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Abstract: Aptamers are chemically synthesized single-stranded DNA or RNA oligonucleotides
widely used nowadays in sensors and nanoscale devices as highly sensitive biorecognition elements.
With proper design, aptamers are able to bind to a specific target molecule with high selectivity. To
date, the systematic evolution of ligands by exponential enrichment (SELEX) process is employed
to isolate aptamers. Nevertheless, this method requires complex and time-consuming procedures.
In silico methods comprising machine learning models have been recently proposed to reduce the
time and cost of aptamer design. In this work, we present a new in silico approach allowing the
generation of highly sensitive and selective RNA aptamers towards a specific target, here represented
by ammonium dissolved in water. By using machine learning and bioinformatics tools, a rational
design of aptamers is demonstrated. This “smart” SELEX method is experimentally proved by
choosing the best five aptamer candidates obtained from the design process and applying them as
functional elements in an electrochemical sensor to detect, as the target molecule, ammonium at
different concentrations. We observed that the use of five different aptamers leads to a significant dif-
ference in the sensor’s response. This can be explained by considering the aptamers” conformational
change due to their interaction with the target molecule. We studied these conformational changes
using a molecular dynamics simulation and suggested a possible explanation of the experimental
observations. Finally, electrochemical measurements exposing the same sensors to different molecules
were used to confirm the high selectivity of the designed aptamers. The proposed in silico SELEX
approach can potentially reduce the cost and the time needed to identify the aptamers and potentially
be applied to any target molecule.

Keywords: aptamer; aptasensor; biosensor; machine learning; molecular dynamic simulation; in
silico design

1. Introduction

The development of novel binders for specific targets (e.g., viruses, toxins, pathogens,
proteins, cell receptors linked to cancer, etc.) is a continuously growing research area [1]
with the goal to simplify the diagnosis and treatment of diseases, detection of contaminants
and toxins, as well as quality control [2-9]. Moreover, during the last two years, the
ongoing COVID-19 pandemic has underlined the importance of rapid and reliable methods
for the large screening of public health [10-14]. Traditional methods to perform such
screenings are mainly based on antibodies, although their use presents major drawbacks
such as high production time and cost, bad thermal stability, etc. Alternative tools have
been proposed [15], in particular, nucleic acid (NA) aptamers have demonstrated selective
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binding properties toward a broad spectrum of ligands thanks to their three-dimensional
(3D) structure. Aptamers derive their name from Latin “Aptus” meaning “to fit” and
Greek “meros”, meaning “region” [16]. They are chemically synthesized short single-
stranded deoxyribonucleic acids (DNA) or ribonucleic acids (RNA) that serve as selective
biorecognition elements [17]. The specific sequence of the aptamers gives them a 3D folding
shape that allows them to bind to their targets with high selectivity [18-23]. With respect to
antibodies, aptamers are cost-effective, easier to synthesize, thermally stable, and simpler
to use. Of note, aptamers are now finding more and more applications in nanoscale devices
for therapeutic [24-26] and sensing applications [27-31]. In particular, the combination
of nanopores and aptamers has been demonstrated to be an interesting method for the
development of the next generation of highly selective and multiplexed single-molecule
sensing devices [28,29,32-35].

Aptamers are typically selected in vitro, starting with a random pool of RNA or
DNA molecules using a process called the systematic evolution of ligands by exponential
enrichment (SELEX) [36,37]. The SELEX process consists of multiple cycles of selection and
amplification, typically requiring up to 15 rounds and taking a few days to months to be
completed [38]. Even if, from their introduction in 1990 [16], the interest in scientific research
linked to aptamers has continuously grown, to date, the SELEX method still has some major
drawbacks: (i) the maximum theoretical number of sequences in the initial library is limited
at 10%°, thus, it does not enumerate every possible sequence [37,39,40]; (ii) the SELEX
may be biased towards certain sequences even though they might present a weak-binding
aptamer [39,41-43]; and (iii) the presence of an immobilization matrix to which the target is
immobilized during SELEX may interact with the NA sequences and give a false-positive
result [39,44]. This is why procedures to reduce the number of rounds have been extensively
studied. In particular, the use of next-generation sequencing (NGS) and statistical analysis
at the end of each cycle have been proposed. Unfortunately, these methods present the
drawbacks of increasing the process costs and complexity [37,45,46]. Machine learning
models have been recently proposed as an additional tool for aptamer design, but up to
now, only a few examples of aptamer-protein analyses have been reported [47-49]. To the
best of our knowledge, no machine learning models for small aptamer molecules have
been reported and they can have a significant impact on several applications such as DNA,
toxin, heavy metal, antibiotic, ion, molecular marker, and virus detection.

In recent years, several papers have reported methods to complement the voluminous
SELEX technique [45,50,51]. In particular, in silico design and development of aptamers
have been proposed to enable the identification of high-affinity aptamers mainly using 3D
structural modeling via computer simulations [52]. Different bioinformatics techniques
such as docking programs and molecular dynamics simulation (MDS) can be used to
study the effect of sequence and structure on function in aptamer design to improve
binding affinities [53-56]. Although these approaches still require a known sequence of
aptamer [50,53,57] or performing the traditional SELEX process for at least some rounds
followed by NGS [58,59], they may hold the keys to overcoming the drawbacks of the
traditional SELEX process in terms of time, cost, and feasibility. Hence, isolating aptamers
for a specific target by employing bioinformatics, machine learning, and a rational design
represents a challenge with huge potential.

