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BACKGROUND COVID-19 infection carries significant morbidity and mortality. Current risk prediction for complications

in COVID-19 is limited, and existing approaches fail to account for the dynamic course of the disease.

OBJECTIVES The purpose of this study was to develop and validate the COVID-HEART predictor, a novel continuously

updating risk-prediction technology to forecast adverse events in hospitalized patients with COVID-19.

METHODS Retrospective registry data from patients with severe acute respiratory syndrome coronavirus 2 infection

admitted to 5 hospitals were used to train COVID-HEART to predict all-causemortality/cardiac arrest (AM/CA) and imaging-

confirmed thromboembolic events (TEs) (n¼ 2,550 and n¼ 1,854, respectively). To assess COVID-HEART’s performance in

the face of rapidly changing clinical treatment guidelines, an additional 1,100 and 796 patients, admitted after the

completion of development data collection, were used for testing. Leave-hospital-out validation was performed.

RESULTS Over 20 iterations of temporally divided testing, the mean area under the receiver operating characteristic

curve were 0.917 (95% confidence interval [CI]: 0.916-0.919) and 0.757 (95% CI: 0.751-0.763) for prediction of AM/CA

and TE, respectively. The interquartile ranges of median early warning times were 14 to 21 hours for AM/CA and 12 to

60 hours for TE. The mean area under the receiver operating characteristic curve for the left-out hospitals were 0.956

(95% CI: 0.936-0.976) and 0.781 (95% CI: 0.642-0.919) for prediction of AM/CA and TE, respectively.

CONCLUSIONS The continuously updating, fully interpretable COVID-HEART predictor accurately predicts AM/CA and

TE within multiple time windows in hospitalized COVID-19 patients. In its current implementation, the predictor can

facilitate practical, meaningful changes in patient triage and resource allocation by providing real-time risk scores for

these outcomes. The potential utility of the predictor extends to COVID-19 patients after hospitalization and beyond

COVID-19. (JACC Adv 2022;1:100043) © 2022 The Authors. Published by Elsevier on behalf of the American College of

Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

AM/CA = all-cause mortality/

cardiac arrest

AUROC = area under the

receiver operating

characteristic curve

CV = cardiovascular

ICU = intensive care unit

ML = machine learning

SARS-CoV-2 = severe acute

respiratory syndrome-

coronavirus-2

TE = thromboembolic events
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P atients with COVID-19, the disease
caused by the severe acute respiratory
syndrome-coronavirus-2 (SARS-CoV-

2), often present with cardiovascular (CV)
manifestations such as myocardial infarc-
tion, thromboembolism, and heart failure.1

Clinically overt cardiac injury or cardiomyop-
athy is reported in 8% to 33% of hospitalized
patients2,3 and is associated with up to 50%
mortality,4 but imaging studies suggest the
true incidence of cardiac involvement in all
persons infected with SARS-CoV-2 could be
as high as 60%.5 Thromboembolic events
(TEs) are also frequently reported in severe
COVID-19 and are associated with mortality; 1 study
found that 70.1% of nonsurvivors and 0.6% of survi-
vors met criteria for disseminated intravenous coagu-
lation.6 Furthermore, thromboembolic complications
are more pronounced in acute COVID-19 infection
than in other viral illnesses and include pulmonary
embolus and ischemic stroke, which can be fatal and
are a significant cause of morbidity even as the infec-
tion resolves.7 Despite the prevalence of thromboem-
bolism and cardiac injury and their associations with
poor outcomes,2,6,8 no approach currently exists to
forecast these types of adverse events in COVID-19
patients in real time.

