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HIV associated neurocognitive disorders (HAND) are a group of neurological deficits that

affect approximately half of people living with HIV (PLWH) despite effective antiretroviral

therapy (ART). There are currently no reliable molecular biomarkers or treatments for

HAND. Given the national opioid epidemic, as well as illegal and prescription use of opioid

drugs among PLWH, it is critical to characterize the molecular interactions between

HIV and opioids in cells of the CNS. It is also important to study the role of opioid

substitution therapies in the context of HIV and CNS damage in vitro and in vivo. A major

mechanism contributing to HIV neuropathogenesis is chronic, low-level inflammation in

the CNS. HIV enters the brain within 4–8 days after peripheral infection and establishes

CNS reservoirs, even in the context of ART, that are difficult to identify and eliminate.

Infected cells, including monocytes, macrophages, and microglia, produce chemokines,

cytokines, neurotoxicmediators, and viral proteins that contribute to chronic inflammation

and ongoing neuronal damage. Opioids have been shown to impact these immune

cells through a variety of molecular mechanisms, including opioid receptor binding and

cross desensitization with chemokine receptors. The effects of opioid use on cognitive

outcomes in individuals with HAND in clinical studies is variable, and thus multiple

biological mechanisms are likely to contribute to the complex relationship between

opioids and HIV in the CNS. In this review, we will examine what is known about both HIV

and opioid mediated neuropathogenesis, and discuss key molecular processes that may

be impacted by HIV and opioids in the context of neuroinflammation and CNS damage.

We will also assess what is known about the effects of ART on these processes, and

highlight areas of study that should be addressed in the context of ART.

Keywords: HIV-associated neurocognitive disorders, substance abuse, buprenorphine, next generation

sequencing, monocytes, macrophages, central nervous system

INTRODUCTION

People living withHIV (PLWH) now havemuch longer lifespans, and the incidence of AIDS related
deaths has declined due to the advent of antiretroviral therapy (ART) and increased access to HIV
care (1). Despite ART, HIV-1 (HIV) remains a major public health issue with 37 million people
infected globally and over 38,000 new annual cases reported in the United States in 2017 (2).
Currently, there is a major opioid abuse epidemic closely associated with HIV (3, 4). It is estimated
that 2 million people in the United States have opioid use disorder (OUD), which is characterized
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by the abuse of prescription opioids and/or heroin that is
commonly taken intravenously (4–6). Intravenous (IV) drug use
is a major route for HIV infection. From the onset of the HIV
epidemic, IV drug use accounted for approximately 36% of HIV
cases in the United States (7). Thus, the risk of HIV infection
and transmission is high among IV drug abusers. It has been
shown that addiction to prescription opioids can lead to risky
behaviors and injection drug use that facilitate HIV acquisition,
indicating that the opioid epidemic may help to perpetuate the
HIV epidemic (3, 8, 9). Not only does opioid abuse increase
the risk for HIV infection, but also it is estimated that 20–
50% of PLWH are prescribed opioids and are more likely to
have OUD than their uninfected counterparts (10). Long term
opioid use increases the risk of death in PLWH compared to
such use in uninfected people (11). Thus, it is imperative to
understand the unique relationships between opioids and HIV
infection, and importantly, their roles in contributing to HIV-
associated comorbidities.

One highly significant comorbidity is HIV associated
neurocognitive disorders (HAND). It is estimated that 15–55%
of HIV infected individuals will develop some form of HAND
despite ART (12–15). HAND is a spectrum of neurocognitive
deficits and impacts many cognitive domains, for which there is
no treatment or prevention (15). It significantly impacts quality
of life and other health outcomes in PLWH (15). HAND is
diagnosed by a battery of neurocognitive testing. The results from
this testing are classified into three categories, asymptomatic
neurocognitive impairment (ANI), mild neurocognitive disorder
(MND), and HIV associated dementia (16, 17). Pre-ART, HAD
was a prevalent form of HAND. Due to increased access to
ART and HIV care, HAD is seen infrequently in developed
nations and most HAND diagnoses fall in the ANI and MND
categories (14, 16). Yet, the prevalence of HAND has not changed
significantly from the pre-ART era (15, 17). Although individuals
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with ANI do not manifest deficits in everyday cognitive function,
evidence suggests that a diagnosis of ANI can transition to one
of the more severe forms of HAND (14, 18, 19). It was shown
that PLWH with ANI had an increased risk of cognitive decline
compared to PLWH who were not cognitively impaired (18).

Currently, there are no therapies to eliminate HAND.
Therefore, it is imperative to understand mechanisms that
contribute to its development and severity. Evidence suggests
that opioids impact cognitive function and outcomes in PLWH,
indicating that they contribute to HAND pathogenesis (7, 20–
25). PLWH who chronically use opioids have worse cognitive
outcomes compared to PLWH who do not abuse these drugs
(21). There is also an association between lifetime use of heroin
with worse recall and working memory (21). These data highlight
the consequences of opioid abuse in PLWH, and underscore that
opioid abuse likely contributes to HAND.

Opioids may contribute to HAND by altering immune cell
functions (26). The ability of opioids to affect the functions of
cells critical to HIV neuropathogenesis, infection, and protection
is being studied extensively. In this review, we will examine the
mechanisms by which opioids impact HIV neuropathogenesis
and the development of HAND.

EFFECTS OF OPIOIDS ON MOLECULAR
MECHANISMS THAT MEDIATE HIV
NEUROPATHOGENESIS

Mechanisms That Contribute to HIV
Neuropathogenesis
HIV enters the CNS within 4–8 days after peripheral infection,
establishing viral reservoirs in the brain most often before
someone is aware of their HIV status (27, 28). These reservoirs
are difficult to eliminate and persist despite effective ART, which
is now prescribed at the time of detected seropositivity (27–29).
The long-term consequences of taking ART daily onmechanisms
that mediate HIV neuropathogenesis are largely unknown.

