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Lifestyle factors such as intellectual stimulation, cognitive and social engagement, nutri-
tion, and various types of exercise appear to reduce the risk for common age-associated
disorders such as Alzheimer’s disease (AD) and vascular dementia. In fact, many stud-
ies have suggested that promoting physical activity can have a protective effect against
cognitive deterioration later in life. Slowing or a deterioration of walking speed is associ-
ated with a poor performance in tests assessing psychomotor speed and verbal fluency
in elderly individuals. Fitness training influences a wide range of cognitive processes, and
the largest positive impact observed is for executive (a.k.a. frontal lobe) functions. Stud-
ies show that exercise improves additional cognitive functions such as tasks mediated by
the hippocampus, and result in major changes in plasticity in the hippocampus. Interest-
ingly, this exercise-induced plasticity is also pronounced in APOE ε4 carriers who express
a risk factor for late-onset AD that may modulate the effect of treatments. Based on AD
staging by Braak and Braak (1991) and Braak et al. (1993) we propose that the effects of
exercise occur in two temporo-spatial continua of events. The “inward” continuum from
isocortex (neocortex) to entorhinal cortex/hippocampus for amyloidosis and a reciprocal
“outward” continuum for neurofibrillary alterations. The exercise-induced hypertrophy of
the hippocampus at the core of these continua is evaluated in terms of potential for pre-
vention to stave off neuronal degeneration. Exercise-induced production of growth factors
such as the brain-derived neurotrophic factor (BDNF) has been shown to enhance neu-
rogenesis and to play a key role in positive cognitive effects. Insulin-like growth factor
(IGF-1) may mediate the exercise-induced response to exercise on BDNF, neurogenesis,
and cognitive performance. It is also postulated to regulate brain amyloid β (Aβ) levels by
increased clearance via the choroid plexus. Growth factors, specifically fibroblast growth
factor and IGF-1 receptors and/or their downstream signaling pathways may interact with
the Klotho gene which functions as an aging suppressor gene. Neurons may not be the
only cells affected by exercise. Glia (astrocytes and microglia), neurovascular units and the
Fourth Element may also be affected in a differential fashion by the AD process. Analyses
of these factors, as suggested by the multi-dimensional matrix approach, are needed to
improve our understanding of this complex multi-factorial process, which is increasingly
relevant to conquering the escalating and intersecting world-wide epidemics of dementia,
diabetes, and sarcopenia that threaten the global healthcare system. Physical activity and
interventions aimed at enhancing and/or mimicking the effects of exercise are likely to play
a significant role in mitigating these epidemics, together with the embryonic efforts to
develop cognitive rehabilitation for neurodegenerative disorders.
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INTRODUCTION
Plasticity can be broadly defined as the property of the nervous
system to adapt to changes in the external environment and/or its
integrity (i.e., lesions) in order to maintain or recover and optimize

its functions. From a morphological standpoint, brain plasticity
includes the potential of neurons to change their synaptic connec-
tions (Ashford and Jarvik, 1985). The elongation of axons, growth
of collateral ramifications, and remodeling allow establishment
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of new synapses and new cognitive and behavioral operations,
that can be adaptive or maladaptive to the situation that triggered
the phenomenon. Exercise-induced plasticity is but one such sit-
uation. Exercise-enhanced neuronal plasticity might help neural
circuits spared, or less affected by a disease to compensate for
deteriorated circuits and improve other network performance and
overall neurological function (Palop et al., 2006). We focus this
review in many aspects by which skeletal muscle exercise affects
brain plasticity and may arrest, slow down or even reverse the
pathophysiological evolution to mild cognitive impairment (MCI)
and possibly to Alzheimer’s disease (AD). During aging, all physi-
ological functions gradually decline (Lamberts et al., 1997). There
is a diminished capacity for cellular protein synthesis, a decline in
immune function, an increase in fat mass, a loss of muscle mass
and strength, and a decrease in bone mineral density (Lamberts
et al., 1997).

SARCOPENIA
In an increasing number of elderly patients, loss of muscle strength
and mass (sarcopenia) is the main limiting factor that determines
their chances of living an independent life until death. The lack of
sufficient physical exercise has been linked to immune system dys-
function, metabolic disease, musculoskeletal disorders, accidents
and injuries, pulmonary diseases, and certain types of cancer and
neurological disorder (Booth et al., 2002). A sedentary lifestyle is
therefore a major risk factor for many chronic pathologies, com-
pounding the effect of aging alone. This is also relevant to the
world-wide intersection of the epidemics of diabetes and dementia
(Kuljiš and Šalkovic-Petrišic, 2011).

Physical inactivity has also been shown unequivocally to
increase the rates of morbidity and mortality (Erikssen et al.,
1998; Hu et al., 2004). Therefore, the capacity to exercise is a
strong predictor of overall mortality rates, regardless of health
status (Handschin and Spiegelman, 2008). Indeed, the devastating
effects of a sedentary lifestyle have been repeatedly observed in
the elderly (Hollmann et al., 2007). A decrease in muscle func-
tion in the elderly population is directly linked to sarcopenia and
diminished aerobic capacity. In such patients, a loss of strength
affects the ability to carry out daily tasks and social interactions,
and to preserve adequate mobility, cognitive performance, and
life expectancy (Hollmann et al., 2007). Loss of muscle strength
is also an important determinant in the development of frailty
throughout the lifespan. Even in the early years, changes in physi-
cal activity have deleterious consequences for health status and life
expectancy. For example, men 70 years of age or older who engaged
in exercise increased significantly their probability of living until
age 90 (Yates et al., 2008).