Machine learning (ML) techniques are ideal for
discovering patterns in high-dimensional biomedical
data, especially when little is known about the un-
derlying biophysical processes. ML is thus well posi-
tioned for applications in COVID-19 and indeed has
been employed in screening, contract tracing, drug
development, and outbreak forecasting.9,10 ML ap-
proaches have been developed for prognostic
assessment of hospitalized patients with COVID-19,
including models that predict in-hospital mortal-
ity,11-16 progression to severe disease,13,17-20 and out-
comes related to respiratory function.9,14,21 A
continuous remote monitoring system has been
developed and validated,22 but it is designed for
outpatient use and does not include laboratory test
results. An ML model was also proposed for predic-
tion of TEs, but it required that all variables be pre-
sent for all patients, did not provide dynamic risk
updates, and was trained with data from only
76 patients.23

In this study, we develop and validate a prognostic
ML model to forecast the real-time risk of all-cause
mortality/cardiac arrest (AM/CA) and TEs in hospi-
talized patients with COVID-19. We term the model
the COVID-HEART predictor. We focus on predicting
2 clinically important outcomes in COVID-19: in-hos-
pital AM/CA and TEs. In-hospital AM/CA is a clearly
identifiable outcome and is often CV-related, thus it
was selected for proof-of-concept to demonstrate the
potential utility of COVID-HEART. TEs are more
difficult to identify and require imaging confirmation;
thus, this outcome was selected to demonstrate the
versatility of COVID-HEART in analyzing real-world
clinical data and handling disease-specific out-
comes. Finally, the predictor is tested in 2 different
ways. First, it is tested with data from patients hos-
pitalized after the end of data collection for patients
in the development set, to ascertain that COVID-
HEART can accurately predict risk in real time for
new patients in the face of rapidly changing clinical
treatment guidelines. The predictor is next tested
with leave-hospital-out nested cross-validation to
assess its performance when training and testing are
done with data from different populations.

MATERIALS AND METHODS

PATIENT POPULATION. The COVID-HEART predictor
was developed and validated in a retrospective cohort
study approved by the Johns Hopkins University
Institutional Review Board on May 21, 2020, under
the protocol number IRB00249548: Prediction of
Cardiac Dysfunction in COVID-19 Patients Using Ma-
chine Learning. The COVID-HEART study included
adult patients (age $18 years at the time of COVID-19
diagnosis) admitted as inpatients to any of the
following hospitals in the Johns Hopkins Health Sys-
tem: Howard County General Hospital, Suburban
Hospital, Sibley Memorial Hospital, Johns Hopkins
Bayview Medical Center, and Johns Hopkins Hospital.
Patient data were collected in the retrospective
COVID-19 Precision Medicine Analytics Platform
Registry (JH-CROWN). For data from an admission to
be included in this study, patients must have had
SARS-CoV-2 infection confirmed by polymerase chain
reaction within 14 days prior to the date of admission
or during the admission. The minimum length of time
from admission to discharge or death was 4 hours for
AM/CA prediction and 72 hours for prediction of TEs,
the difference being necessitated by the time granu-
larity with which each outcome could be identified.
Data were censored at the time of outcome
or discharge.

Additional exclusion criteria were applied for pre-
diction of each outcome separately. Patients were
excluded from TE prediction if they experienced an
imaging-confirmed TE or were suspected of
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experiencing a TE immediately prior to admission,
which was diagnosed on admission or within 24 hours
of admission. For prediction of AM/CA, patients were
excluded if they experienced cardiac arrest with re-
turn of spontaneous circulation immediately prior to
admission or if the arrest was precipitated by an event
not related to disease severity. These exclusion
criteria mean that the scope of the predictor is limited
to new, in-hospital events.

For prediction of both outcomes, patients were not
excluded based on treatments received, disease
severity, need for intensive care, missing clinical
variables, or any other reason not listed. Although
excluding patients for these reasons may have
improved the ML models’ performance, this would
have resulted in a “clean” cohort not representative
of real clinical data, making the risk predictor less
useful in a real-world clinical setting. Outcome defi-
nition is discussed in Supplemental Methods.