HIV enters the brain through the transmigration of a mature
subset of monocytes that expresses CD14, the LPS co-receptor,
and CD16, the FCγIII receptor, across the blood brain barrier
(BBB) (30, 31). Monocyte transmigration is a multistep process
in response to chemokines including CCL2 and CXCL12 (32–
34). CCL2 and CXCL12 are potent monocyte chemoattractant
proteins elevated in the brains of HIV infected individuals
despite effective ART (33–35). They are produced in the CNS,
translocated across the BBB, and presented on the surface of brain
microvascular endothelial cells (BMVEC) (36, 37). The binding
of CCL2 to CCR2, and CXCL12 to CXCR4 and/or CXCR7,
facilitates the firm arrest of monocytes to the endothelium
(38, 39). This is mediated, in part, by the binding of activated
lymphocyte function-associated antigen 1 (LFA-1) and very late
antigen 4 (VLA-4) to intercellular adhesion molecule 1 (ICAM-
1) and vascular cell adhesion molecule 1 (VCAM-1), respectively
(38–40). This process is followed by crawling and diapedesis
of monocytes across the BBB into the CNS (41). Diapedesis
occurs by homophilic interactions between junctional proteins
of the Ig superfamily, including activated leukocyte cell adhesion
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molecule (ALCAM) and junctional adhesion molecule A (JAM-
A), expressed on the surface of both monocytes and BMVEC
(42–45). ALCAM and JAM-A are increased on the surface of
HIV-infectedmaturemonocytes, facilitating their transmigration
across the BBB (46). The effects of ART and opioids on these steps
have not been extensively examined.

In the brain, HIV-infected mature monocytes infect and
activate other cell types such as macrophages, microglia,
and astrocytes to a lesser extent, and can differentiate
into long-lived perivascular macrophages (46–48). This
differentiation replenishes HIV CNS reservoirs, contributing
to the development of HAND. HIV-infected and activated cells
also facilitate recruitment of additional monocytes into the
CNS, establishing and propagating chronic neuroinflammation
(34, 49–51). While neurons do not become infected with HIV,
they are impacted by viral proteins, cytokines, and neurotoxins,
all of which contribute to neuronal damage and loss and the
development of neurocognitive impairment (48, 52–54). Table 1
summarizes the effects of opioids and ART on the various cell
types that contribute to HIV neuropathogenesis.

Another proposed mechanism that may contribute to HAND
is immunosuppression due to HIV infection and chronic opioid
usage. This can result in increased susceptibility to secondary
infections and dissemination of bacteria into the CNS, increasing
damage that causes neurocognitive dysfunction (26). These
processes will not be discussed further as they are outside the
scope of this review.

HIV, Opioids, and Monocyte Transmigration
Across the Blood-Brain-Barrier
Data both in vitro and in animal models suggest that opioids
increase the transmigration of monocytes across the BBB in the
context of HIV (55–58, 90, 91). Mice exposed intravenously to
morphine and HIV Tat have increased numbers of inflammatory
monocytes in the CNS compared to placebo mice and mice
treated with Tat alone (58). Research in macaques demonstrated
that exposure to morphine and infection with SIV increases
the number of monocytes and macrophages in the brain,
potentially contributing to neuropathogenesis (57). Findings
from in vitro studies substantiated these results by demonstrating
that morphine increases PBMC and monocyte adhesion to
the endothelium that is further enhanced with exposure to
gp120 (55, 91). Together, these data suggest that morphine
exacerbates HIV neuropathogenesis by increasing monocyte
entry into the CNS. Additional studies are needed to determine
howmorphine specifically increases uninfected andHIV-infected
human monocyte transmigration, especially in the context
of ART.

Opioids may increase monocyte transmigration by impairing
integrity of the BBB (90–93). In human BMVEC, morphine
and Tat decreased tight junction proteins, ZO-1, JAM-2, and
occludin, leading to decreased transendothelial electric resistance
and increased PBMC transmigration (90). Another group
demonstrated that morphine treatment of BMVEC for up to 72 h
increased ICAM-1 and VCAM-1, facilitating adhesion of PBMC
to BMVEC monolayers (91). Although this group also found

that morphine did not impair endothelial permeability to FITC-
labeled dextrans, other evidence suggests that more chronic
morphine exposure may increase BBB permeability (92, 94).
Experiments using fluorescently labeled dextrans showed that
transgenic mice expressing Tat have increased BBB permeability
compared to control mice, and that morphine treatment for
5–7 days similarly increased permeability (94). Interestingly,
this increased permeability did not correlate with increased
penetration of antiretrovirals into the brain. Morphine treatment
was shown to decrease antiretroviral concentrations in the brain
by increasing P-glycoprotein (94). This finding is underscored by
studies in rats demonstrating that morphine treatment for 5 days
increases P-glycoprotein in the hippocampus and cerebral cortex
(93). Thus, decreased penetration of ART into the CNS may
also exacerbate HIV neuropathogenesis. The impact of opioids
and ART together on BBB permeability, junctional protein
expression, and adhesion of monocytes to the endothelium
remain important to characterize in future studies.

Opioids increase dopamine concentrations in the CNS,
contributing to their euphoric effects (95–97). Although
dopamine does not cross the BBB to the periphery, the effects
of increased extracellular dopamine on HIV neuropathogenesis
are important to characterize because monocytes express surface
receptors that bind dopamine as they cross the BBB (59, 60,
98). In vitro studies showed that dopamine and D1 receptor
agonists increase monocyte adhesion, as well as transmigration
of uninfected human CD14+CD16+ monocytes across a human
BBB model (59, 60). These results suggest that monocyte
influx is increased in regions of the brain that have increased
dopamine concentrations (59, 60). This may be facilitated by
increased active ADAM17, a metalloproteinase that cleaves
the complex of Mac-1 on monocytes bound to endothelial
ICAM-1 as they begin to diapedese (60). Primary human
monocyte derived macrophages (MDM) also express dopamine
receptors. Dopamine increases viral entry into these cells,
resulting in increased viral replication (75, 76). In response to
dopamine, human MDM also increase basal and LPS-mediated
cytokine secretion (77). These data indicate that dopamine
released in response to opioids or other drugs of abuse may
increase monocyte migration into the CNS, and increase HIV
infection and cytokine secretion by macrophages, contributing to
HIV neuropathogenesis.

HIV, Opioids, and the Roles of Microglia
and Macrophages
Macrophages and microglia are phagocytic cells responsible
for, among other functions, clearance of extracellular materials
and production of cytokines and chemokines (99–102). In
general, microglia are derived from the yolk sac and enter the
CNS during embryonic development, while monocytes arise
from hematopoietic progenitors, enter the brain throughout
life, and can differentiate into long-lived macrophages (99,
100). There may be certain subsets of microglia that derive
from the bone marrow as well (103, 104). Recent findings
indicate that, within the CNS, macrophages and microglia
have unique transcriptional profiles, suggesting that they may
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TABLE 1 | Effects of opioids, dopamine, antiretroviral therapy (ART), and buprenorphine on cellular functions that contribute to HIV neuropathogenesis.

