that in the

absence of disease all contacts will have the same expected

duration but different individuals will create new contacts at

different rates, resulting in some having higher or lower average

degrees. In [1], we used k to be the expected degree of a node.

However, when behavior changes based on infection status, the

expected degree of individuals can change. Instead, we refer to k
as the desired degree because depending on how sorting happens, it

may not be possible for a node to have expected degree k.

However, k will represent the expected degree of an individual if

there were no infection present. We again use S and I to be

proportions of the population. PS and PI measure the proportion

of desired contacts which belong to susceptible or infected

individuals: PS~
Ð

skkr(k)dk, PI~
Ð

ikkr(k)dk where sk and

ik denote the proportion of individuals with desired degree k who

are susceptible and infected respectively.

We assume that the population behavior proceeds as before, but

an uninfected node will end and form contacts with different rates

for infected or susceptible partners. There are many ways in which

this could be modeled. We will assume that a susceptible

individual with desired degree k acquires new susceptible contacts

at rate kg1,SPS and new infected contacts at rate kg1,IPI , where

both g parameters may depend on PS and PI . Similarly, a

susceptible individual will end an existing contact with another

susceptible and with an infected individual at rates g2,S and g2,I

respectively (where again both g parameters may depend on PS

and PI ). We assume that g1,S and g2,S are equal if PI~0 so that

in a disease-free population an individual’s expected and desired

degrees coincide.

We need to add variables in order to track the probability of

having existing edges connecting to susceptible or infected nodes.

Consider a test node u1 with desired degree k, and another u2 with

desired degree kzDk. We define WSDk to be the expected

additional number of edges to susceptible partners that u2 would

have and WIDk to be the expected additional number of edges to

infected partners which have not transmitted that u2 would have.

We take the values of WS and WI in the Dk?0 limit. In the cases

considered in [1], the value of WS and PS were the same.

However, because there is active selection of partner based on

disease status, in this case WS=PS .

The resulting flow diagram is shown in figure 14. We must find

the flux from WS to WI . Consider a random test node u and look at

a randomly chosen susceptible partner v. Given the desired degree

kv of v, the rate that v becomes infected is bWI kv. We need to

determine the expected value of kv given that v is a susceptible

partner of u. We first note that the probability density function for

the partner to be susceptible and have degree k is proportional to

q(k)~e{k(1{H)kr(k)=SKT with some proportionality constant a.

So in order to calculate the expected value of the desired degree

we take
Ð

akq(k)dk=
Ð

aq(k)dk. This simplifies to Y’’(H)=Y’(H).

So the flux from WS to WI due to infection of the partner is

bWSWIY’’(H)=Y’(H)

We find

_HH~{bWI ð30Þ

_WWS~g1,S(PS,PI )PS{g2,S(PS,PI )WS{bWSWI
Y’’(H)

Y’(H)
ð31Þ

_WWI~g1,I (PS,PI )PI{½g2,I (PS,PI )zb�WIzbWSWI

Y’’(H)

Y’(H)
ð32Þ

PS~
Y’(H)

Y’(1)
PI~1{PS ð33Þ

S~Y(H) I~1{S : ð34Þ

So an SI epidemic in a population with serosorting can be

captured by a system with just three ODEs.

Discussion

We have applied the edge-based compartmental model

approach introduced in [1] to diseases and populations with

different structures, showing how to derive models for a range of

scenarios. We have shown that the models derived accurately

reproduces simulated epidemics in large populations with CM-like

Figure 14. Variable-degree serosorting model. Flow diagram showing the interplay involved in serosorting. We do not consider a recovered
class, which simplifies the equations significantly. The framework can be adapted to include a recovered class. The P variables give the proportion of
contacts that would be formed with susceptible or infected individuals assuming that their behavior is not altered by disease. The W variables are the
probability that a current contact of the test node is with an individual of given type, under the assumption that the test node always behaves as if
susceptible, and does not transmit to its partners. We expect that the edge breaking and rejoining rates g will depend on values of PS and PI . Note
that WSzWI need not equal H.
doi:10.1371/journal.pone.0069162.g014
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structure. With the exception of serosorting we focused our

attention on static CM networks. We have considered each

variation in isolation. However it is possible to adapt the approach

to a disease for which several of these issues are considered

simultaneously in any of the network classes discussed in [1].

In general, we can adapt most existing mean-field/mass-action

style SIR models in a closed population to the spread of infectious

disease through a network. When we do this, we get a w variable

corresponding to each of the S, I , or R variables in the usual

model. We take the usual flow diagram for S, I , and R and adapt

it to give the fluxes between the w variables. We add one more

compartment 1{h, and flux goes from each of the potentially

infectious w variables to 1{h. This approach produces an

accurate model for disease spread through the modeled

population.
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