MODEL SPECIFICATION. Figure 1 presents a schematic
of the COVID-HEART continuously updating risk
predictor. The transparent reporting of a multivari-
able prediction model for individual prognosis or
diagnosis (TRIPOD) guidelines for development,
validation, and presentation of a multivariable pre-
diction model24 were followed here (Supplemental
Table 1). The model uses a selection of features
extracted from up to 127 different clinical data inputs
(shown schematically in Figure 1A and presented in
detail in Supplemental Table 2), some of which are
associated with CV complications in COVID-19 and in
other severe respiratory illnesses and others with
general physiologic function. To avoid bias, variables
that were directly impacted by a physician’s assess-
ment of the patient’s condition, such as the fraction
of inspired oxygen set on a mechanical ventilator, are
excluded. Definition of these predictors, how they
were measured, and algorithmic preprocessing steps
undertaken prior to dynamic feature extraction are
provided in Supplemental Methods. No manual ad-
justments were made to raw clinical data, and algo-
rithmic preprocessing steps were designed to apply
the minimum necessary “corrections” to the raw
clinical data inputs to ensure our development and
validation data sets were realistic and that our model
could be applied in a real-world clinical setting. Pre-
processing steps included removal of features which
were missing for >60% of time windows, mean value
imputation for missing numerical features, and
scaling all numerical features to zero mean and
unit variance.

The COVID-HEART predictor was trained to esti-
mate the probability that a patient will experience a
particular event within a set number of hours
(outcome window) after any point during the pa-
tient’s hospitalization. It used static variables (de-
mographics and comorbidities) and dynamic clinical
data collected during time periods of markedly
different duration prior to the time point of predic-
tion. Dynamic features were calculated from the
processed time-series clinical data inputs as illus-
trated in Figure 1B. Each time point was assigned a
binary outcome label indicating whether the patient
experienced the outcome of interest in an “outcome
window” following the time point. Figure 1C sche-
matically shows an array of processed data for a pa-
tient who experienced an adverse CV event. The
outcome window for prediction of TEs was 24 hours
as this was the minimum interval in which outcomes
could be identified. Two hours was selected as the
outcome window for prediction of AM/CA based on
practical clinical considerations—this would provide
health care personnel sufficient time for intervention
if indicated. Multiple classifier configurations were
investigated for prediction of each outcome, 2 linear
and 1 nonlinear, detailed in Supplemental Methods.

CLASSIFIER DEVELOPMENT, OPTIMIZATION, AND

TESTING. Eligible patients were divided into devel-
opment and test sets according to the date of their
first admission. The cutoff date was selected such
that the development set for each outcome included
70% of eligible patients. Patients in the development
set for prediction of AM/CA were admitted between
March 1, 2020, and November 6, 2020; patients in the
test set were admitted between November 7, 2020,
and January 8, 2021. The cutoff date for prediction of
TEs was November 5, 2020. Data collection ended on
the respective cutoff dates for each set.

Classifier development began with 5-fold stratified
patient-based cross-validation using the develop-
ment set. We repeated this 20 times for each of the
classifier configurations, each time progressively
reducing the number of patients used for training and
optimization from the full development set by mov-
ing the end cutoff date back 1 week (eg, November 6,
October 30, October 23). At no point did the reduced
training set include any patients from the separate
test set. Hyperparameters were optimized through
cross-validation with a Bayesian hyperparameter
search strategy, and the optimal classifier configura-
tions were selected based on the aggregated cross-
validation area under the receiver operating charac-
teristic curve (AUROC).

Following training and cross-validation of each
classifier configuration for prediction of each
outcome with the development set, the optimal
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FIGURE 1 Schematic Overview of COVID-HEART Study

(A) Time-series clinical data used as input. Data shown here are representative and do not correspond with the risk score shown in D. (B)

Dynamic features preprocessing with sliding time windows. Relative intensity levels within the 3 feature windows represent the weighting of

values at each time; darker colors indicate higher weight. (C) Combined features. For each time window, the processed dynamic features are

combined with static features including demographics and comorbidities. Outcome labels are assigned per-window. (D) Continuously-

updating risk score. The COVID-HEART predictor provides a risk score (probability) for a given outcome in the K hours following a given time

point. Shown is a sample risk score for a patient that experienced an event: green indicates a low risk score; yellow indicates a risk score

within a predetermined range of a threshold value, and red indicates that the patient is at high risk for an event in the following K hours.
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FIGURE 2 Participant Flow Diagram for Retrospective Study of COVID-HEART

Inclusion and exclusion criteria were applied separately for prediction of each outcome. The data were then temporally divided into development and test sets as

shown. AM/CA ¼ all-cause mortality/cardiac arrest.
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classifier configuration was trained on the full
development set and used to predict the time-series
risk of each event for each patient in the respective
temporally divided test set. A binary prediction was
also made at each time point using the optimal
threshold determined by the development data dur-
ing training. Model performance was assessed by the
following metrics: accuracy, balanced accuracy,
sensitivity, specificity, and AUROC. As a secondary
analysis, the number of time windows predicted
positive for patients who eventually experienced
events and for patients who did not were compared.
Additional analyses to investigate the effects of
missing features and the frequency of new clinical
data measurements on testing performance were also
performed.