Morphine Dopamine ART Buprenorphine

Monocytes Increases adhesion to endothelium (55)

Increases transmigration across the

BBB (56–58)

Increases adhesion (59)

Increases transmigration of

uninfected cells across the BBB

(60)

Not yet examined Decreases adhesion to ICAM-1

on endothelial cells (61)

Decreases chemotaxis to CCL2

(61, 62)

Delays recycling of CCR2 to the

cell surface (62)

Decreases association of

FROUNT with CCR2 (61)

Macrophages

and Microglia

Increases HIV replication (63–69)

May increase cytokine secretion (70–73)

Increases ROS/RNS production

(65, 73, 74)

Increases HIV replication (75, 76)

Increases basal and LPS-mediated

cytokine secretion in macrophages

(77)

Increases ROS production in

THP-1 derived macrophages (78)

Not yet examined

Astrocytes Increases cytokine secretion (79, 80)

Decreases glutamate uptake (79, 81)

Increases glutamate release (82)

Outside the scope of this review Increases IL-6 secretion (83)

Decreases HIV-induced CCL2

and CCL5 secretion (84)

Decreases glutamate uptake (85)

Causes cellular senescence (83)

Not yet examined

T cells May increase or decrease HIV replication

(86–88)

Decreases IL-2 secretion (89)

Decreases T cell receptor signaling (89)

Outside the scope of this review Not yet examined Not yet examined

contribute to HIV neuropathogenesis by both similar and
distinct mechanisms (105, 106). Some differentially expressed
genes suggest that microglia modulate CNS neurotransmitter
levels, while brain-resident macrophages promote toll-like
receptor signaling and regulate growth factor concentrations
and signaling (105).

Findings indicate that HIV reservoirs in microglia and
macrophages still persist despite suppressive ART. Studies in
animal models and PLWH taking ART have shown that HIV
DNA and RNA colocalize with both macrophages and microglia
in post-mortem brain tissue (107–109). Data from SIV-infected
macaques on ART also demonstrated that brain macrophages
in the CNS can still produce active virus, as shown using
quantitative viral outgrowth assays (QVOA) (108). HIV-infected
microglia and macrophages release neurotoxic viral and host
factors, including HIV proteins, gp120, Tat, and Vpr, and
reactive nitrogen/oxygen species (ROS/RNS), which damage
neurons and activate other CNS cells, including astrocytes and
endothelial cells (101, 110–113). Chronic disruption of CNS
homeostasis leads to neurocognitive decline characteristic of
HAND. Both macrophages and microglia are also activated by
the microbial product, LPS, which is increased in the serum
of PLWH even with ART (100, 110, 114). In response to LPS,
microglia and macrophages increase production of TNFα, IL-
1β, CCL2, and IL-8 that can damage neurons directly and
increase transmigration of monocytes across the BBB (110,
112, 115). The mechanisms by which opioids contribute to
these processes in microglia and macrophages in the context
of ART are especially important to characterize such that
they can be targeted therapeutically to reduce viral reservoirs
and HAND.

Opioids may contribute to HIV-mediated CNS damage by
regulating immune cell functions through opioid receptors.

There are three classical opioid receptor subtypes, the µ (MOR),
κ (KOR), and δ-opioid (DOR) receptors, all of which are
expressed on the surfaces of microglia and macrophages (110,
116–118). There is a fourth, nociceptin receptor (NOP), that will
not be discussed further in this review (119).

Results from many in vitro experiments demonstrated that
morphine increases HIV replication in infectedmacrophages and
microglia, although these results vary based on duration of opioid
exposure (63–66). Increased viral replication may be due to a
morphine mediated increase in galectin-1, as well as inhibition
of anti-viral interferon signaling and microRNAs that target HIV
genes for degradation (64–69, 110). Importantly, increased CCR5
expression in response to opioids also increases HIV replication
in macrophages (63). This indicates that opioid mediated
increased HIV replication is dependent on an HIV coreceptor
that can be targeted therapeutically. Maraviroc is a known
blocker of CCR5 that improves neurocognitive functioning in
people with HAND (120, 121). It was also shown to decrease
the number of CD16-expressingmonocytes in PLWH, suggesting
that maraviroc reduces the pool of infected monocytes in
the periphery that can enter the CNS (121). Maraviroc may
also reduce opioid mediated neuropathogenesis in PLWH by
attenuating viral reservoirs in macrophages and microglia.

Although most studies found that morphine increases HIV
replication, one study inMDMdemonstrated that morphinemay
contribute to neuropathogenesis by increasing cytokines without
affecting HIV replication (70). Other studies refuted this finding
and showed no significant difference in cytokine production
with opioids compared to HIV infection alone (71, 117). The
mechanisms by which changes in viral replication may occur
are important to characterize to reduce CNS viral load. Some
studies suggest that this process is dependent on both MOR
activation and on the subtype of MOR expressed by the cell
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(64, 110). While acute exposure to opioids has been shown to
decrease intracellular cAMP through inhibitory G proteins, more
chronic opioid exposure may increase cAMP (72, 102, 118).
This increase leads to activation of proteins such as cAMP
response element binding protein (CREB), which may bind to
the 5′ LTR of the HIV genome to increase viral replication (66).
Microglia and macrophages play critical roles as HIV harboring
cells in the CNS. Thus, more studies are needed to address
how opioid mediated changes in HIV replication occur in both
cell types.