LIFESTYLE
There has also been a steadily increasing focus on the impact of
lifestyle factors, including intellectual involvement, cognitive vital-
ity, social exchanges, nutrition, and physical activity on cognition
in old age. Studies have thus examined whether lifestyle factors
reduce the risk of age-associated diseases such as AD or vascular
dementia. These studies have suggested that physical activity can
have a protective effect on cognition later in life (Podewils et al.,
2005; Larson et al., 2006; Anderson et al., 2010a,b; Kattenstroth

et al., 2010; Ang et al., 2010; Kim et al., 2011). Furthermore, a
slowing or a deterioration of the walking speed was associated
with a poor performance in tests assessing psychomotor speed
and verbal fluency in the elderly (Soumare et al., 2009). Fitness
training widely influences numerous cognitive processes, and the
largest positive impact observed was for executive control (Col-
combe and Kramer, 2003). Executive control processes encompass
planning, scheduling, working memory, inhibitory processes, and
multitasking. Fitness training was more efficient when programs
of aerobic training were associated with strength and flexibility
training. Aerobic training induces an increased activity in the
frontal and parietal regions of the brain, which are considered
to be involved in efficient attentional control and performance
on a focused attention task (Colcombe et al., 2004). Those effects
in frontal, parietal, and temporal regions were expressed also as
a significant increase in gray matter volume (Colcombe et al.,
2003; Kramer et al., 2006), which, although relatively well known
nowadays, could hardly have been predicted merely a decade ago.
Strikingly also, losses of brain volume may be restored by short
exercise interventions (Colcombe et al., 2003, 2006; Kramer et al.,
2006) raising the intriguing possibility that these rather macro-
scopic changes may be implemented into regimented strategies
for both palliation and therapy.

LIFESTYLE IN PREDISPOSED INDIVIDUALS
The above macroscopic exercise-induced changes foster hope that
predisposed individuals having potential risk factors for dementia
may also be sensitive to physical activity and exercise. For example,
Larson et al. (2006) showed that the association of regular exercise
with a reduced risk for dementia and AD is not influenced by a
genetic predisposition for AD such as one or even two ε4 alleles
on the APOE gene. Another study showed that exercise improves
cognitive functions such as tasks dependent on the hippocampus
and resulted in major changes in plasticity in the hippocampus
of mice that are APOE ε4 carriers (Nichol et al., 2009). Further-
more, improvements with exercise on a hippocampus-dependent
task were specific to ε4 carriers (Nichol et al., 2009). These find-
ings are in line with findings in humans indicating that sedentary
APOE ε4 carriers share an increased risk of cognitive decline, and,
as such, may exhibit a greater response from physical activity
than non-carriers, perhaps in a way similar to mice expressing
APOE ε4.

THE ENTORHINAL AND HIPPOCAMPAL REGIONS: A TARGET FOR
EXERCISE-INDUCED CHANGES?
The chronology of exercise-induced mitigation may be related to
the progression of physiopathological events. Exercise has been
shown to suppress liposaccharide (LPS)-inhibited neurogenesis
and to enhance the proliferation of multipotent and neural stem
cells and their differentiation into neurons (Wu et al., 2007) that
appear responsible for significant improvement in learning and
memory performance (Wu et al., 2007; Hoveida et al., 2011).
Exercise has also been shown to deplete beta-amyloid load in a
transgenic mouse model of AD (Adlard et al., 2005). In humans, a
population-based, prospective study of a cohort of patients (MCI,
AD, and cognitively stable) by magnetic resonance imaging (MRI)
and cognitive testing suggested that physical activity (evaluation
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based on a questionnaire) had not been associated with a reduced
rate of white matter lesion progression (Podewils et al., 2007).
However, in multiple sclerosis, cardiorespiratory fitness was asso-
ciated with a sparing of gray matter volume and white matter tract
integrity usually undermined by the disease (Prakash et al., 2010).

Skeletal muscle exercise increases neurotrophic factors (Neeper
et al., 1995, 1996), β-endorphin production (Koehl et al., 2008),
and cell proliferation in the hippocampus and dentate gyrus (Trejo
et al., 2001; Glasper et al., 2010; Llorens-Martin et al., 2010a,b,c).
In cognitively normal older adults, a 10-year history of physical
training (walking, running, and jogging) which met the recom-
mendations of the American Heart Association (AHA) of 7.5
metabolic equivalent (MET)-hours/week (30 min of moderate
exercise 5 days/week) had a distribution of biomarkers signifi-
cantly associated with a lower risk of AD (Liang et al., 2010).
The distribution associated with a greater exercise training (AHA)
was a low mean cortical binding potential (MCBP) as evaluated by
positron emission tomography (PET) which detects the amount
of Aβ deposition by a radiotracer, the Pittsburgh compound-B
(PIB). In AD, Aβ aggregation leads to plaque formation and thus
to a higher uptake of PIB while in trained elderly individuals
the PIB uptake is low (Liang et al., 2010). Therefore, CSF levels
of Aβ1–42 by higher clearance were also higher in those trained
subjects. The levels of biomarkers, tau and phosphorylated tau
p(tau)181, reflecting indirectly AD axonal death or neuronal degen-
eration in brain regions as the hippocampus (De Meyer et al.,
2010), were low in the CSF of physically trained elders (Liang
et al., 2010). The distribution of biomarkers in sedentary subjects
with high PIB was reversed, i.e., low CSF Aβ1–42, high tau and
phosphorylated tau p(tau)181. Cognitively normal adult APOE
ε4 carriers expressed elevated PIB uptake, lower Aβ1–42, but no
difference in tau and p(tau)181 was observed. The overarching
question is, therefore, not whether these components of the lim-
bic loop express plastic properties. Rather, why is exercise stopping
the evolution of neuropathological lesions? Why is this unknown
underlying mechanism associated with the remarkable plasticity
of the hippocampus, entorhinal cortex, and dentate gyrus?

EXERCISE-INDUCED ENTORHINAL AND HIPPOCAMPAL
PLASTICITY
The mechanisms that mediate the therapeutic effects of exer-
cise and the pathological changes elicited by a sedentary lifestyle
in humans remain largely unknown. Very little is known about
the precise structural brain changes resulting from lack of exer-
cise, and the connection between skeletal muscle, cardiovascular
exercise leading to those changes, albeit the association has been
demonstrated consistently.