Here, we investigated an extended in silico approach to perform a rational (“smart”)
design of aptamers for a test target, represented in this work by ammonium (NH4")
dissolved in water. We developed, by means of bioinformatics tools and machine learning,
a deep learning model able to learn the complex features of an aptamer-target system
starting from training data obtained from previously isolated sequences (through standard
SELEX). Moreover, we applied molecular docking to the obtained aptamer candidates
considering both positive (in this work, NH;*) and negative targets (trimethylammonia—
TMA and dimethylammonia—DMA; two example molecules that can be present with NH,*
in the food spoilage process). This step of analysis enables only the selection of sequences
with a high binding affinity towards the positive target and low binding affinity towards the
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negative ones. Finally, in order to experimentally prove the performance of the investigated
Smart-SELEX method, we selected the top five aptamer candidates obtained from our
design procedure, and we used them as recognition elements in a simple electrochemical
sensor to detect NH,* in water. Electrochemical sensors are extensively used in the field of
biosensing due to the low cost of fabrication and their rapid detection time [60-63]. The
use of aptamers as a biorecognition element in electrochemical biosensors (aptasensor) has
been previously reported [64-67]. Here, we explored its use for the detection of ammonia
dissolved in water as an ammonium ion at different concentrations. Ammonia is a water-
soluble gas that, in a specific range of pH values, dissociates to NH4" and OH™ (for
example, 0.2 ppm of gaseous NHj yields a 2.8 mM ammonia solution [68] which contains
0.2 mM of solvated NH3 and 2.6 mM of NH; ). Consequently, monitoring the ammonium
concentration in water could be an indirect measurement of ammonia gas, a well-known
toxic gas related to several processes such as food spoilage [68]. We observed that the use of
different aptamer sequences in similar electrochemical sensors leads to different responses
in terms of electrochemical impedance vs. ammonium concentration. This behavior can
be explained by investigating the specific aptamer conformational changes in response to
NH,*. In particular, we used molecular dynamic simulations to correlate the experimental
data with the conformational change of the aptamers. Moreover, the high selectivity of the
proposed sequences to the positive target with respect to a set of negative experimental
targets (in particular, TMA and DMA) has been verified, demonstrating the robustness of
the used design. The Smart-SELEX method here proposed can be, in principle, applied to
any target molecule, extending the number of negative targets in order to obtain a high
selectivity toward multiple analytes. This method can help to accelerate and reduce the
cost of aptamer selection, moreover, it can improve the development of diagnostic tool kits
and point-of-care devices in terms of cost, time, and precision.

2. Materials and Methods
2.1. The Smart-SELEX Approach

Figure 1 displays a schematic diagram of the proposed in silico Smart-SELEX pipeline.
Machine learning, docking, and molecular simulations were used to predict the aptamer
sequence towards the specific targets (the workflow is described in (Supporting Note #1
and Schematic S1). In particular, a Deep Neural Network (DNN) algorithm was trained
using a data set of aptamer sequences selected from the literature considering only ap-
tamers isolated for small target molecules (molecular weight < 900.0 g/mol) such as these
reported aptamers [69-72] (Figure 1a). The size of the data set was 1456 (621 positives and
835 negatives) (Supporting Note #2 explains how the data was selected). Then, a random
library (candidate list) of 108 RNA sequences (each 27 nucleotides long) was generated
and the repeated RNA sequences were deleted to ensure that all the RNAs of this library
are unique (Figure 1b) (Supporting Note #3). Afterward, the candidate list was filtered
based on two conditions: (i) the free energy of the self-hybridized structures of the RNA
aptamer sequences being higher than —5 Kcal/mol and (ii) the RNA being folded with a
maximum number of 20 not bounded nucleotides [73] (Figure 1c) (Supporting Note #4).
Then, the trained DNN model was used to predict the binding state (yes or no) between
each candidate in the filtered random library and the target (NH4") (Figure 1b). Finally,
in order to obtain high selectivity towards the target molecule, the free binding energy
between the obtained sequences and the positive target is calculated and compared to the
same values obtained considering two negative target molecules (such as TMA and DMA).
The sequences with a high binding affinity towards NH;* and low binding towards the
negative targets were kept (Figure 1a).
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Figure 1. Predicting aptamer sequence using Smart-SELEX: (a) training the machine learning model
using data collected from the literature data, (b) generating the initial RNAs library (10%), (c) filtering
the sequences by calculating the free energy and increasing the number of the loops, (d) using the
machine learning model developed to predict the binding probability of each sequence with the
analyte and ranking them from high to low, (e) docking the sequences with the positive and negative
analytes and calculating the binding energy, and (f) the final aptamer with high affinity towards
the target.