Testing was repeated to obtain a 95% confidence
interval for each testing performance metric using the
final optimized model from each of the 20 iterations
of cross-validation. To maintain the temporal nature
of the development-test split, we selected an end
cutoff date for the test set such that the development
and test sets contained 70% and 30% of patients in
the reduced data set, respectively. The earliest train-
test cutoff date was June 25, 2020; we did not move
the train-test cutoff beyond this date to ensure there
were enough data to train the predictor. Since there
were few events for each outcome, repeating the
train-test split in this way provided an accurate esti-
mate of the models’ cross-validation performance
and performance on a temporally separate test set. All
test patient example predictions and data describing
the characteristics of the development and testing
sets were generated using the model trained with the
full development and testing sets (March 1, 2020, to
January 8, 2021).

Finally, to assess the predictor’s performance
when trained and tested with data of patients from
different populations, we performed leave-hospital-
out validation. This is justified by the fact that each
of the 5 hospitals in the study has different charac-
teristics and serves a different patient population
(Supplemental Table 3). Leave-hospital-out valida-
tion was performed by removing all patients admitted
to 1 of the 5 hospitals in the study, repeating the
model training and optimization process using data
from patients admitted to the remaining 4 hospitals,
and testing the optimized model with data from

https://doi.org/10.1016/j.jacadv.2022.100043
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patients admitted to the left-out hospital. If a patient
was transferred between hospitals or had multiple
admissions to different hospitals, their admission to
the left-out hospital was used in testing, and the rest
of their data were removed from the training data set.

RESULTS

In total, 3,650 patients met eligibility criteria for
prediction of AM/CA; 1,100 (30.1%) were assigned to
the test set according to the date cutoff. In addition,
2,650 patients met eligibility criteria for prediction of
TEs; 796 (30.0%) were assigned to the test set.
Figure 2 shows the flow of patients through the study.
Supplemental Tables 4 and 5 provide demographic
and clinical comparisons between patients who did
and did not experience each outcome and between
the development and test sets. Overall, 402 out of
3,650 patients (11.0%) experienced AM/CA, 26 of
whom had subsequent return to spontaneous circu-
lation. Of these, 18 occurred in the intensive care unit
(ICU), 3 occurred in a non-ICU inpatient unit, 4
occurred in intermediate care/stepdown, and 1
occurred in long-term inpatient recovery care. Forty-
one out of 2,650 (1.5%) eligible patients experienced
imaging-confirmed TEs. Thirty-six additional pa-
tients either had an imaging-confirmed TE within
24 hours of admission or had clinical suspicion of a
recent history of TEs prior to admission and were
excluded for those reasons.

COVID-HEART performance for the 2 outcomes, in-
hospital AM/CA and TEs, is summarized in Figure 3.
Plots of the aggregated cross-validation AUROC are
shown in Figure 3A. Linear models were optimal for
prediction of both outcomes and included all features
for prediction of AM/CA and short features only for
prediction of TEs. The optimized COVID-HEART pre-
dictor achieved AUROCs of 0.918 and 0.771, sensitiv-
ities of 0.768 and 0.500, and specificities of 0.903 and
0.879 for the full test set for prediction of AM/CA and
TEs, respectively (Figure 3B).

Following the initial development-test split, the
results of which are further presented in Figure 4 and
Supplemental Table 6, the temporal development-
test split was repeated, and results over 20 itera-
tions were aggregated to obtain 95% confidence
intervals for the performance metrics (Figures 3C to
3E). Mean cross-validation and test AUROCs were
0.917 (95% CI: 0.916-0.919) and 0.923 (95% CI: 0.918-
0.927) for prediction of AM/CA and 0.757 (95% CI:
0.751-0.763) and 0.790 (95% CI: 0.756-0.824) for pre-
diction of TEs, respectively.