MRI STUDIES AND EXERCISE-INDUCED MODIFICATIONS
Magnetic resonance imaging (MRI) has increasingly served to
evaluate the effects of skeletal muscle exercise on hippocampal size.
Visualization (ultra-high field 7-T MRI) of the hippocampal CA1
apical neuropil layer thinning in subjects with mild AD suggests a
greater role for synaptic loss than neuronal loss (Kerchner et al.,
2010). Postmortem studies have demonstrated that the hippocam-
pal CA1 apical neuropil is one of the initial sites of pathology, with
tau aggregation and atrophy occurring before there is significant

loss of the CA1 pyramidal neurons (Braak and Braak, 1991; Braak
et al., 1994, 2000). Age-related reduced levels of growth factors
such as brain-derived neurotrophic factor (BDNF) correlate with
the decline in hippocampal volume and elevated memory deficits
(Erickson et al., 2010). There is also a growing body of evidence
that aerobic exercise training in older humans increases (serum)
BDNF levels, the size of the (anterior) hippocampus, improves
spatial memory (Erickson et al., 2011) as well as the plasticity of
brain networks (frontal executive, fronto-parietal, primary motor
cortex, and primary auditory cortex; Voss et al., 2010). Such effects
on hippocampal volume and memory have also been shown in
preadolescent children (Chaddock et al., 2010) and to increase the
volume of the cerebral gray matter in multiple sclerosis patients
(Prakash et al., 2007, 2010). Aging is associated with impaired
spatial memory and reduced resting cerebral blood flow (CBF),
whereas increased blood flow to the hippocampus is associated
with greater memory performance in older adults (Heo et al.,
2010). However, the effect on hippocampal–entorhinal cortices
of an intervention such as skeletal muscle exercise is difficult to
evaluate, especially in advanced AD because of the potential lack
of patients’ compliance with the intervention. Indeed, exercise
may also mediate its effects on cognition via movement as seen
in other neurophysiopathological processes, e.g., proprioception
(Bak, 2011).

ANIMAL STUDIES
Previous studies with animals have shown that aerobic exercise
can produce growth of new capillaries in the brain (Black et al.,
1990), increase the length and number of dendritic connections
between neurons (Cotman and Berchtold, 2002), and also increase
cell production in the hippocampus (Van et al., 1999a). Repetitive
running exercise promotes angiogenesis in the motor cortex of
the adult mammalian brain (Swain et al., 2003). Capillary growth
was observed within 30 days from the onset of exercise regimen. It
has been shown that more neurons were generated post-exercise
in the dentate gyrus of young and aged animals (Van et al.,
1999b; Kim et al., 2004). Farmer showed that BDNF mRNA levels
were elevated in the dentate gyrus of running animals (Farmer
et al., 2004). The enhancement of neurogenesis and learning in
exercising animals may be related to increased levels of BDNF
(Berchtold et al., 2010; Adlard et al., 2011). Indeed, it has been
shown that exercise increases BDNF levels in the hippocampus in
both young and aged brains (Neeper et al., 1995, 1996; Cotman
and Berchtold, 2002). However, further research is required to
understand the relationship between BDNF and age-related neu-
ronal loss as well as the role of exercise in mitigating changes in
BDNF. BDNF also regulates multiple neurotransmitters, including
the dopaminergic, cholinergic, and GABAergic systems (Knusel
et al., 1991). Exercise may also be a potential intervention in
reducing the onset or the rate of progression in Parkinson’s dis-
ease (Smith and Zigmond, 2003). Therefore, BDNF is believed
to play a key role in exercise-induced positive cognitive effects
although the underlying mechanisms remain to be elucidated.
The greatest effects of exercise on BDNF seem to materialize in
highly plastic, or transformable areas, responsive to environmen-
tal stimuli (Volkmar and Greenough, 1972; Castren et al., 1992;
Neeper et al., 1995).
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SYSTEMIC GROWTH FACTORS AND THE LIMBIC LOOP
Blood levels and brain uptake of insulin-like growth factor (IGF-1)
are elevated with exercise (Carro et al., 2001; Trejo et al., 2001). His-
torically, the first biochemical pathway shown to influence brain
aging was the insulin–IGF-1 pathway (Kenyon, 2010). Blocking
the entry of IGF-1 into the brain resulted in the blockage of the
exercise-induced neuron proliferation in the dentate gyrus, sug-
gesting that IGF-1 is also a key factor in neurogenesis (Trejo et al.,
2001). Therefore, IGF-1 may mediates the response to exercise on
BDNF, neurogenesis, and cognitive performance.

Treatment with systemic slow-release of IGF-1 reverts the
impairment of spatial learning, memory, and decreases the total
brain Aβ load (Carro et al., 2006a). Serum IGF-1 regulates brain
Aβ levels by increased clearance via the choroid plexus (Carro
et al., 2002, 2006a). Serum IGF-1 controls brain Aβ levels by
facilitating the passage of Aβ protein transport such as albu-
min and/or apolipoprotein J (Trejo et al., 2004) into the brain
through the choroid plexus and therefore may obliterate an “amy-
loid sink” whereby brain Aβ can be rapidly eliminated from the
brain. A deficient clearance of Aβ in the brain via the choroid
plexus may thus contribute to AD-related amyloidosis. Block-
age of IGF-1 receptors in the choroid plexus triggers a cascade
of brain disturbances in rodents that are felt to resemble those
found in AD (Carro et al., 2006b). The latter includes amyloi-
dosis, cognitive impairment, synaptic vesicle protein loss, gliosis,
and abnormally phosphorylated forms of tau. Insights into mech-
anisms of reduced sensitivity or blockage of IGF-1 receptors at
the choroids plexus may thus shed the light on the pathogene-
sis of sporadic AD. In humans, a large prospective multi-center
study revealed an increased blood Aβ1–42/Aβ1–40 ratio, which is
strongly associated with a lower risk of sporadic dementia (AD and
mixed/vascular dementia; Lambert et al., 2009). However, based
on these results the clearance of overall Aβ cannot be determined.
It is also unclear whether the “amyloid sink” is overwhelmed, or
whether Aβ accumulates within brain plaques as the production
is increased. The reduction in plasma Aβ may reflect a decrease
of soluble Aβ in the systemic circulation, as it accumulates within
insoluble brain plaques (Mayeux et al., 2003). Low CSF Aβ1–42

levels appear to reflect plaque formation and may be considered as
an in vivo biomarker of AD pathology (De Meyer et al., 2010; Prins
and van Swieten, 2010). The production of Aβ1–42 and Aβ1–40 was
found to be similar in AD patients and controls, whereas clear-
ance of Aβ1–42 and Aβ1–40 significantly decreased in AD patients
vs. cognitively normal controls (Mawuenyega et al., 2010). How-
ever, a direct cause-effect relationship between decreased CSF
Aβ1–42 levels and CNS clearance of Aβ1–42 remains to be deter-
mined. Therefore, experimental analysis of whether similar or
different effects on the parameters relevant to modulating the
risk for dementia occur as the result of different types of exercise
is needed.