2.2. Machine Learning Model
2.2.1. Data Processing

In our model, aptamer sequences were encoded using the one-hot encoding scheme
by assigning the codes {1000}, {0100}, {0010}, and {0001} to the nucleotides A, C, G, and U,
respectively. Then, the length of the input aptamers was set for all the data set at 100 base
which corresponds to the length of the longest aptamer extracted from the literature. For
the aptamers in the data set with a length below 82 bases, we modified the sequence
by adding null labels ($) in order to reach the desired length. For the target’s chemical
structure representation, the Molecular ACCess System (MACCS) fingerprint was used
to convert the molecular structure of the target to a binary vector that can be used as an
input for training the machine learning model. The MACCS fingerprint analyzes molecules
as a graph, thus, it gives information on the 2D-structural properties of the molecules.
RDKit V2 (Open-Source Cheminformatics Software, Landrum, G. 2010, www.rdkit.org/)
was used to extract the MACCS fingerprints from the raw SMILES of the targets which
represented each target molecule as a length of 166 binary vectors [74]. Then, a correlation
matrix was obtained considering the specific aptamer sequence for a target, both as binary
vectors. The binding affinity between the set of aptamer sequences and target molecules
has been defined with an additional label as “1” or “0” as a function of the reported affinity
from the literature (i.e., if a paper reports a specific sequence for a target molecule, we
assign 1 to the combination; in contrast, if the aptamer was demonstrated not to be able to
bind to the molecule we assign 0). Consequently, the machine learning process took into
consideration both positive and negative training data. This enabled us to get a procedure
for aptamer-target binding prediction. Finally, the data set was split into a training set and
test set, 80% and 20%, respectively.
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2.2.2. Model Architecture—Machine Learning

The model learns how a specific sequence can have more or less affinity towards
a specific family of targets and consequently enable us to predict affinity towards new
targets as in our investigated case (i.e., small molecules). In this approach, a machine
learning model was adopted to reduce the number of RNA candidates by predicting
the binding probability between the analyte and each RNA candidate. The molecular
weight of the small molecules considered here is <900.0 g/mol. These molecules include
heavy metals, antibiotics, toxins, ions, drugs, and molecular markers. The model has been
treated as a regression problem with the aim of predicting the binding or non-binding
state starting from the data obtained from the literature with a decision threshold of 0.5.
The Convolutional Neural Network (CNN) was used as a prediction model [75]. The
convolutional layers were obtained from the matrix of generated sequences and binary
vectors representing the selected small target molecules. The output of the convolutional
layers was used as input of the pooling layer with the aim of down-sampling the features
learned by the filters [76]. The output of the convolutional and pooling layers was fed to
the Fully Connected (FC) layers [77,78]. The CNN model was chosen due to the powerful
ability of the filters to extract the local dependencies in the inputs. Therefore, the number
and size of the filters affect positively the recognition patterns of the model (Supporting
Note #5 and Figure 52) [79,80].

The CNN prediction model adopted in our approach consisted of two separated
CNN blocks, one representing the aptamer sequences and the other representing the
target molecule fingerprints. This enabled us to learn representations of target molecules’
“MACCS fingerprints” (that represent the physicochemical properties) and how they relate
to the aptamers’ sequences. Each CNN block was composed of three one-dimension-
convolutional layers in series with several filters of 32, 64, and 96, respectively [81], which
were followed by the max-pooling layer. The extracted features were then concatenated and
used as inputs to the three FC layers block, where the first two FC layers have 1050 nodes.
To avoid the model over-fitting, the first two layers were followed by a dropout layer
(regularization technique) of rate 0.1 that set the activation of some of the neurons to 0 [82].
Finally, the last layer of 512 nodes was fed into the output layer (Figures 2 and S2).
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/7
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Figure 2. Deep Smart-SELEX model with CNN blocks to learn from aptamer sequences targets
MACCS fingerprints and physicochemical properties.
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2.2.3. Optimization of Hyperparameters

In the adopted deep learning model, different hyperparameters (shown in Table S3),
such as the number of filters, length of the filter size, the learning rate, dropout ratio,
and aptamer windows, were tuned by employing grid search five-fold cross-validation.
According to [83], to check the performance of the developed model, an independent
dataset and the following metrics were used: accuracy (Acc.), sensitivity (Sen.), precision
(Pre.), and specificity (Spe.):

e — TP+ TN
T TPYTN+EP+EN
Sen— 1P
~ TP+FEN
oo N
Pe = TN+ EP

TP
Pre=——+
T TP FP

where TN is true negative, TP is true positive, FP is false positive, and FN is false negative.

2.3. Preparing the Library File

Once the machine learning model was defined, the random (108) RNA sequence
library was generated by means of an R script. Each candidate in the library has a length
of 27 nucleotides. The choice for this length (27 nucleotides, i.e., about 6 nm) is related to
the limited sensing distance typically presented in electrochemical sensors (Debye length)
which will be used to experimentally prove the proposed method [72,84]. The Vienna RNA
package [85] was then used to evaluate the free energy of the secondary structure of the
proposed candidates. The free energy and the number of free nucleotides in the sequence
(not hybridized) were used to filter the candidates considering the following conditions:
free energy lower than —5 Kcal/mol and a maximum number of 20 nucleotides in a single
strand configuration (Supporting Note #4. Smart-SELEX for sequence design).