Supplemental Table 7 presents leave-hospital-out
cross-validation and testing results. For prediction
of AM/CA, the mean test AUROC, sensitivity, and
specificity for the left-out hospitals were 0.956
(95% CI: 0.936-0.976), 0.885 (95% CI: 0.838-0.933),
and 0.887 (95% CI: 0.843-0.932), respectively. For
prediction of imaging-confirmed TEs, the mean test
AUROC, sensitivity, and specificity for the left-out
hospitals were 0.781 (95% CI: 0.642-0.919), 0.453
(95% CI: 0.147-0.760), and 0.863 (95% CI: 0.822-
0.904), respectively. There were 4 hospitals in the
study at which fewer than 10 imaging-confirmed TEs
were recorded, resulting in a wide confidence interval
for sensitivity.

Supplemental Figure 1 illustrates the COVID-
HEART’s capability to accurately predict each
outcome within outcome windows of different dura-
tions. This capability may provide significant clinical
value in determining the patient’s short-term and
longer term risk, thus ensuring appropriate inter-
vention and resource allocation. As the figures illus-
trate, cross-validation and test results are
comparable, indicating the strong generalizability of
the COVID-HEART despite statistically significant
differences in demographics and prevalence of
comorbidities between the development and test sets
(Supplemental Table 5). Figure 4 and Supplemental
Figure 2 provide examples of time-series clinical
data and resulting risk scores for “true-positive” and
“true-negative” predictions for patients in the test set
for each CV outcome. Supplemental Figure 3 illus-
trates 2 incorrect predictions; these are discussed in
Supplemental Results.

For both outcomes, a larger number of time
windows in the test set were predicted positive for
patients that eventually experienced the outcome
compared to those that did not: 38% vs 10% for AM/
CA, 51% vs 12% for TEs. The 95% confidence in-
tervals for these measurements over 20 iterations of
temporally divided testing were 36% to 41% vs 9%
to 11% for AM/CA and 68% to 82% vs 15% to 20% for
TEs. This suggests that the ML model is sensitive in
identifying warning signs of an impending adverse
event earlier than the prespecified outcome window
(Supplemental Figure 4). The interquartile ranges
for the median early warning times over 20 itera-
tions of temporally divided testing were 14 to
21 hours for AM/CA and 12 to 60 hours for TEs
although the classifier was trained to predict out-
comes within 2 hours for AM/CA and 24 hours for
TEs. This could represent a clinically useful “early
warning” system.

As it is essential for clinical decision-making to
identify the features that most contribute to the
predicted risk score for a particular outcome, the
COVID-HEART predictor was designed to be fully
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FIGURE 3 The COVID-HEART Predictor Can Accurately Predict the Risk of All-Cause Mortality/Cardiac Arrest and Thromboembolic

Events in Real Time

(A) COVID-HEART 5-fold cross-validation performance metrics for AM/CA and thromboembolic events. Values shown are the mean [95%

confidence interval] for each metric over 20 full iterations of cross-validation. AM/CA predictions presented here are for an outcome window

of 2 hours, short-time feature window of 2 hours, and time-step of 1 hour. Thromboembolic event predictions shown here are for an outcome

window of 24 hours, short-time feature window of 24 hours, and time-step of 24 hours. (B) COVID-HEART test performance metrics for

temporally divided test set. Characteristics of this set are provided in Supplemental Table 5. (C) COVID-HEART test performance metrics

over 20 iterations of repeated temporally divided testing. (D) Risk of cardiac arrest prediction. Cross-validation (purple) and testing (orange)

receiver operating characteristic (ROC) curves for prediction of AM/CA using the optimal classifier configuration: a linear classifier with all

feature types. To generate the ROC curves, 20 iterations of 5-fold temporal patient-based cross-validation were run resulting in a total of 20

test sets and 100 internal loops of cross-validation. Shaded regions represent the 95% confidence interval of each ROC curve. (E) Risk of

thromboembolic event prediction. AM/CA ¼ all-cause mortality/cardiac arrest; AUROC ¼ area under the receiver operating characteristic

curve.
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FIGURE 4 Examples of “True-Positive” Predictions for 2 Different Patients: 1 From the All-Cause Mortality/Cardiac Arrest Test Set and 1 From the