BETA-ENDORPHINS
A deficiency of beta-endorphins totally blocks the exercise-
induced increase in hippocampal cell proliferation in vivo in
non-sedentary mice (Koehl et al., 2008). Therefore, β-endorphins
are necessary and perhaps even critical to hippocampal neuroge-
nesis during induced by exercise. Beta-endorphin is synthesized

mainly in the pituitary gland. It is released into the circulation and
is transported into other areas of the brain through nerve fibers,
where it acts preferentially on μ opioid receptors (MOR) distrib-
uted throughout the brain, including the hippocampus (Koehl
et al., 2008). Under non-stress conditions, the circulating lev-
els of β-endorphin are extremely low. In contrast, exercise at an
intensity greater than 50% of V̇O2max significantly increases the
plasma levels of β-endorphins in normal brains (Taylor et al.,
1994; Pedersen and Hoffman-Goetz, 2000). Therefore, presum-
ably low levels of β-endorphins in aging brains in sedentary
elders may negatively affect the plasticity of the hippocampal and
entorhinal regions. This hypothesis provides yet another target for
experimental assessment and therapeutic intervention.

BIOLOGICAL MEDIATORS OF PHYSICAL ACTIVITY
How may exercise-induced systemic mediators affect the brain?
Strength and endurance exercises activate many distinct signal-
transduction pathways and result in specific beneficial adapta-
tions of skeletal muscle. Physical activity is closely linked to
inflammation and immunity in a complex way (Febbraio, 2007).
Regular, moderate exercise reduces the level of systemic inflam-
mation (Gleeson, 2007). The entire array of the mediators of
this beneficial effect are unclear, but at least a few candidate
mechanisms have been identified. Exercise increases the release
of adrenaline, cortisol, growth hormone, dehydroepiandrosterone
(DHEA), prolactin, and other factors that have immunomodu-
latory effects (Nieman, 2003). Myokines, cytokines that are pro-
duced and secreted by skeletal muscle cells provide further insight
on the association between exercise and inflammation (Febbraio,
2007) and may provide markers of the beneficial systemic effects
of exercise on non-muscle tissues (Handschin and Spiegelman,
2008). Contraction of muscle fibers produce IL-6, IL-8, and IL-15
(Pedersen et al., 2007). Exercise induces the appearance of sev-
eral other cytokines into the circulation such as IL-1, IL-10, and
tumor necrosis factor-α (TNF-α; Pedersen et al., 2007; Hand-
schin and Spiegelman, 2008). In elderly humans, higher levels
of circulating IL-6 are inversely correlated with levels of physical
activity, with muscle mass, and with the anabolic mediator IGF-1
(Zaldivar et al., 2006). Strenuous exercise leads to increased lev-
els of pro-inflammatory cytokines, but simultaneously cytokine
inhibitors and anti-inflammatory cytokines restrict the magni-
tude and duration of the inflammatory response to exercise. Brief
exercise sessions lead to seemingly paradoxical changes in the pat-
tern of intracellular cytokines and growth factor expression in
leukocytes, reflecting pro-inflammatory and anti-inflammatory
function and growth mediators. The release of cytokines such as
vascular endothelial growth factor (VEGF) and Il-6 is associated
with angiogenesis and muscle growth (Egginton, 2009). Microcir-
culatory endothelial growth is a key player during exercise, and
vascular remodeling follows dynamically the biochemical changes
induced by the mechanically powerful stimuli of exercise. It is
necessary to understand this growth regulation by transcription
and stability of mRNA, production of proteins and interactions
with other growth factors. Pituitary (basic) β-FGF, an endothelial
cell mitogen, is active ubiquitously on various tissues such as cap-
illary endothelial cells with powerful angiogenic activity in vivo,
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vascular smooth cells and adrenal cortex (Esch et al., 1985; Mon-
tesano et al., 1986). Since β-FGF has been isolated from the brain
(Gospodarowicz et al., 1985, 1986), it may also likely involve neu-
rotrophic activity of hippocampal neurons (Walicke et al., 1986).
Basic fibroblast growth factor (FGF) promotes neuronal survival,
rapid neuronal growth, elaboration of neurites, and is not pro-
duced merely by astrocyte proliferation (Morrison et al., 1986;
Walicke et al., 1986). However, there is also evidence that β-FGF
may have a mitogenic effect on astrocytes and oligodendrocytes
(Morrison and de Vellis, 1981). In contrast, the AD phenotype
is a consequence of convergence of multiple risk factors or dys-
regulations (Fernández et al., 2008). Neuroinflammation is a key
component that activates microglia, produces nuclear factor (NF)-
κB, and induces multiple cell apoptosis-promoting signals, such as
TNF-α, IL-1β, and IL-6, that lead to the production of pathological
isoforms of the tau protein (Fernández et al., 2008; Maccioni et al.,
2009a,a). These abnormal signals result in over-activation of some
cell cycle enzymes, such as cdk5 and the neuronal glycogen syn-
thase kinase, with the consequent tau hyperphosphorylation (Fer-
nández et al., 2008; Maccioni et al., 2009a,b). Overexpression of
IL-1, other pro-inflammatory cytokines, and glial activation have
been associated in the pathogenesis of both AD and Parkinson’s
disease (Griffin et al., 2006). Although several lines of evidence
indicate a role for inflammatory mediators in the neurodegenera-
tive cascade, they may explain only a portion of a more complex
pathophysiological process, yet at the outset it seems that this phe-
nomenon may be strongly linked to the strong epidemiological
evidence for a beneficial effect of exercise on neurodegeneration.