2.4. Docking

Docking is the final step in the proposed procedure of “smart”-SELEX. Once the set
of filtered RNA aptamer sequences was obtained from the previous steps, we made them
interact with the target molecule, i.e., NH4". To do so we used the Autodock Tools (ADT)
and AutoDock Vina program [86]. Before starting the docking process, polar hydrogen
atoms were added to the target and the aptamer molecules. Then the Gasteiger charges
were added, and the targets and the RNA aptamer files were converted into pdbqt format
using Chimera 1.14. The grid box coordination was (1, 50, and 10) with 128, 50, and
66 points in X, Y, and Z directions, respectively [87]. Moreover, to overcome the receptor
flexibility, the binding pocket was selected as a flexible part.

To reduce the docking time, a Message Passing Interface (MPI) scheme was imple-
mented [88]. After 10 runs of docking between the target and the aptamer, an average was
taken [55]. Finally, the candidates were ranked based on their binding free energies. A large
number of candidates (1896 candidates) were obtained from this procedure. Ranking them
by the function of the binding affinity towards the specific target investigated (here NH,")
and the negative targets (DMA and TMA) enables us to perform proof-of-concept sensing
experiments on a small number of candidates. In particular, we selected the first five
ranked sequences (other potential sequences obtained from the Smart-SELEX procedure
are reported in Supporting Note #6).

2.5. Materials and Reagents

Ammonium hydroxide, dimethylamine, trimethylamine, methanol, ethanol, propan-2-
ol (IPA), N(3-dimethylaminopropyl)N ethylcarbodiimide (EDC), 11-mercaptoundecanoic
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acid (11-MUA), N-Hydroxysulfosuccinimide sodium salt (NHS), potassium chloride (KCI),
potassium ferricyanide II trihydrate (K4[(Fe(CN)g] x 3H0O), and potassium ferricyanide
I (K3[(Fe(CN)¢] were obtained from Sigma Aldrich (Munich, Germany). All chemicals
used in this work are analytical grade and were used without any further purifications. The
aptamers with the amine group at the 5'-end were ordered from Biomers (Ulm, Germany).
Ink pastes, silver chloride ECI 1011, and silver ECI 6038E were purchased from LOCTITE
E&C (Bay Point, CA, USA). The polyethylene terephthalate (PET) flexible substrate with a
125-micron thickness was purchased from Mylar (Chester, VA, USA).

2.6. Fabrication of the Aptasensor

The top five aptamers that resulted from the Smart-SELEX approach were purchased
and used as biorecognition elements in the aptasensor for ammonium detection. The
sensors were fabricated by screen-printing (semi-automatic screen-printing machine -Aurel
C920-, Milan, Italy) the electrodes on a flexible polyethylene terephthalate (PET) substrate.
Figure 3a shows a schematic of a screen-printed flexible electrode, consisting of a silver (Ag)
Counter Electrode (CE), an Ag-working electrode (WE), and an AgCl reference electrode
(RE), with a total length of 22 mm and a width of 8 mm. The sensor was fabricated as
follows: firstly, CE, WE, and the lower half part of the RE were screen-printed and cured
at 120 °C for 15 min, afterward, the upper half of the RE was screen-printed using the
AgCl ink. Finally, the electrodes were passivated with a screen-printed dielectric layer in
order to contain the electrolyte droplet to ensure a reproducible working area size. After
that, the electrodes were ultrasonically cleaned in IPA and then ultrapure water for 3 min
5 min, respectively. After that, the Ag working electrodes were immersed in 1 mM 11-MUA
for 24 h to form the SAM-COOH layer. The 11-MUA has a thiol group on one side and a
carboxylic group on the other side, where the terminal -SH group of 11-MUA was attached
to the Ag electrode, leaving a free carboxylic group to be attached covalently with the amine
group at —5' end of the aptamers. Furthermore, 8 pL of 1 pM aptamers, 300 mM EDC, and
35 mM NHS pH 7.0 were drop-casted on top of the working electrode and air-dried for 2 h.

b c d

unibz

Aptamer immobilization Final Aptasensor Testing

Figure 3. Fabrication flow of aptasensor. (a) Screen printing of electrodes, (b) immobilization of the
aptamers using a self-assembled-monolayer, (c) final aptasensor cover by a PDMS chamber, and

]3—/4—

(d) testing of the performance of the aptasensor by using [Fe (CN)g as an electrolyte.

2.7. Electrochemical Measurements

VersaStat 4 potentiostat galvanostat (Princeton applied research, Ametek scientific
instruments, Oak Ridge, TN, USA) controlled by VersaStat studio was used for all cyclic
voltammetry (CV) sweeps. The working area (CE, WE, and RE) was covered with 50 pL of
1 mM [Fe (CN)g]?~/4~ containing 0.1 M KCI + 3 mM Mg2+ (MgCly) in PBS buffer, while the
measurements were performed with a scan rate of 100 mV /s and a scan potential between
—0.8 to 0.8 V. Electrochemical impedance spectroscopy (EIS) measurements were performed
in a frequency range of 10 mHz-1 MHz, an AC amplitude of 50 mV and a sampling rate of
60 points using [Fe (CN)g]>~/4~ as an electrolyte. The aptamers affinity values (Kd) values
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were also calculated by nonlinear regression analysis from the calibration curve (employing
the Langmuir-Hill equation).