Thromboembolic Event Test Set

(A) Clinical time-series inputs (top 7 rows) from which the features with the largest coefficients were derived for prediction of AM/CA, and time-series risk score

(bottom row) for a patient who experienced AM/CA during their hospitalization, and for whom the classifier’s prediction was correct prior to the AM/CA. A new

prediction is generated every hour. The binary risk threshold is 0.0008; the red bar indicates the hour during which the patient experienced AM/CA. Units for each

predictor are as follows: WBC (cells/mm3), pulse O2 saturation (%), pulse (beats/min), chloride (mEq/L), CRP (mg/L), DBP (mm Hg), SBP (mm Hg). (B) Clinical time-

series inputs (top 4 rows) from which the selected features were derived for prediction of thromboembolic events, and time-series risk score (bottom row) for a

patient who experienced a thromboembolic event during their hospitalization. A new prediction is generated every 24 hours. Units for each predictor are as follows:

magnesium (mEq/L), D-dimer (nmol/L), WBC (cells/mm3), IG count (%). AM/CA ¼ all-cause mortality/cardiac arrest; CRP ¼ C-reactive protein; DBP ¼ diastolic blood

pressure; IG ¼ immature granulocyte; SBP ¼ systolic blood pressure; WBC ¼ white blood cell count.
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interpretable. Supplemental Table 6 lists up to 20
features with the largest coefficients in the optimal
classifier for each of the 2 outcomes. The final COVID-
HEART predictor includes 61 features for prediction
of AM/CA, many of which are routinely and continu-
ously acquired vital signs and basic metabolic tests.
COVID-HEART includes 9 features for prediction of
TEs. These features are extracted from 39 and 5
unique clinical data inputs, for the 2 models, respec-
tively. Note that features were normalized prior to
classifier training, and that models are not simple
logistic regressions, thus interpretation of the co-
efficients is not straightforward. Many of these fea-
tures confirm previous observations in cohorts of
severely ill COVID-19 patients. For example, lower O2

saturation14 is associated with AM/CA, and multiple
coagulation-related lab results are associated with
TEs.25,26 Finally, the effects of missing variables on
testing results are presented in Supplemental Figure 5
and are discussed in Supplemental Results.
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DISCUSSION

In this study, we developed and validated the COVID-
HEART predictor (Central Illustration), a real-time
model that can forecast multiple adverse events in
hospitalized patients with COVID-19. The COVID-
HEART predictor is robust to missing data and can be
updated each time new data become available, repre-
senting a continuously evolving warning system for an
impending event. It can also predict the likelihood of
an adverse event within multiple timeframes (eg,
2 hours, 8 hours, 24 hours). Although predictions were
made for patients in the test set at the same time steps
as in the development set for consistency, it is possible
to apply the model at any arbitrary time during a pa-
tient’s hospitalization. We envision that in practice, it
could provide the physician with an updated risk score
each time any new clinical data input becomes avail-
able or only after passing a certain “high-risk”
threshold, to reduce health care provider “alert fa-
tigue.” The COVID-HEART predictor is thus antici-
pated to be of great clinical use in triaging patients and
optimizing resource utilization by identifying at-risk
patients in real time. Finally, COVID-HEART iden-
tifies dynamic predictive features that have not pre-
viously been investigated for prediction of these
outcomes in patients with COVID-19; these may sug-
gest avenues for future research and personalized
targets for clinical intervention.

The COVID-HEART risk-prediction approach pro-
vides transparency and clinical intepretability,
including the ability to determine which features are
dominant contributors to a patient’s risk level at a
particular time, which may suggest potential patient-
specific targets for clinical intervention. Prediction
models for CV adverse events in patients with COVID-
19 have been limited by lack of sufficient data,
impractical requirements for use (eg, that all data be
available for all patients or that measurements are
taken at the same time relative to time of admission),
and overly restrictive inclusion/exclusion criteria that
result in idealistic training and testing cohorts not
representative of real patient data.23,27 Our model is
designed to handle real-world data, which may
include noise, missing variables, and data collected at
different points in a patient’s hospitalization. The
validation and test results indicate strong generaliz-
ability despite statistically significant differences be-
tween the temporally divided development and test
sets and between hospitals in the health system.
Finally, the inclusion of multiple time-duration fea-
tures gives the model the “memory” advantages of a
long short-term memory neural network without
compromising interpretability or becoming a “black
box.” It is trained in a manner that achieves high
sensitivity and specificity despite severe class
imbalance. To our knowledge, these techniques have
not previously been combined with real-time pre-
dictors for CV events.