GROWTH FACTORS, NEURAL STEM CELLS AND KLOTHO
What other age- or exercise-related events are triggered by changes
in the levels of regulatory molecules? And what, in turn, modu-
lates the regulators? Can the levels of growth factors change with
exercise training because of alterations in the regulators?

On one hand, exercise results in an increase in p38 MAP-
kinase (p38 MAPK) phosphorylation that may last for hours
after mild/moderate exercise (Geiger et al., 2005). There is a
growing line of evidence suggesting that activation of p38 is in
the pathway of the exercise-induced stimulation of the glucose
transport by insulin and skeletal muscle contractions (Geiger
et al., 2005, 2006). Phosphorylation of p38 MAPK is signifi-
cantly increased (2 to 16-fold) by exercise (Hulmi et al., 2010).
Exercise induces a lower basal p38 MAPK activity (Chen et al.,
2010). The p38 MAPK/PGC-1alpha regulatory axis participates
in the control of contractile protein expression, angiogenesis,
mitochondrial biogenesis, and other adaptations of the skele-
tal muscle (Pogozelski et al., 2009; Lira et al., 2010). In human
skeletal muscle, activation of cytosolic p38 MAPK in this axis
may be a signal to increase nuclear concentration and activate
of PGC-1alpha in response to endurance exercise (Little et al.,
2010). On the other hand, p38 activity is significantly increased in
AD (Muñoz et al., 2007; Chang et al., 2010; Muñoz and Ammit,
2010). Glutathione (GSH) synthesis induces a neuroinflamma-
tory response in human microglia and astrocytes associated with
activation of p38 MAP-kinase (Lee et al., 2010, 2011). This is a
new model for inducing neuroinflammation and suggests that
increasing GSH levels in glial cells may confer neuroprotection

in neurodegenerative diseases, such as Alzheimer disease, which
have a prominent neuroinflammatory component. p38 is a
key downstream effector of Aβ-induced neurodegeneration
(Zhu et al., 2001, 2005).

An interesting mouse model has a bearing on p38 signaling
in the brain. Mice carrying a loss-of-function mutation in the
Klotho gene develop a syndrome resembling human aging, includ-
ing shortened life span, skin atrophy, muscle atrophy, early sterility,
osteoporosis, arteriosclerosis, cognitive impairment, neurodegen-
eration, hearing loss and pulmonary emphysema (Kuro-o et al.,
1997). Conversely, the overexpression of the Klotho gene signifi-
cantly extends the life span of mice (Kuro-o et al., 1997; Kuro-o,
2008). These observations suggest that the Klotho gene functions
as an aging suppressor gene (Kurosu et al., 2005) and that this
effect is exerted, at least in part, through its interactions with the
growth factor FGF23 (Kurosu et al., 2006) and its effect on sev-
eral growth factor receptors, such as EGFR, IGF1R, frizzled, and
TGFβ, and their downstream signaling pathways. Therefore, the
Klotho protein may respond or may be affected by physical activ-
ity since Klotho interactions are mediated via growth factors such
as IGF-1. Moreover, we have recently shown that Klotho has a sig-
nificant inhibitory effect on p38 activity and signaling in the liver
(Hsieh et al., 2010) and our latest data demonstrates that this effect
is preserved in the brain (Brobey et al., 2011). The effect of Klotho
in the brains of the overexpression models appears to be neuro-
protective and prevents the loss of dopaminergic neurons within
the substantia nigra after exposure to the neurotoxin MPTP. p38
levels were very low in the whole brains and within the nigra of the
overexpression transgenic animals, but the converse was true in the
brains of the Klotho knockout animals. The pathway depends on
an inhibitory action of Klotho on the ASK1 signalosome, which
is a major regulator of p38 activity downstream. Several neu-
rotrophic and growth factors have a neuro-protective capacity on
hippocampal and cortical cell structures (Mark et al., 1997). One
of the most effective growth factors is the basic (β-FGF) which
protects hippocampal and cortical neurons against glutamate tox-
icity (Mattson et al., 1989), glucose depletion, hypoxia (Cheng and
Mattson, 1991; Mattson et al., 1995), oxidative stress (Zhang et al.,
1993), Aβ amyloid toxicity (Mark et al., 1997) and lesion-induced
cell death (Anderson et al., 1988).

Moreover, the Klotho protein increases resistance to oxidative
stress at the cellular and organismal level in mammals through
its effects on various anti-oxidant and stress resistant proteins
(Yamamoto et al., 2005; Kuro-o, 2008) which may be affected by
physical activity. Recent results have revealed that Klotho over-
expression in mice may be neuro-protective in mouse models of
Parkinson’s disease, indicating that the Klotho signaling networks
may provide a fertile ground for the development of novel thera-
peutic targets in neurodegenerative diseases. The α-Klotho (a-kl)
gene encodes a type I membrane protein that is predominantly
expressed in tissues that are involved in calcium homeostasis
in the choroid plexus, kidneys, and parathyroid glands among
other tissue loci (Kuro-o et al., 1997; Kurosu et al., 2005; Imura
et al., 2007). Furthermore, cleaved 139-kD extracellular domain
of (a-kl) is secreted into the blood and cerebrospinal fluid (CSF;
Kurosu et al., 2005; Imura et al., 2007). We are also noticing in
our on-going experiments a neuro-protective effect of the Klotho
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protein especially on human neural stem cells (Figure 1, Foster
and Rosenblatt, unpublished).