2.8. Chemical Analysis

Infrared spectra were obtained with a Fourier Transform Infrared Spectrometer (Inve-
nio FTIR, Bruker, Billerica, MA, USA) using a diamond crystal. The spectra were recorded
in the range of 500-4000 cm !, and a resolution of 4 cm ™.

2.9. Molecular Dynamics Simulations

The MD simulations of the NH,*-aptamer interaction were performed in Gromacs
using the AMBER99SB-ildn force field. The aptamer was placed in the center of a water
box of suitable dimensions according to the size of the different aptamers, then NH;* was
inserted into the box, with a distance between the box and the surface of the aptamer of 1 A.
Afterward, water molecules of the TIP3P model and Na+ ions for charge neutrality were
inserted into the box. AmberTools in Gromacs was used to generate the analytes topology
files. By applying the steepest descent algorithm and considering periodic boundary condi-
tions (PBC) in all directions, energy minimization was performed. Then, the systems were
equilibrated in NVT (where the constant number (N), volume (V), and temperature (T), re-
spectively) and NPT (constant number (N), pressure (P), and temperature (T), respectively)
and assembled with a time step of 2 fs for 100 ps. Finally, the simulation was performed at
a pressure and temperature of 1.01 atm and 294 K for 100 ns, respectively. The equilibrated
system was simulated in the NPT ensemble for 10 ns 82.

The molecular dynamic simulations were performed with Intel(R) Xeon(R) W-2255
CPU @ 3.70 GHz (Intel Corporation, Santa Clara, CA, USA) and the GPU NVIDIA Quadro
RTX 4000 (Nvidia Corporation, Santa Clara, CA, USA) with Ubuntu 18.04. LTS. Gro-
macs tools were used to analyze the trajectories (e.g., Radius of gyration, RMSD) of the
MD simulations.

3. Results
3.1. Smart-Selex

The machine learning stage employed in this work enabled the improvement of the
design of aptamer sequences, reducing the number of candidates, and hence, decreasing the
computational time required by docking and molecular dynamic simulations. As previously
mentioned, the adopted CNN prediction model consisted of two separated CNN blocks,
one representing the aptamer sequences and the other representing the target molecule
fingerprints. Figure 2 shows the general workflow of the aptamer sequence and target one-
hot encoding, cross-validation, and final training. Grid search cross-validation was used
to tune the hyperparameters of ‘DeepSelex’, as follows: first, a grid of hyperparameters
was created containing a wide range of values, then five-fold cross-validation was used
to evaluate the model performance. The model performance before and after tuning the
hyperparameter was evaluated in terms of different metrics. The model before tuning had
an Acc:0.804, Spe:0.816, Sen: 0.812, and Pre: 0.808, however, these metrics after tuning were
improved with an Acc: 0.835, Spe: 0.829, Sen: 0.845, and Pre: 0.831. The selected values
of hyperparameters for DeepSelex are summarized in Table S3. Moreover, by increasing
the hidden neuron size to more than three layers we obtained an over-fitting. Hence, the
number of layers was set to three with 1024 neurons for the first two layers and 512 for
the third layer, respectively. The training performance of this model was measured as
categorical cross-entropy loss. After 25 epochs, an average validation loss of 0.71 &£ 0.08
was obtained, hence, the number of epochs for training the model was set at 25. The final
optimized model with the best performance was saved and used for predicting the binding
probability of the RNA candidates towards NHy4*.

Table 1 reports the top five sequences obtained from the proposed Smart-SELEX
method with the binding energy towards NH4*, DMA, and TMA. As discussed in the
method section and reported in detail in SI, the procedure comprises three successive steps
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of computation: (i) initial sequence library selection and filtering; (ii) machine learning-
based prediction of binding towards target molecules; and (iii) docking (Figure S3 shows
the evolution of the number of RNA candidates). The first step, namely the filtration of
candidates based on the free energy of the self-hybridized structures and a maximum
number of 20 nucleotides in a single strand configuration, enabled the reduction in the
number of RNA sequence candidates from 10® down to 10° potential sequences. Afterward,
10° 4 71,992 candidates (average of three runs) were fed into the machine learning model
to predict the binding probability with a threshold of 0.5; this step reduced the number of
RNA candidates to 38,327 &= 1099 potential candidates. Finally, positive docking (towards
NH,4 ") was performed on the 38,327 RNA candidates; 1896 + 71 RNA candidates passed
this step, then negative docking (towards TMA and DMA) was performed on the 1896 RNA
candidates. At the end of the process, it was possible to select a few candidates with
binding energy towards the target (NH;*) in the range between —9.85 and —6.6 Kcal/mol.
To note, the docking procedure allows for selection among sequences with a good affinity
towards NH4 " and at the same time with a bad affinity towards the other tested targets
(not desiderated analytes—TMA and DMA) (shown in Figure 54). Moreover, Supporting
Note #7 shows the required time for each step in the Smart-SELEX approach.

Table 1. Top five candidates selected by the Smart-SELEX.