Chronic generation of reactive oxygen and nitrogen species
has been implicated in the pathogenesis of HAND (110, 112).
Productive HIV infection and/or exposure to HIV proteins,
including Tat, increase ROS production in macrophages and
microglia (69, 73, 110, 122). Additionally, multiple ART
drugs, especially protease inhibitors (PI), including lopinavir
and nelfinavir, and nucleoside reverse transcriptase inhibitors
(NRTI), including zidovudine and stavudine, increase ROS in
macrophages derived from THP-1 cells (78). The contribution
of opioids to oxidative stress in the context of chronic HIV
infection and/or exposure to neurotoxic HIV proteins, is complex
(123). Studies in J774 murine macrophages showed that acute
exposure to morphine decreases nitric oxide production, while
morphine treatment of human MDM increases ROS through
induction of certain miRNAs (65, 74). Findings in peritoneal
macrophages demonstrated an increase in ROS when mice
were given morphine twice daily for 5 days (117). Additional
experiments showed that acute exposure to morphine and
Tat synergistically increases ROS in murine microglia, an
effect dependent on MOR (73). These results highlight that
opioids may contribute to disease processes in the CNS by
increasing oxidative stress in microglia and macrophages that
harbor HIV or are exposed to HIV proteins. Given that
PLWH and people taking pre-exposure prophylaxis (PrEP)
are prescribed daily ART, it is important to examine how
opioids affect oxidative stress in this context (124). This
is especially relevant for macrophages, which differentiate
from monocytes that have been exposed to higher levels
of ART in the blood prior to transmigration into the
CNS (100, 125).

Opioids may impact cytokine secretion in CNS macrophages
and microglia, perpetuating neuroinflammation that contributes
to neurocognitive decline. One study in murine microglia
demonstrated that 24 h of morphine treatment decreases Tat
mediated upregulation of IL-6, MCP-1, and TNF-α secretion,
while another using primary human microglia showed that
exposure of primary human microglia to morphine for 24 h
increases IL-8 secretion but does not significantly change IL-6,
MCP-1, or TNF-α secretion (69, 73). Few studies have addressed
the effects of morphine on cytokine secretion in macrophages
infected with HIV or exposed to HIV proteins (68, 70, 71). Future
studies should determine the interactive effects of ART, opioids,
and exposure to HIV on neuroinflammation propagated by
macrophages and microglia. These may characterize molecular
mechanisms by which microglia and macrophages contribute
to neurodegeneration in both opioid abusers who are HIV-
positive and those taking PrEP with the goal of developing

therapeutics that reduce CNS inflammation and subsequent
neuronal damage.

HIV, Opioids, and Astrocytes
Astrocytes are the most abundant cells in the brain, and
astrocyte homeostasis is essential for maintaining CNS function
(126–129). Various studies demonstrated that astrocytes differ
in morphology, suggesting varied functional capability (128,
130). Astrocytes regulate synaptic transmission through a well-
characterized glutamate uptake mechanism, provide essential
roles in synaptogenesis, regulate CNS ion homeostasis, produce
ROS, and modulate CNS cells by responding to and producing
chemokines and cytokines (126, 129, 131–133). Astrocytes also
contact the endothelium to form part of the blood-brain-barrier
(BBB), highlighting their importance in regulating monocyte
entry into the CNS (134).

Astrocytes are less susceptible to productive HIV infection
and may not effectively produce mature, infectious virions
in vivo (107, 110). Early studies in post-mortem brain
tissue demonstrated that HIV DNA and RNA colocalize with
astrocytes, althoughmore recent studies using tissue from PLWH
who took ART did not find such colocalization (107, 135–
137). Regardless of their infection status and ability to produce
active virus, astrocytes produce and respond to neurotoxic viral
proteins, gp120, Tat, and Nef (135, 137, 138). Exposure to these
proteins leads to increased glutamate, nitric oxide, and cytokines
that contribute directly to neuronal damage (79, 135, 137, 139).
HIV infection of astrocytes increases Cx43, a protein that forms
part of gap junctions and hemichannels, increasing delivery
of neurotoxic factors and chemokines both directly to other
astrocytes and to the extracellular space (140, 141). Upregulation
of Cx43 colocalized with apoptosis of BBB cells in tissue from
PLWH and SIV-infected macaques, which could contribute to a
leaky BBB and enhance monocyte entry into the CNS (142).

Microarray and gene ontology studies showed that treatment
of astrocytes with Nef induces expression of specific long non-
coding RNAs (lncRNAs) that increase secretion of CXCL9,
CXCL10, and CXCL11 (143). CXCL10 had already been
shown to cause neuronal damage in response to Nef. These
microarray and gene ontology data suggest that CXCL9 and
CXCL11 secreted by astrocytes may also be important in HIV
neuropathogenesis (143). Astrocytes treated with Tat and co-
cultured with microglia increased release of intact exosomes
containing miR-9, a miRNA that was taken up by microglia
and stimulated their migration in vitro (144). Recent findings
also demonstrated that astrocytes exposed to HIV, but not
productively infected, have increased mitochondrial damage and
ROS, activating NLRP3 inflammasomes and increasing IL-1β
secretion (145). Conversely, astrocytes harboring HIV cleared
damaged mitochondria, leading to decreased ROS and IL-
1β. These data emphasize that even uninfected astrocytes can
contribute to HIV neuropathogenesis through increased ROS
and cytokine expression.

Astrocytes may play a significant role in opioid mediated
neuropathogenesis in the context of HIV given their abundance
and expression all three opioid receptor subtypes (MOR,
KOR, DOR) (146–148). Opioids can exacerbate CNS damage
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through disruption of normal astrocyte functions (80, 81,
147, 148). Astrocytes are critical to regulating local synaptic
glutamate concentrations, and increased synaptic glutamate leads
to neuronal excitotoxicity (126, 135, 137). Opioids decrease
astrocytic expression of glutamate transporters, GLT-1 and
GLAST, which are essential for glutamate uptake (81). Recent
studies demonstrated that opioids also increase glutamate
release from astrocytes through specialized potassium channels,
a process dependent on Gαi-coupled GPCR activity (80).
Morphine has also been shown to decrease glutamate uptake in
astrocytes infected with HIV or exposed to HIV proteins (79).
These findings suggest that opioids may increase CNS damage by
furthering disruption of astrocytic functions already impaired in
the context of HIV (148).

The interactive effects between HIV and opioids on cytokine
production in astrocytes are complex (79, 80, 84). While
morphine by itself has minimal effects on cytokine secretion,
astrocytes treated with morphine and Tat secreted more IL-6,
CCL2, and TNF-α compared to cells treated with Tat alone.
HIV-infected astrocytes treated with morphine produced more
CCL2, IL-8, and TNF-α compared to astrocytes infected with
HIV but not treated with morphine (79, 80). This increase
in cytokines may enhance local inflammation that damages
neurons, recruits additional infected cells from other regions
of the CNS, and promotes further monocyte transmigration
across the BBB. Transcription of these cytokines is regulated by
NFκB, which is activated downstream of MOR (139, 149, 150).
Productively infected primary human astrocytes also express
TLR4 and produce cytokines in response to pathogen associated
molecular patterns (PAMPs) like LPS (138, 139, 151). Given that
morphine itself may activate TLR4, agonism at this receptor
could act synergistically with MOR to increase NFκB mediated
inflammatory cytokines (152).