POTENTIAL MARKERS OF EXERCISE-INDUCED EFFICACY
It is likely that the effect of skeletal muscle exercise produces a
maximal efficiency at the pre-symptomatic and prodromal stages
rather than at AD dementia stage. Various markers may allow
the evaluation of the effect of exercise toward a future diagnos-
tic algorithm. The diagnosis of AD is expected to rely on clinical
evidence of the disease phenotype and potential in vivo biological
cues of Alzheimer’s pathology (Dubois et al., 2007, 2010). Spe-
cific pattern of cognitive changes such as episodic impairment
and in vivo structural/biological manifestations of the disease can
now be integrated into an algorithm defining the diagnosis of AD
(Dubois et al., 2010). Laboratory and neuroimaging biomarkers
are very highly correlated with the neuropathological lesions of

AD (Buerger et al., 2009; Tapiola et al., 2009; Ewers et al., 2011) as
defined in the section below (Braak and Braak, 1991). Hypothetical
pathophysiological markers reflect the two cardinal degenerative
processes that characterize Alzheimer’s pathology: amyloidosis
(SP) and tauopathy (NFT). The International Working Group
(Dubois et al., 2010) distinguishes (in vivo) pathophysiological
markers which closely correlate with their respective neuropatho-
logical lesions, including CSF Aβ (Buerger et al., 2009; (Jack et al.,
2010) and PIB–PET with SP (Rinne et al., 2010), and total tau
and phospho-tau with NFT (Ewers et al., 2011). These patho-
physiological markers are proposed to be predictive of eventual
cognitive decline and the development of clinical signs of AD in
cognitively normal elderly individuals (Dubois et al., 2010). In
line with the pathophysiological findings from MRI and animals
studies, topographical markers assessing regional distribution of
Alzheimer’s pathology include MRI medial temporal lobe atrophy

FIGURE 1 | Klotho protein and neuronal differentiation ratio of

human neural stem cells (hNSC): NF–M (medium neurofilament

protein) vs. astrocyte/GFAP (glial fibrillary acidic protein). (A) no
treatment, (B) in the presence of rotenone; apoptosis with destruction

of cell membrane and nucleus, loss of neuronal differentiation; (C) the
addition of Klotho protein to rotenone increases survival, induces stem
cell proliferation and neuronal differentiation (Rosenblatt and Foster,
unpublished data).
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(Vemuri et al., 2010). Apart from their diagnostic benefits, those
markers may also serve as indices of exercise effect and other treat-
ment efficacy in clinical trials. The former topographical marker
may also prove particularly useful given the direct relationship
between exercise and hippocampal size (Chaddock et al., 2010;
Erickson et al., 2010, 2011; Heo et al., 2010; Voss et al., 2010).

EXERCISE-INDUCED LOW CHOLESTEROL, IMPACT ON Aβ

OLIGOMERS AND NEURODEGENERATION
In a large multi-center cohort (3C), the metabolic syndrome had
a negative impact on cognitive function tested using standard-
ized clinical protocols (Raffaitin et al., 2011). The link between Aβ

and cholesterol metabolism and atherogenesis suggests a plausi-
ble mechanism for increased atherosclerosis in patients with AD
(Roher et al., 2004; Gamba et al., 2011; Sierra et al., 2011). Statins
prevented declining cognitive function by mitigating the amy-
loidogenic process (Kurata et al., 2011), changes in permeability of
the blood–brain barrier and protection against tau hyperphospho-
rylation (Sierra et al.,2011). Secretase activation in macrophages of
atherosclerotic plaques cleaves Aβ from platelet-derived APP (De
Meyer et al., 2002, 2010). Aβ appears to produce atherosclerosis
by enhancing local inflammatory reactions through activation of
scavenger receptors. Clearly, intra-vascular presence of Aβ or Aβ

oligomers enhances atherosclerosis in AD patients (Roher et al.,
2004). Although regular exercise is related to a higher ratio HDL
cholesterol/total cholesterol (Williams et al., 1979; Berg et al., 1996)
which would lower the risk of AD via the aforementioned pathway,
there are probably other direct or indirect mechanisms that medi-
ate the palliative effects of exercise. Aβ also has powerful effects on
neurodegeneration, but there is increasing evidence that Aβ also
has major influence on systemic and cerebral blood vessels. Non-
deposited Aβ, especially the predominant short form (Niwa et al.,
2002; Iadecola, 2004), or soluble Aβ forms “oligomers” (Kayed
et al., 2003; Lansbury and Lashuel, 2006) in the cerebral circulation
are critical factors in cerebrovascular dysfunction. Aβ accumu-
lation and synaptic loss produces further vascular dysregulation
and hypoperfusion which, in turn, facilitates Aβ formation and
enhances neurodegeneration.

POTENTIAL INFERENCE OF EXERCISE-INDUCED MYOKINES
ON CIRCULATORY NETWORKS
Many of the neuronal and vascular lesions of AD were first been
described by Alois Alzheimer in 1907 (Alzheimer et al., 1995; An
English translation of Alzheimer’s original 1907 paper). How-
ever, it is unclear how these lesions relate to each other and how
they contribute to a chronic neurodegenerative and clinically het-
erogenous disorder. Several lines of evidence converge toward a
cerebral circulatory network alteration compounding the glial and
neuronal dysfunction in AD. This participation is highlighted by
the potential association between AD and the following: (1) cere-
brovascular disease (de la Torre, 2004; Gorelick, 2004; Greenberg
et al., 2004; Giannakopoulos et al., 2007, 2009; Stopa et al., 2008;
Kalaria, 2009; Knopman and Roberts, 2010; Salmina et al., 2010);
(2) atherosclerosis (Casserly and Topol, 2004; Roher et al., 2004;
Honig et al., 2005; Utter et al., 2008); (3) angiogenesis deficiency
(Paris et al., 2004; Wu et al., 2005), and (4) deficiency of Aβ clear-
ance across the blood–brain barrier (Shibata et al., 2000, 2008;

Carro et al., 2002, 2003, 2005, 2006b; Trejo et al., 2004). These
converging mechanisms indicate that dysfunction of cerebral cir-
culatory networks is probably a critical feature of AD that may play
a major role in the pathogenesis of this chronic neurodegenerative
condition (de la Torre, 2004). Altered brain capillary circulatory
networks physiology, vascular neuroinflammatory response, and
disruption of brain activity–mediated CBF regulation are key
factors as well for the pathogenesis of cognitive decline in the
Alzheimer’s process (Wu et al., 2005). In AD, down-regulation of
certain genes (MEOX2 or GAX), exclusively profiling human brain
endothelial cells, appear important in the mediation of aberrant
angiogenesis (Wu et al., 2005). These are yet additional putative
targets for the beneficial effects of exercise in AD.