Binding Binding Binding
Energy Energy Energy Kd Detection Limit of
Rank Candidate Sequences (kcal/mol) (kcal/mol) (kcal/mol) (mM) Range Detection
NH4" from DMA from TMA from (mM) (mM)
MDS MDS MDS

Aptamer 1 ~ CCAUGUAAGCGCGGUACUCUUACGUGA  -9.85 -3.8 —3.21 36.59 1-1000 0.08
Aptamer2  UCGCGUCUAGCCCAUUGAUAGGCCCGA  —9.67 —4.46 —3.53 16.11 1-500 0.37
Aptamer 3 ~ UCCACGUGGUGCCAUACUCCGGCGUGG  —9.37 —5.26 —4.21 131 1-1000 0.61
Aptamer4 CCUCUCAGGCUUGUACUGCCACGAGGA  —8.66 —4.86 —4.78 6,6 1-500 0.40
Aptamer 5 GCCCUGGGCCGCUCAUUCCCUCUGGCU —8.31 —5.02 —5.43 50 1-500 0.16

3.2. Aptasensor Performance

The five aptamers were tested for sensitivity and selectively towards NH;" by using
a simple electrochemical sensor functionalized with the designed aptamer sequences. A
direct comparison between the selected sequences and a random “control” sequence from
the initial candidate list was also done by using an additional control sensor.

To monitor the fabrication process of the aptasensor and to confirm the proper immobi-
lization of the aptamers on the surface of the electrode, two electrochemical techniques (EIS
and CV) were applied to investigate the change induced by the aptamer’s immobilization
on the WE in terms of electrode surface resistance and electron transfer rate. Moreover,
FTIR was performed after the addition of 11-MUA and immobilization of the aptamers to
monitor the chemical bonding formation. The results of this characterization can be seen in
Supporting Note #8.

The sensitivity of the developed aptasensor was evaluated with various concentrations
of NH4" in water at a pH close to 7. Figure 4 shows the relative impedance modulus

|Z|. defined as |ZI; — |Z1y/1Z1( of the aptasensor’s responses to different target

concentrations (from 1 mM up to 500 mM), where |Z1 is the impedance modulus of
the blank solution for each device and | Z ¢ is the final impedance modulus after 15 min
incubation with the desired target concentration taken at the modulus at 5 Hz. To note, at
the used pH, ImM of ammonia dissolved in water can be an indirect measure of ammonium
in the gas phase at concentrations below 1 ppm [68]. As can be observed in Figure 4, the
impedance modulus change exhibits a good linear correlation with the logarithmic value
of the target concentration for the tested aptasensors. The correlated linear equations of the
aptasensors are reported in Table 2.
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Figure 4. (a—f) Sensors’ response vs. Log ammonium concentrations for the five aptamers obtained
from the Smart-SELEX. Comparison with a Control random sequence. N = 3 samples. (a) Control
aptamer, (b) aptamer 1, (c) aptamer 2, (d) aptamer 3, (e) aptamer 4, and (f) aptamer 5.

Table 2. Linear equations of the aptasensors.

Aptamer nr. VAR Paerson’s r

Control (Random sequence) (—0.01) x logC +0.01 0.978
Aptamer 1 (Aptl) (—1.30) x logC +3.96 0.995
Aptamer 2 (Apt2) (0.632) x logC + 0.098 0.99
Aptamer 3 (Apt3) (—0.416) x logC + 1.838 0.987
Aptamer 4 (Apt4) (0.106) x logC + 0.151 0.983
Aptamer 5 (Aptd) (—0.26) x logC +1.27 0.968

As shown in Figure 4a, the sensor functionalized with an aptamer with a random
sequence (control) showed no significant change in the responses of the device towards the
target. In contrast, the measurements performed using the five selected sequences (aptamer
candidates) presented good linear responses in the explored range of concentrations. It is
very important to note that significant differences were obtained from the different sensors.
In particular, while the sensors functionalized with Aptl, Apt3, and Apt5 (Figure 4b,d,f)
show a decreasing | Z | as a function of increasing NHy* concentration, the sensors that
used Apt2 and Apt4 (Figure 4c,e) show the opposite behavior. In order to explain these
phenomena, we need to consider the working principle of an aptamer-based electrochemical
sensor. As previously demonstrated [89,90], the change in impedance is due to different
aptamers’ conformational change (Figure S7). In the presence of the analyte, the aptamer
undergoes a conformational change that can extend or shorten its length. Consequently,
it can get more distant or closer from the surface of the electrode. Hence, the behaviors
observed experimentally can be reasonably due to some different conformational responses



Biosensors 2022, 12, 574 11 of 18

of the aptamers used during the interaction with the target molecule. Considering the
effect of a negatively charged molecule (aptamer) on the Z value, we hypothesized that
Aptl, Apt3, and Apt5 get farther from the working electrode, in contrast, Apt2 and Apt4
get closer when interacting with NH4*. To confirm this hypothesis, we performed a set of
MD simulations and calculated the gyration radius (Rg) values which give us information
on the elongation/conformation change of the aptamers in the absence and presence of
the analyte.

3.3. Molecular Dynamic Simulation

Figure 5 illustrates the gyration radius (Rg) of the different aptamers as obtained from
the molecular dynamic simulations performed for 10 ns. The duration of the MDS was
chosen based on the RMSD plot (Figure S8), as can be observed, a simulation of 10 ns was
enough for the system to reach a stable state.