Crosstalk between chemokine and opioid receptors in
astrocytes may also contribute to opioid mediated HIV
neuropathogenesis (132, 133). In neuron-astrocyte co-cultures,
expression of CCR5 by astrocytes was shown to mediate
opioid driven exacerbation of Tat induced neuronal damage
(153). When CCR5 was deleted from glial cells or blocked
pharmacologically with maraviroc, morphine treatment resulted
in a surprising neuroprotective effect in response to Tat
(153). These results emphasize that the impact of opioids on
neuronal damage during HIV infection may change based upon
chemokine receptor signaling. These data also suggest that
maraviroc may improve neurocognitive outcomes in PLWHwith
OUD through its effects on astrocytes in addition to monocytes
and macrophages (120, 121).

Potential mechanisms that mediate astrocyte dysfunction in
the context of ART remain important to characterize. Some
studies examined the effects of ART on astrocyte function,
although few have addressed effects on HIV neuropathogenesis
during exposure to opioids and ART together (83–85). One
study using a combination of ritonavir, abacavir, and lamivudine
demonstrated that treatment of astrocytes for 7 days leads to
a cellular senescent phenotype characterized by increased cell
cycle inhibitor, p21, increased oxidative stress, and increased IL-
6 (83). Another study demonstrated that the PIs, amprenavir and

lopinavir, decrease glutamate transporter, EAAT2, exacerbating
defects in glutamate uptake (85). Others examined the effects
of opioids and ART together on viral replication and cytokine
expression in astrocytes infected in vitro (84). While a
combination of the NRTI, emtricitabine, and two PIs, ritonavir
and atazanavir, effectively reduced p24 production over 7 days,
this effect was attenuated when astrocytes were co-incubated
with morphine (84). This ART combination also inhibited CCL5
and CCL2 production in HIV-infected cells. However, when
HIV-infected cells were treated with ART and morphine, they
produced more CCL5 and CCL2 than infected cells that did not
receive ART or morphine (84). These findings indicate that ART
drugs may disrupt astrocyte homeostasis, underscoring the need
to study the effects of ART in the presence and absence of opioids
on the contribution of astrocytes to neuropathogenesis in PLWH.

Opioids, HIV, and the Potential Role of T
Cells
T cells play a significant role in many inflammatory processes
in the CNS (48, 154). While in vitro evidence for a role of T
cells in HIV neuropathogenesis is limited, some clinical studies
suggest that T cells contribute to HIV neuropathology (111,
155–157). Two studies of brains from HIV-positive individuals
demonstrated the presence of CD8+ T cells (155, 157). However,
these studies were done in the context of HIV-encephalitis
(HIVE) and HIV-associated dementia (HAD), which are not as
prevalent as milder forms of HAND in the ART era (155, 157).
There is also a significant correlation between nadir CD4+
T cell level and neurocognitive impairment in PLWH, but
this association could indicate more generally severe systemic
disease, and does not substantiate direct T cell contribution
to neuropathogenesis (156). A population of CD8+ T cells
is increased in the CSF of PLWH with cognitive impairment
(158, 159). One study demonstrated that CD8+ T cells present
in the CSF of PLWH have increased VLA-4 and CXCR3, while
another found that levels of IFN-γ in these CSF CD8+ T cells
correlated with severity of neurocognitive impairment (158, 159).
These results suggest that the inflammatory signature of T cells
in the context of HIV neuropathogenesis may be distinct and
could perhaps be targeted therapeutically (158). Release of factors
such as IFN-γ from T cells may be indicative of a compensatory
anti-viral response that inadvertently promotes activation and
polarization of M1 macrophages to further neuroinflammation.
However, the contribution of T cell transmigration across the
BBB to development of HAND is less clear (110).

In most cases, opioids have immunosuppressive effects in
T cells (89, 160). In fact, heroin-addicted individuals have
increased regulatory T cells (Tregs) in peripheral blood compared
to healthy controls or to opioid abusers currently undergoing
opioid substitution therapy (161). While little is known about
the contribution of opioids to the potential roles of T cells
in HIV neuropathogenesis, some studies have examined the
effects of opioids on T cell functions (89, 160–162). Opioids
can impact T cell functions by binding surface MOR, KOR, and
DOR (86, 87, 160). Opioid receptor activity has been shown to
inhibit T cell proliferation and activation through suppression of
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IL-2 secretion and T cell receptor signaling, and exacerbate cell
death induced by gp120 (89, 163). All of these may contribute
to systemic immunosuppression characteristic of chronic opioid
abuse and increase susceptibility to infection (72). Both KOR
and DOR activity have been shown to inhibit production of HIV
in CD4+ T cells, and opioid receptor activity does not seem
to play a role in reactivation of HIV in latently infected cells
(86, 87, 163). However, naltrexone treatment of CD4+ T cells,
which blocks opioid receptors, may potentiate the antiviral effects
of ART drugs, such as AZT and indinavir. Thus, it is necessary
to study the effects of opioids on T cell functions in the context
of ART (88). For CD8+ T cells, which may be increased in the
CNS, morphine has been shown to inhibit IFN-γ dependent
anti-HIV activity (164). These results indicate that T cells in
the HIV-infected CNS exposed to opioids may be limited in
their capacity to control CNS viral replication, exacerbating CNS
damage (88, 161, 162, 164, 165). Further studies are needed to
determine how opioids, opioid substitution therapy, and ART
regulate T cell activation and suppression to impact CNS damage
in PLWH with OUD.

OPIOID SUBSTITUTION THERAPY

One way to treat opioid addiction is through opioid substitution
therapy (OST), including methadone and buprenorphine (166).
Currently, little is known about the molecular impacts of
these therapies and specifically their contribution to HIV
neuropathogenesis in the ART era.