Models for risk prediction in hospitalized patients
have typically focused on predicting mortality risk or
length of stay for patients in the ICU. Traditional
models incorporate variables thought to indicate
physiologic instability or end-organ injury (eg, respi-
ratory rate, serum bilirubin level, serum creatinine,
etc).27-29 While these models generally have good
discriminative power,30 they fail to provide specific,
actionable information and simply notify health care
teams that particular patients are at increased mor-
tality risk at some point in their ICU stay. In most
cases, predictive scores are calculated based on the
most extreme variable values during the initial
24 hours of the ICU admission, with repeat calcula-
tions every 24 to 72 hours.

Newer models have higher predictive performance
than traditional models; they are trained to predict the
incidence of a particular outcome (eg, bleeding, renal
failure, mortality, etc) at an indefinite future time.
They are not designed to predict the time periods
during which patients are at the highest risk.
Furthermore, in terms of ML for risk prediction in
COVID-19, prior studies have focused largely on initial
diagnosis, mortality, or severity of illness, but none
have specifically focused on CV events, including in-
hospital AM/CA and TEs, both clinically important
complications with implication for cardiac treatment
and monitoring. Moreover, to our knowledge, our
model is the first to utilize continuous time-series
physiologic data as well as laboratory and electrocar-
diographic data to provide a continuously updating
risk score for an outcome within a particular future
time window (eg, risk of TE in the next 24 hours). By
providing a risk score for a specific outcome window,
our model provides timely, actionable information,
allowing the health care team to allocate resources and
initiate therapies when they are most needed.

With respect to TEs, we found that 40 of 41 events
occurred in patients already ordered for high-
intensity venous thromboembolism (VTE) prophy-
laxis, suggesting an even more aggressive anticoag-
ulant regimen may be needed for those patients
identified by the model. Additionally, VTE prophy-
laxis is 1 of the treatments most frequently omitted by
nursing staff or declined by patients. An analysis of
VTE events at our institution over a 72-day period
during the Spring 2020 COVID-19 wave demonstrated
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that 4 of 11 SARS-CoV-2 positive patients who expe-
rienced VTE events had at least 1 missed dose of VTE
prophylaxis.31 While care providers should ideally
strive for 100% compliance with VTE prophylaxis in
all eligible patients, the identification of patients at
high risk for TEs may help target these interventions
to the patients most in need.

With respect to interventions to address impend-
ing AM/CA, we found in our detailed chart review that
a number of AM/CA events were not unprovoked but
were a consequence of a precipitating event that
altered the patients’ hemodynamics, such as intuba-
tion, patient positioning (eg, supine to prone), or
hemodialysis. Therefore, in addition to predicting
unprovoked arrest (in approximately half of the
cases), our model predicted an unstable physiologic
state that resulted in arrest due to otherwise well-
tolerated hemodynamic perturbations. Identification
of patients as high risk for mortality would aid clini-
cians by imploring them to defer any treatments that
may provoke an arrest until the patient’s physiology
recovers. For those treatments that cannot be de-
ferred, identification of high-risk patients would
prompt the primary team to assemble specialized
staff and equipment, given the high risk of arrest (eg,
calling the anesthesia team for intubation in a high-
risk patient, having adequate nursing staff for a
possible resuscitation, etc).