Early in the twentieth century, Ramón y Cajal (1909) describes
a Third Element, which he perceived correctly as different from
neurons and astrocytes. Over a decade later, del Rio Hortega et al.
(1919) discovered microglial cells among the components of the
former Third Element. More recently, a growing body of evidence
has shown that immune exercise-induced mechanisms may posi-
tively regulate the remodeling of neural circuits, promoting neu-
rogenesis, memory consolidation, hippocampal function (Yirmiya
and Goshen, 2011). These beneficial effects of the immune system
are mediated by complex interactions cells with immune functions
such as microglia and astrocytes, neurons, and neural precursor
cells involving the response of neurons and glia to low concentra-
tions of inflammatory cytokines, such as interleukin IL-1, IL-6,
and TNF-α, and other mediators, such as prostaglandins and
neurotrophins plasticity is considered as crucial for learning and
memory encoding. Glia are known to modulate synaptic scaling,
homeostatic plasticity and metaplasticity via changes in synap-
tic coverage, release of chemokines, cytokines and astrocytes, or
microglial transmitters release (Ben and Pascual, 2010). However,
glial hypertrophy correlates with synaptic numbers via synaptoge-
nesis following motor-skill learning but not with increased capil-
lary density through angiogenesis post-exercise (Anderson et al.,
1994). Therefore, in theory, repetitive routine exercise alone may
not be sufficient to induce a glial hypertrophy. The fourth element
cell (4EC) is a newly identified large population of “unconven-
tional” cells (Reyners et al., 1982, 1986; Bergles et al., 2000) which
might also be a target for chemokines and thus exercise. They
are antigenically different from astrocytes, oligodendrocytes, and
microglia. A mechanism of interest in the pathophysiological AD
process is that the 4EC receive glutaminergic synaptic signaling
from projection neurons. These 4EC also express all characteris-
tics of neuron-to-neuron synapses (Bergles et al., 2000; Nishiyama
et al., 2009; Kuljiš, 2010c). Because of the plasticity of 4EC and its
potential involvement in the AD process, these cells may also be
a target for exercise-induced effects. Virtually, nothing is known
about them, however, making this an essentially virgin territory
for research (Kuljiš, 2010c).

VIRTUAL REALITY RUNNING OR MOVING AND SPATIAL
COGNITION NETWORKS
Cognition has multiple scales and dimensions and includes
recently formulated notion of the “connectome” which hopes to
attain a complete connection mapping of the brain (Connectome
Project; Kuljiš, 2010b). Exercise-induced effects may affect brain
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neural networks. The hippocampus, entorhinal, and transentorhi-
nal cortices are proposed to constitute the starting point of neu-
rodegeneration in AD (Braak and Braak, 1991; Braak et al., 1993).
The hippocampus has been implicated in spatial learning (Haft-
ing et al., 2005), episodic, declarative, or autobiographical memory
(Doeller et al., 2010). Therefore, the neural representation of this
exercise-induced effect resides in a network of regions which sup-
ports spatial cognition. Memory loss and disorientation in space
are among the first behavioral manifestations of the condition.
Exercise-induced (or movement-) hippocampal and entorhinal
volume appears to be associated with improved performance in
spatial memory (Chaddock et al., 2010; Heo et al., 2010; Erick-
son et al., 2011). Path-integration maintains permanent tracking
of the direction and distance from some reference point (land-
mark) during navigation in the environment (Hafting et al., 2005)
and involves the activation of the hippocampal and entorhinal
networks.

The mechanisms underlying spatial memory – which is tar-
geted early in AD – have begun to be elucidated recently. Evidence
for certain specific cells supporting spatial cognition in those
hippocampal and entorhinal networks has been shown in ani-
mals. Hippocampal place cells fire in response to several spatial
inputs such as extrinsic landmarks and translational or direc-
tional movement inputs (O’Keefe and Burgess, 1996). Place cells
fire in response to a unique, specified position in the environ-
ment (O’Keefe and Burgess, 1996; Doeller et al., 2010), whereas
grid cells, located in the entorhinal cortex, are firing in multiple
locations of the environment geometrically defined in a Euclid-
ean plane (spatial autocorrelogram; Hafting et al., 2005). This
geometrical superimposition onto a map of the environment is
repeating a pattern of equilateral triangles which “tiles” the space
(Hafting et al., 2005). Therefore, grid cells may be an element of
a global path-integration-based map of the spatial environment.
Their response is modulated by direction and speed of motion
(Doeller et al., 2010). The basic unit of the map is the grid cell,
whose multiple discrete firing fields invariantly form a stable, reg-
ularly tessellating structure of equilateral triangles (Hafting et al.,
2005).

The recently acquired knowledge may be helpful to elucidate
how exercise produces its effects in the brain. Stimulation pro-
vided by external landmarks may be a major player. Persistence of
firing structure after sensory input suggests that operation of the
grids may be based on network mechanisms (Hafting et al., 2005).
The maintenance of grid structure during visual deprivation tar-
gets path-integration as a probable key to the spatial periodicity
(Hafting et al., 2005). In humans, functional MRI suggests that
the signal is modulated by direction and running speed (Doeller
et al., 2010). The grid orientation appears to vary randomly across
individuals, suggesting that the activity of grid cells is independent
of landmarks in the surroundings (Doeller et al., 2010). However,
path-integration is an independent navigational system which may
be functioning without reference to landmarks. Although the map
is anchored to external landmarks (i.e., visual), it persists without
them once acquired (Doeller et al., 2010). Therefore, patients in
whom exercise or sustained physical activity is not possible may
benefit of the input/stimulation by the exploration of a virtual
reality environment. Depending on the importance of the virtual

navigation paradigm in the stimulation process, a virtual training
might enhance hippocampal and entorhinal volume and improve
spatial cognition performance. These effects would presumably be
independent from additional effects brought about by cytokines
and other modulators produced also by exercise, as discussed in
the preceding sections.