Methadone and buprenorphine are two of the most
commonly used OSTs (167). Methadone is a synthetic opioid
and full MOR agonist with long lasting effects (168). Its
pharmacological actions are similar to morphine (168).
Buprenorphine is a semi-synthetic opioid, long lasting partial
agonist of MOR and a full antagonist of KOR (169). While
both methadone and buprenorphine are effective at treating
opioid dependence, some studies suggest these treatments may
differentially impact cognitive outcomes in people with OUD.
Buprenorphine treated drug abusers had improved cognitive
outcomes compared to baseline or those treated with methadone
(170–172). However, other studies found no difference in
cognitive performance between methadone and buprenorphine
treated opioid users (173). Overall, these studies were done with
small sample sizes. Studies with larger numbers of subjects are
needed to address definitively whether one therapy has improved
outcomes compared to the other. A few studies also compared
cognitive outcomes of drug users taking buprenorphine or
methadone to healthy controls (171, 174, 175). In these studies,
both buprenorphine treated and methadone treated individuals
performed worse in multiple cognitive domains than their
healthy counterparts (171, 174, 175). The healthy controls were
individuals who did not have OUD or a history of chronic
drug use. It is important note that individuals who are taking
methadone or buprenorphine for OUD may already have
cognitive deficits due to chronic drug use (12, 21, 25). A healthy
individual who does not chronically abuse drugs may not
manifest the same deficits as an individual who does. While

comparing cognitive outcomes among these groups will address
their effects on normal cognition, it may mask positive effects of
buprenorphine and methadone on cognitive outcomes in people
with OUD.

Some evidence suggests that PLWH are at higher risk
for OUD than their uninfected counterparts (10). Thus, it is
important to understand the effects of OST in the context of
HIV neuropathogenesis and ART. Few studies have directly
addressed the impact of methadone or buprenorphine on HIV-
mediated CNS damage. Both methadone and buprenorphine
reduce illicit opioid use and risky behaviors associated with HIV
infection (176). In some cases, individuals taking methadone
or buprenorphine were more likely to initiate or remain on
ART and have improved CD4+ T cell counts (20, 22, 176).
This demonstrates that OST can successfully treat opioid
dependence and improves both the health and quality of life
of PLWH who have OUD (22, 171, 177–181). However, in
one study, HIV infected men taking methadone performed
worse on cognitive tests than those who were not taking
methadone (182). In contrast, some evidence suggests that
PLWH taking buprenorphine have improved quality of life
and neuropsychological functioning (12, 179, 183). Thus,
buprenorphine appears to be a promising therapy in the context
of HIV mediated CNS damage. More studies are needed to
evaluate the effects of both methadone and buprenorphine on
cognitive outcomes in PLWH, especially in the context of the
current guidelines to initiate ART at the time of diagnosis.

Data from our laboratory propose that buprenorphine
may decrease HIV neuropathogenesis through its effects
on monocytes, and underscore the potential therapeutic
effects of buprenorphine as a treatment for HAND (61, 62).
Buprenorphine decreased important steps in the transmigration
of mature monocytes across the BBB, including CCL2-mediated
adhesion to ICAM-1 and chemotaxis (Table 1) (61, 62).
These results indicate that buprenorphine may reduce HIV
neuropathogenesis and cognitive impairment by decreasing
monocyte entry into the brain (Figure 1A, Table 1).

The mechanisms by which buprenorphine mediates these
effects are unclear. One reason may be due to its unique
pharmacological properties (169). Buprenorphine is a partial
MOR agonist with high affinity for the receptor but low intrinsic
activity (166). This is distinct from other opioids such as
morphine, codeine, fentanyl, and methadone that are full MOR
agonists (169, 184). Full agonists and partial agonists may
have different binding properties that facilitate unique signaling
responses. This process is called biased agonism, and occurs when
different ligands bind the same receptor but activate different
intracellular signaling pathways.

Both opioid receptors and chemokine receptors, including
CCR2 and HIV co-receptors, belong to a family of G-protein
coupled receptors (GPCRs) that signal through the inhibitory
Gα protein, Gαi. GPCRs are downregulated by desensitization,
one form of which is heterologous desensitization (185, 186).
During heterologous desensitization, activation of one GPCR
inactivates signaling from a different GPCR (185, 187, 188).
This may be one mechanism by which buprenorphine impacts
monocyte function. Buprenorphine may inhibit downstream
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FIGURE 1 | Potential therapeutic interventions for HAND in the context of opioid use and antiretroviral therapy (ART). (A) HIV induced neuroinflammation and viral

seeding can be reduced by decreasing monocyte transmigration into the brain that is increased with opioid abuse. Buprenorphine and/or novel therapies developed

using next generation sequencing (NGS) may reduce transmigration of HIV-infected and uninfected monocytes. (B) Current ART penetration into the brain does not

eradicate viral reservoirs. Latency reactivating agents (LRA), ART, and opioid antagonists can be transported across the BBB and target infected cells in the CNS

using liposomal nanoparticle delivery systems. (C) ART and CRISPR/Cas9 can be transported across the BBB to help eradicate HIV reservoirs using liposomal

nanoparticle delivery systems. (D) scRNA-seq can be used to identify novel molecular mechanisms by which opioids and HIV infection increase CNS damage. These

mechanisms can then be targeted to reduce HAND.

inflammatory signaling of chemokine receptors like CCR2
through its actions at MOR and KOR (62). We showed that
buprenorphine decreases the association of FROUNT with
CCR2 (62). This association mediates CCR2 signaling and
enhances CCR2 induced monocyte transmigration (189). Thus,
buprenorphine may decrease monocyte transmigration into the
brain by limiting the interaction of FROUNT with CCR2.

Buprenorphine may also regulate GPCR signaling through
heterodimers consisting of one opioid receptor subunit and
one chemokine receptor subunit, resulting in desensitization
upon simultaneous binding of opioids and chemokines to
their receptors (5). It has been shown that DOR can
heterodimerize with CXCR4 (190). Concomitant treatment with
buprenorphine and a chemokine may result in heterodimers
of opioid and chemokine receptors, thus affecting the signaling
of each receptor subunit (191, 192). This may also affect
the transmigration of mature monocytes across the BBB to
contribute to HAND. More studies are needed to characterize
the effects of buprenorphine on transmigration of monocytes
and other immune cells in vitro and in vivo, as well as
to address the impacts of methadone and buprenorphine on
cognitive functions in PLWH, especially in the context of OUD
and ART.