0.0
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Figure 5. (a—f) The radius of gyration (Rg) for the different aptamers with (blue) and without
(orange) the target molecule (NH4*); (a) Control aptamer, (b) aptamer 1, (c) aptamer 2, (d) aptamer 3,
(e) aptamer 4, and (f) aptamer 5.

As it can be observed, while the aptamers are rather stable in conformation before the
interaction with the target molecule, all the designed molecules change their conformation
once NHy* is included in the simulation. Figure S9 shows the 3D structure of Aptamer1 ex-
tracted at the end of the MDS simulation, illustrating the various components of aptamers.
According to the diagram, the binding site is located at the stem-loop (or hairpin loop).
Therefore, the ammonia molecule was interacting and binding with the stem-loop. The
observed conformational changes were in good agreement with the experimental results.
Indeed, Aptl, Apt3, and Apt5 (Figure 5b,d,f) showed an increasing value of Rg in response
to NH4", demonstrating a less compact structure in the presence of the target. This is a
clear indication of a conformational change and a consequent different distance from the
surface of the electrode [72,91,92]. In fact, the curves reported in Figure 4b,d,f for these three
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aptamers show that the impedance changes decreased when the concentration of ammo-
nium increased. A complementary effect can be observed for Apt2 and Apt4 (Figure 5c,e),
in these cases, the Ry decreases once NH4 " interacts with the aptamer sequences. This
suggests that the observed results from the experimental electrochemical measurements
are related to this different behavior of the functional molecule [92,93]. To note, the random
sequence used in our experiment does not change its conformation (Figure 5a) during the
interaction with NH4*, hence confirming the quality of the designed sequences.

Moreover, to better confirm the binding site, the Root Means Square Fluctuation
(RMSF) of the best performing aptamer (Aptamerl) in the absence and presence of the
analyte was also calculated. RMSF is used to evaluate the flexibility and the fluctuation of
atoms. The RMSF was calculated for the 100 ns trajectory of Aptamerl- NHy* (Figure S10).
The bases (nucleotides) of the Aptamer1 binding site (binding pocket) are C12-C19. The
RMSF values for the single bases were decreased in the absence and presence of ammonia
which is an indication of a formation of a rigid binding site.

3.4. Selectivity

The final aspect to be considered and verified in our method regards the ability of the
proposed sequences to selectively detect the target molecule with respect to other molecules
considered during the computation optimization. This is a major aim in the smart design of
aptamer sequences for sensing. Indeed, during the computational optimization, interfering
molecules were considered, dimethylamine and trimethylamine, in particular, that react
with NHj3 as major contaminants in food spoilage [94,95]. In order to verify that the
developed devices are highly selective toward the specific target, experimental tests were
performed on the selected aptamers. Figure 6 shows the results, where methanol and
ethanol have also been included in the analyses. These two additional molecules are known
to be involved during food spoilage processes, similar to NHz, TMA, and DMA [96]. As
expected, the different aptamers were detected with different sensitivity to the target and
non-target analytes (DMA, TMA, methanol, and ethanol). While the non-selectivity to
NH,* in the case of the control aptamer (Figure 6a) is clear, with the five sequences obtained
from our design method the sensitivity towards NH* was always significantly higher with
respect to the other analytes. In particular, for Aptl, Apt2, and Apt3 (Figure 6b-d), the 1Z 1.
measured with NH4" were about 15 times the values obtained with TMA and DMA. This
is not the case for Apt4 and Apt5 (Figure 6e,f) where the performance in terms of selectivity
was decreased. Notably, the set of sequences obtained from the Smart-SELEX was ranked
in agreement with a binding affinity towards the three analytes, so we can expect that only
the top sequences show very good performances (in our case, the top three). In all the cases,
the aptamers were only partially selective towards methanol and ethanol. This is partially
justified since, during the Smart-SELEX process, methanol and ethanol were not taken into
consideration (only TMA and DMA were considered), hence, by including more positive
or negative targets the selectivity can be improved and we can also tune the aptamer
based on the desired application. Moreover, the aptamers were more sensitive toward
methanol than ethanol and this may be due to the high solubility of methanol compared
to ethanol and ammonia, with Henry’s law solubility constant of 230 (mol x kg~! bar~1),
190 (mol x kg~! bar~!), and 59 (mol x kg~! bar~1), respectively [97]. Moreover, the low
selectivity of Apt4 and Apt5 was further explored. It is hypothesized that Apt4 and Apt5
possessed more than one binding site, allowing the TMA and DMA to bind. Therefore,
we examined the secondary structure of the five aptamers (Figure S4) which revealed that
Aptl, Apt2, and Apt3 have only one binding site. In contrast, APT4 and APT5 have two
binding sites, which might enable TMA and DMA to bind. In order to confirm this, the
binding site of TMA on APT4 and APT5 was investigated in terms of MDS. As depicted
in Figure 512, TMA is bound to the second pocket rather than the first that ammonla is
bound to. Additionally, the fact that APT4 and APT5 had a lower ranking indicates that
the machine learning model learned that the presence of more than one binding site affects
the selectivity of an aptamer.
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Figure 6. (a—f) Selectivity test for the detection of ammonium. (a) Control aptamer, (b) aptamer 1,
(c) aptamer 2, (d) aptamer 3, (e) aptamer 4, and (f) aptamer 5. The concentrations of ammonium and
non-target chemicals were 100 uM. Data are expressed as means =+ SE; Statistical significance was
assessed with a two-way ANOVA with Dunnett’s multiple comparison test for ammonium and other
analytes, * p < 0.5, ** p < 0.05, ** p < 0.0001, ns—not significant.