A major barrier to clinical adoption of prognostic
ML models is the lack of appropriate validation on a
representative test cohort. The temporally divided
test sets in this study demonstrated the performance
of the predictor in a set of patients in the develop-
ment set admitted after the end of data collection. A
prospective cohort would not be expected to have the
same composition as the development set; indeed,
there were several statistically significant differences
in demographics, clinical characteristics, and preva-
lence of adverse CV events between the development
and test sets in this study. However, the strong test
results show that the predictor is robust to changes in
clinical treatment guidelines and evolving de-
mographics. We hypothesize that it maintains its ac-
curacy because it considers data which describe the
patient’s physiologic state, not variables that are
directly influenced by physician input such as venti-
lator settings or medication use. Furthermore, the
predictor maintained strong performance in leave-
hospital-out validation, which demonstrated its
robustness when trained and tested with data of pa-
tients from different populations.

STUDY LIMITATIONS. A limitation in this study is the
requirement for imaging confirmation of TEs. All TE
diagnoses were adjudicated by a clinician to ensure
they were clinically relevant. If the radiologist made
an incorrect diagnosis and the adjudicating clinician
incorrectly agreed that the event was supported by
clinical evidence, this would unfortunately constitute
an error in our data set. Similarly, it is likely that pa-
tients in the study experienced TEs that were either
the precipitating cause of death or that were not
identified on imaging and were therefore not counted
as events. There were only 35 patients in the devel-
opment set with imaging-confirmed TEs, and these
outcomes could only be identified per-day, not at the
exact time they occurred, as with AM/CA. As a result,
only a few features could be selected; it is possible
that a larger feature set would lead to more accurate
prediction of the patients’ risk of TEs since more de-
tails of the patients’ clinical states could be consid-
ered. In addition, complete details about the primary
causes of death were not known for all patients, and
therefore, it was not possible to distinguish if AM was
secondary to CV, respiratory, or other causes.

Additional limitations stem from the use of the JH-
CROWN registry.32 These include the potential for
measurement error, inaccurate patient-reported his-
tory (eg, smoking), and missing data. Another po-
tential limitation is confounding by indication, which
means that treatments were selected based on clinical
indication. While our model did not include treat-
ments or other variables that were directly influenced
by clinical indication, some variables in the model
were likely indirectly influenced by clinical indica-
tion. For example, the pulse oxygen saturation may
have been affected by changes in ventilator settings
for patients who were receiving mechanical ventila-
tion. There is also a subgroup of patients who had
pre-existing do not resuscitate/do not intubate/
comfort care orders. These patients would have
received no interventions leading up to an adverse
event, which means that the sequalae of physiologic
changes for these patients may be different from
those for patients who received interventions prior to
an adverse event. Finally, there is selection bias
inherent to including only patients who sought care
at a hospital; patients without insurance, undocu-
mented patients, and patients with other barriers to
seeking care may be less likely to be included.

CONCLUSIONS

In this study, we demonstrated highly accurate pre-
diction of AM/CA and TE in hospitalized COVID-19
patients using the continuously updating COVID-
HEART predictor. In its current implementation, the
predictor can facilitate practical, meaningful changes



PERSPECTIVES

COMPETENCY IN PRACTICE-BASED

LEARNING: The COVID-HEART predictor can identify

patient at-risk AM/CA and TEs by quantitatively

evaluating changes in dozens of clinical variables,

enhancing clinical practice by providing data-driven

clinical decision support.

TRANSLATION OUTLOOK: Clinical implementa-

tion of the algorithm would require a one-time engi-

neering investment to convert the model and

preprocessing algorithms into predictive model

markup language. The model could then be fully in-

tegrated with an electronic health record system and

would require no manual input or time investment by

a clinician to calculate or view a patient’s risk score

and the clinical variables that most influenced the

score. Prospective validation would be required to

increase clinical confidence in the predictor, and a

larger training data set would likely improve accuracy

of TE prediction.
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in patient triage and the allocation of resources by
providing real-time risk scores for complications
occurring commonly in COVID-19 patients. The
COVID-HEART can be retrained to predict additional
adverse CV events including myocardial infarction
and arrhythmia. The potential utility of the predictor
extends well beyond hospitalized COVID-19 patients,
as COVID-HEART could be applied to the prediction
of CV adverse events after hospital discharge or in
patients with chronic COVID syndrome (“long
COVID”). Additionally, the ML methodology utilized
here could be expanded to use in other clinical sce-
narios that require screening or early detection, such
as risk of hospital readmission, with the goal of
improved clinical outcomes through early warnings
and resultant opportunity for timely intervention.
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