NEW TECHNOLOGIES AND POTENTIAL
THERAPIES

New developments in molecular, genetic, computational,
and next generation sequencing (NGS) techniques provide
exceptional opportunities to characterize mechanisms by
which opioids and HIV infection in the ART era impact
neuroinflammation and neuronal damage, and may ultimately
lead to development of therapies. Figure 1 illustrates novel
approaches for identifying mechanisms as well as potential
therapeutic interventions to reduce the burden of HIV
neuropathogenesis in the context of OUD. Table 2 summarizes
new technologies and therapeutic strategies to target HIV
mediated CNS damage in the context of opioid use.

Novel Technologies to Characterize Opioid
Receptor Function
Structural and functional characterization of opioid receptors
is especially important for understanding signal transduction
after ligand binding. Advances in high resolution x-ray
crystallographic techniques have led to crystal structures for all
four known opioid receptors, including structures of receptors
with associated peptides (193). These advancements are pivotal to
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TABLE 2 | Novel approaches for targeting processes that contribute to HIV neuropathogenesis in the context of opioid use.

Approach Cell type or mouse model References Current and/or potential application(s) to opioid and HIV

mediated neuropathogenesis

X-ray crystallography Human delta-opioid receptor

(δ-OR)

(193) Design new ligands with fewer opioid induced side effects

Computational structure-guided

molecular docking approaches

Newly synthesized opioid

receptor ligands

(194, 195) Design and synthesize novel opioid receptor ligands to reduce HIV

mediated neuropathogenesis in the context of opioid abuse

SELEX, CLIP Protein-RNA complexes (196–199) Develop chemical inhibitors of HIV proteins

Optogenetics Chimeric photosensitive

MOR-like receptors

(200) Activate µ-opioid receptors in specific CNS cells to study their effects

on behavior and neurocognition

CRISPR/Cas9 Microglial cell line (201) Evaluate therapies for HIV-mediated neuroinflammation and

neurodegeneration during opioid use

Mouse models JR-CSF/hCycT1

hCD4/R5/cT1

Humanized myeloid only mice

BLT mouse

(202–205) Characterize in vivo the impact of opioids on HIV mediated

neuroinflammation in the context of ART, and determine the efficacy of

potential treatments

Genetically modified viruses EcoHIV (16, 206) Examine the effects of opioids and HIV infection on cognitive deficits,

including in genetically modified animals

Nanotechnology

(+CRISPR/Cas9)

PBMC

BBB Model

Microglia

(207, 208) Target both latent HIV and the effects of opioid abuse by combining

drugs in one nanoformulation

Bivalent Ligands Astrocytes (209) Inhibit viral entry by targeting opioid and chemokine receptor

heterodimers

RNA-seq PBMC (210) Identify mechanisms by which PBMC are impacted by HIV infection

and opioid use

Single cell RNA-seq Oligodendrocytes

Myeloid cells

Single brain nucleus

(211–213) Characterize the effects of HIV and opioids on different cell types, and

determine the impacts of opioids and HIV on gene expression in the

CNS using frozen tissue

develop new opioid receptor ligands with increased therapeutic
actions and fewer side effects (Table 2). For example, structure-
guided molecular docking approaches enable screening of
millions of candidate compounds by computational studies,
leading to the synthesis and optimization of selected molecules
with novel biological effects on opioid receptors (194, 195).
These studies could lead to development of compounds that
reduce neuropathogenesis caused by morphine induced cytokine
secretion, increased viral replication, and other important
functions of microglia, macrophages, and astrocytes.

Multiple isoforms of opioid receptor subtypes can be
generated by alternative splicing, and HIV infection has been
suggested to play a role in promoting formation of these
isoforms. One study found that an increase in the MOR-1K
isoform correlates with severity of neurocognitive impairment
in PLWH (214). The mechanisms by which HIV mediates
these alterations in splicing remain uncharacterized, but
modifications in several specific RNA-binding proteins may
be involved (215). Selected evolution of ligands through
exponential enrichment (SELEX) and cross-linking and
immunoprecipitation (CLIP) have been used to characterize
the role of these proteins (196, 197). Understanding these
mechanisms led to screening of chemical inhibitors developed
to inhibit key HIV regulatory proteins (198, 199) (Table 2).
Therefore, a more extensive characterization of how HIV can
impact the pharmacology of individual opioid isoforms is
essential to understand how opioids contribute to HAND in the
context of ART.

Another technology is optogenetics. Optogenetics is an
experimental approach that modulates neural activity by
activating and inhibiting light-sensitive proteins (216). Advances
in optogenetics led to generation of chimeric photosensitive
MOR-like receptors. This enables researchers to study the
spatiotemporal control of opioid receptor signaling in vitro
and in vivo. It was shown that in vitro photostimulation of
cultured murine dorsal root ganglia neurons resulted in similar
signaling and receptor internalization to that of the unmodified
µ-opioid receptor. Using this approach in vivo, this group also
found that MOR-like receptor signaling can be modified with
photostimulation, resulting in behavioral responses similar to
those observed when stimulating the unmodified receptor (200).
This technology could be used in HIV-infected animal models
to activate MOR in specific CNS cells types and study effects on
behavior and cognitive status (Table 2).

Genome Editing Technologies
Novel genome editing technologies have led to new models
to study opioid mediated HIV neuropathogenesis. One study
used the CRISPR/Cas9 system to integrate a modified HIV-
provirus expressing a nanoluciferase reporter into the genome
of a microglial cell line. This enables rapid assaying of HIV
proviral activity induced by pharmacological manipulation,
and would be useful to evaluate therapies for HIV-associated
neuroinflammation and neurodegeneration in the context of
opioid use (Table 2) (201). Mouse models have also been
developed to study HIV neuropathogenesis. The JR-CSF/hCycT1
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is a transgenic mouse that produces HIV, leading to plasma
viremia. This model is particularly useful to study the
pathogenesis of HIV-mediated neuroinflammation because these
mice express a full-length HIV provirus virus that replicates
in CD4+ T cells and monocytes (202). Another transgenic
mouse model, the hCD4/R5/cT1, has been modified to enable
acute in vivo HIV infection after intravenous, intravaginal, and
intrasplenic inoculation, resulting in local infection and plasma
viremia (203). Thus, these models provide opportunities to study
the impact of opioids on HIV replication and inflammation
in the context of ART in vivo, and to determine the efficacy
of potential therapies. Additional new approaches include
genetically modified viruses, such as EcoHIV, which is used
to infect mice as a model for studying chronic HIV CNS
disease (16, 206). This model has a low level of infection and
develops neurocognitive impairment. It can also be used to
study the effects of opioids and HIV infection on cognitive
deficits in genetically manipulated mice (206). Other model
murine systems include humanized myeloid-only and BLT
mice (204, 205) (Table 2).