4. Conclusions

In summary, this paper demonstrated that an in silico approach for aptamer selection
towards small organic molecules targets is a feasible and promising strategy. We named
this method Smart-SELEX, as it represents an improvement over the conventional SELEX
process and can be completely performed in silico. The computational method illustrated
here allowed the design of specific oligo sequences with optimized binding energy towards
a set of targets (positive and negative). Although only three molecules were considered dur-
ing the optimization, namely, NHs*, DMA, and TMA, the method allows for the inclusion
of more positive or negative targets in order to improve the selectivity and tune the aptamer
based on the application. As expected, the different aptamers used in our experiments had
different responses to the analyte. By using electrochemical measurements, it has been
possible to investigate the conformational changes of the used aptamers by combining
experimental measurements with molecular dynamic simulations. The selectivity has been
verified towards the analytes considered during the optimization of the design. The use of
two additional analytes suggested that, in order to obtain high selectivity, more molecules
must be considered in the in silico process. Our work shows that the Smart-SELEX ap-
proach could hold the keys to overcoming the drawbacks of the traditional SELEX process
in terms of time, cost, and the feasibility to isolate aptamers for sensing by employing
bioinformatics, machine learning, and a rational design. Future work would be to increase
both the number of positive and negative targets and the candidates’ library from 108 to
10'° to cover all the possible sequences. These may improve the performance of the selected
aptamers to be used in multiple aptasensors in nanoscale devices such as single-molecule
detectors and nanopores. Finally, building a pipeline to make the approach automatic will
improve the performance in terms of accuracy and speed by reducing human intervention.
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The proposed method can be, in principle, extended to different families of targets, such
as proteins, viruses, etc. As is well known, in the development of a diagnostic tool for a
specific target, a biorecognition element (antibody or aptamer) is needed. The isolation
of antibodies or aptamers can take days or even months and it is an expensive process.
A smart in silico method makes this development less expensive, in fact, the approach
proposed in this work has almost zero cost except for the computational power.

Supplementary Materials: Details on the machine learning model, experimental procedure, and
aptasensor characterization. The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/bios12080574/s1, Supporting Note #1. Smart-SELEX workflow,
Schematic S1. Smart-SELEX workflow, Supporting Note #2. Preparing the positive and negative data,
Table S1. An example of positive and negative data was collected from the literature, Supporting
Note #3. Generation of RNA candidates, Supporting Note #4. Smart-SELEX for sequence design,
Table S2. The free energy secondary structure of RNA aptamers binding different ligands, Figure S1.
3D structure of aptamerl extracted from molecular dynamic simulation, Figure S2. Deep-selex model
structure, Table S3. selected values of hyperparameters for DeepSelex, Supporting Note #6. Docking,
Table S4. Top 10 candidates sequences, Supporting Note #7. Required time, Figure S3. Evolution of
the number of RNA candidates through the Smart-Selex approach, Figure S4. The secondary and
tertiary structures of five top aptamers, Supporting Note #8. Sensor characterization, Table S5. The
sequences of the aptamers and their modifications, Figure S5. (a) Cyclic voltammogram curves, and
(b) EIS spectra of the stepwise modified electrode in 1 mM [Fe (CN)6]3*/ 4= an aqueous solution
containing 0.1 M KCl: bare (in blue), (b) bare-aptamer (in orange), Figure S6. IR spectra of the stepwise
modified electrode, Figure S7. different conformational changes of the aptamers and the effect on the
electron transfer charge (ETR). (A) after the interaction with the analyte the aptamers become less
compact and bend far from the surface of the working electrode hence, increasing the ETR. (B) after
the interaction with the analyte the aptamers undergo a conformational change and bend closer to the
surface of the working electrode hence the ETR decreases, Supporting Note #9. Molecular Dynamics
Simulation, Figure S8. RMSD values of aptamer1, aptamer2, and aptamer3, Figure S9. 3D structure
of aptamer] interacted with Ammonia extracted from molecular dynamic simulation, Figure S10.
RMSF of aptamer I atoms during 25 ns MD simulation. RMSF comparison between Aptamer (orange
line) and Aptamerl + NH4 " (blue line), Figure S11. 3D structure of 5 top aptamers interacted with
Ammonia extracted from molecular dynamic simulation. (a) aptamer1, (b) aptamer2, (c) aptamer3,
(d) aptamer4, (e) aptamer5, Figure S12. 3D structure of (a) aptamer4 and (b) aptamer5 interacted with
TMA, Supporting Note #10. Sensors regeneration and stability, Figure S13. The change in Aptasensor
1 response after different cycles of regenerations (detecting 100 mM of ammonia), Figure S14. The
stability of aptasensor 1 overtime (detecting 100 mM of ammonia), Supporting Note #11. Detection of
real sample, Table S5. NH4+ detection in a real sample.
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