Novel Therapeutic Approaches
Current ART does not eradicate HIV CNS reservoirs or improve
the complications of HIV infection in the context of opioid abuse.
One strategy involves using encapsulated liposomal magnetic
nanoparticles containing a combination of ART drugs to prevent
HIV replication, latency reactivating agents to activate CNS viral
reservoirs, and drug abuse antagonists to ameliorate associated
side effects. These novel nanoparticles have several advantages.
Different drugs can be combined in a single nanoformulation
to target simultaneously latent HIV and opioid induced CNS
damage (Table 2). Additionally, they can be targeted to a specific
tissue by non-invasive magnetic forces applied at adjustable
intensities. They can also cross the BBB, avoiding a major
restriction of the transport ofmanyART drugs (Figure 1B) (207).

Although nanotechnology is a promising approach to treat
opioid associated neuropathogenesis in PLWH, there are few
in vivo studies showing site specific targeting for antiretrovirals
and drug abuse antagonists. Thus, BBB transmigration
efficiency, appropriate concentrations of drug to be added,
and magnetic treatment parameters have to be optimized for
human application.

Another nanotechnology-based approach includes gene
editing tools to eradicate HIV brain reservoirs in drug abusers.
CRISPR/Cas9 technology is being used to eliminate latent HIV
from the genome by specifically targeting the enhancer of the
HIV LTR promoter (217). However, this technique still requires
an effective method for delivery across the BBB. To overcome
this obstacle, it has been combined with magnetic nanodelivery
systems, showing a significant HIV-LTR reduction, indicating a
potential therapy to eliminate latent HIV infection in the brains
of opioid abusers (Figure 1C) (208).

Structural and functional characterization of MOR-CCR5
heterodimers may help to study synergistic effects of HIV
infection and opioid abuse in the CNS, as discussed earlier in
this review. One study used novel synthesized bivalent ligands,
combining a MOR antagonist and a CCR5 antagonist into

one molecule, to target these heterodimers in HIV-infected
astrocytes, inhibiting HIV entry two-fold compared to a mixture
of individual MOR and CCR5 antagonists (Table 2) (209).

Next Generation Sequencing Technologies
RNA sequencing (RNA-seq) studies have been used to analyze
transcriptional profiles of different brain regions in the context of
long-term opioid abuse leading to neurodegeneration. Chronic
oxycodone self-administration in mice was shown to increase
expression of genes related to inflammation and/or immune
function, including CCR5, in the dorsal and ventral striatum
(218). Increased CCR5 expression facilitates migration of cells
to sites of inflammation in response to chemokines, increasing
their susceptibility to infection (7, 63, 64, 219, 220). RNA-
seq studies have also been performed with cells from human
cohorts. One study in PBMC from long-term heroin users
showed upregulation of genes related to neurological and
psychiatric disorders, including spinocerebellar ataxia type 2
and posttraumatic stress disorder (210) (Table 2). These cells
can enter the CNS, underscoring the importance of using new
tools to understand mechanisms by which they contribute to
neuropathogenesis related to opioid abuse.

The brain is a heterogeneous organ, and therefore RNA-seq
analysis may not fully identify and assign unique gene expression
profiles to specific cells in each brain region. To overcome this
limitation, single cell transcriptome analytic approaches can be
used. Single cell RNA sequencing (scRNA-seq) is a powerful tool
that can be used to address many questions relevant to HIV
infection and OUD (Figure 1D). It is of particular interest to
determine how different cell types in brain regions are affected by
chronic opioid exposure. A recent study demonstrated that acute
morphine treatment of mice results in unique transcriptional
responses by oligodendrocytes, suggesting a link between opioid
abuse and myelin dysregulation (211).

ScRNA-seq analysis can characterize how HIV impacts
individual CNS cell types by modifying their gene expression.
One study performed this analysis on cells obtained from CSF
and blood from adults with and without HIV infection, and
identified a rare subset of myeloid cells present only in CSF
(Table 2). The gene expression profile of these cells showed
significant similarities to the profiles of neurodegenerative
disease–associated microglia (212). scRNA-seq can also be used
to identify the molecular characteristics of CNS and peripheral
blood cell types that harbor HIV during opioid abuse. Our
group found that CD14+CD16+ monocytes that specifically
harbor HIV preferentially transmigrate across an in vitro human
BBB model in response to chemokines compared to uninfected
monocytes exposed but not harboring the virus (46, 221). Thus,
the identification of gene expression profiles of individual HIV-
infected cells may provide new strategies to eliminate HIV in the
CNS of opioid abusers. However, although scRNA-seq is widely
used to study individual cell transcriptomes, isolation of single
cells from complex tissues such as the brain is difficult. Newly
improved single cell sequencing techniques, such as single-
nucleus RNA sequencing, enables analysis of gene expression
within a single brain nucleus, reducing cell biases caused during
cell isolation and facilitating the use of frozen samples (213).
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Next generation sequencing technology, and especially
single cell genomics, will be important tools for the
molecular characterization of opioid abuse in the context
of HIV infection and ART. Studies using these technologies
may lead to identification of novel therapeutic targets and
diagnostic biomarkers, enabling early intervention to improve
neurocognitive outcomes in PLWH with OUD.

CONCLUSION

HIV remains a significant worldwide health issue as does the
relationship between HIV infection and the opioid epidemic.
HAND persists despite successful ART, for which there are
currently no treatments. Ultimately, the combined effects of
opioid use and HIV infection have negative consequences on
neurocognitive outcomes. Thus, it is important to understand
the mechanisms by which opioids contribute to HIV mediated
CNS damage, especially in the context of suppressive ART.
Opioids may contribute to HIV neuropathogenesis through
regulation of immune cell functions. The specific mechanisms
by which opioids and HIV infection interact remain unclear.
Buprenorphine appears to have beneficial effects on cognitive
outcomes in PLWH. More studies are needed to examine how
opioids and OST contribute to or limit HIV neuropathogenesis.

Now that PLWH are prescribed ART at the time of diagnosis.
Current and new technologies will characterize how opioids
impact HIV infection of the brain in the ART era, and will
direct the development of novel therapies for HAND in PLWH
with OUD.
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