EXERCISE AND KINETICS OF NEURONAL DEGENERATION
How does cognitive performance devolve with normal aging?
What is the transition state from normal aging to dementia? Is
there a neurodegenerative continuum, and, if so, what is its pro-
file? Can exercise intervention stop or reverse this continuum
to dementia? It has been thought that extending the lifespan by
slowing down aging may also be associated with an increase in
the rate or likelihood of neurodegenerative processes, e.g., AD
(Kenyon, 2010). However, mutations such as down-regulation of
the insulin/IGF-1 signaling pathway, inhibition of the TOR path-
way, and dietary restriction that slow aging may also postpone
age-related disease (Kenyon, 2010). However, slowing a degen-
erative process might seem like an overwhelming challenge, as
the decline is so pervasive and polyfacetic. Neuron degeneration
in patients with Parkinson’s disease, Huntington’s disease and in
cultured hippocampal neurons is best described by a constant or
exponentially decreasing risk of cell death (Clarke et al., 2000). The
time of death (or apoptosis) of any neuron is a random process.
The kinetics of cell loss may be described by the differential
equation

dX

dt
= −τ(t )× X (1)

where X is a measured variable reflecting the cell damage or
loss, τ (t ) designates the risk of neuron death at time age t, and
can be estimated (Clarke et al., 2000), if the risk is exponentially
decreasing as

τ(t ) = τ0e−a(t−D) (2)

where τ 0(t ) designates the initial probability of cell death, a is a
constant, and D is the delay or time before death begins, or, if the
risk is constant, it may be expressed as

τ(t ) = τ0 (3)

An exponentially decreasing risk indicates that the likelihood of
cell death decreases in direct proportion to the number of the
remaining cells. This type of kinetics may result from an increase in
the concentration of neurotrophic factor, such as β-FGF (Gospo-
darowicz et al., 1985, 1986; Montesano et al., 1986; Morrison et al.,
1986) or from a decrease of the amount of a toxic factor as the
population of cells declines. Interestingly, on Figure 2, modified
from various authors (Fearnley and Lees, 1990, 1991; Clarke et al.,
2000), the initial rapid decline of the remaining cells represents
the critical portion of the curve. The neurodegenerative process
is rapid and the largest amount of neurons is lost during the ini-
tial phase. It is a critical phase in which a mitigation process will
have more impact in preventing the neurodegeneration and the
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FIGURE 2 | Curve describing the kinetics of neuronal death in

neurodegenerative diseases based on an animal model (adapted;

Clarke et al., 2000). There is an exponential decline of neuronal number
in time.

FIGURE 3 |The exercise may halt the neurodegenerative process

depending on the time of intervention.

clinical outcome (Figure 3). Therefore, if the hypothesis is true,
and exercise plays a powerful enough mitigating/palliative role,
it should be performed very early and aggressively, and ideally
prophylactic years before the onset of this process. We can only
speculate when associating the initial portion of the curve with
MCI. Indeed, MCI may only occur when a significant portion
of neurons has already been lost. However, an early mitigation is
likely to have greater impact on the neurodegenerative process and
the symptoms, a consideration that must be addressed aggressively
given the rapidly increasing numbers of patients with MCI and AD
(Kuljiš, 2010a,c).

Impairment in cognitive performance as a result of normal
aging evolves along a continuum (Small et al., 2008). The objective

FIGURE 4 |Time course of the impairment continuum of cognition

(adapted; Small et al., 2008).

cognitive deficits are only minimal during normal aging and if the
patient enters a state of MCI, the slope becomes more pronounced
(Small et al., 2008) a illustrated in Figure 4. MCI often reflects
a transitional state between normal aging cognitive decline and
dementia (Petersen, 2004; Winblad et al., 2004). Insoluble pro-
teins with amyloid properties start to aggregate in plaques Aβ and
neurofibrillary tangles (tau; Glenner, 1980a,b). They have been
observed in autopsy studies of young and middle-aged adults and
they accumulate in a predictable spatial cerebral pattern in normal
aging, MCI and AD albeit rarer in normal aging (Braak and Braak,
1991; Price and Morris, 1999; Petersen et al., 2006). Neurofibrillary
tangles may be observed in the hippocampus in MCI, and spread
to parietal and frontal neocortical areas as MCI advances to AD.
When daily activities of living are altered and the decline includes
other cognitive spheres, dementia is usually diagnosed (Small et al.,
2008). The evolution to AD, as seen in Figure 4, expresses a pro-
gressive continuum. The curve depicting the progressive loss of
cognitive performance ψ(t ) as a function of time, in Figure 4,
may be expressed by the following logarithmic expression

ψ(t ) = −1

Log(B − c × t )
(4)

where B and c are constants. The natural logarithm and expo-
nential functions are inverse functions albeit Eqs 2 and 4 are not
strictly inverse functions. As logical as it may seem, the decline
in cognitive performance may not be proportional to the frac-
tion of cells remaining or to τ (t ), e.g., in the hippocampus.
Rather,ψ(t ) may almost be inversely related to τ (t ) which means
that the performance may still be acceptable while a significant
amount of neuron destruction has already occurred. However,
it may not be legitimate or accurate to equate epidemiologi-
cal studies in humans to animal or cell culture experiments.
The kinetics of decline in cognitive performance and neuronal
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FIGURE 5 | Exercise, growth factors , myokines, Klotho, and potential effects on the brain.

degeneration may only apply to AD, the most common demen-
tia which expresses an insidious onset and a progressive course
of decline. In contrast, vascular dementia is often diagnosed by
abrupt onset, and superimposed cognitive deficits may progress
in a stepwise manner as structural damage due to cerebrovas-
cular disease accumulates (Gascon-Bayarri et al., 2007; Meguro
et al., 2007). Because the transition from MCI to AD requires
a significant amount of time and patent neuronal degeneration
might already be at an advanced stage (Figure 4), the postulate
is to start as early as possible the exercise training when there
is a suspicion of MCI, or when much hoped for pre-symptomatic
markers become positive. This early exercise intervention may pre-
vent further rapid neuronal degeneration at the first portion of the
curve in Figure 4, and potentially slow down or, ideally, reverse
the process.

The situation is certainly more complex since, apart from mere
“cell loss,” the clinical manifestations of neurodegenerative dis-
orders are caused also by less well characterized and even less
understood phenomena. These include dysfunction of the cells
without known anatomical abnormality (e.g., synaptic dysfunc-
tion without synapse loss), synaptic degeneration without neu-
ronal loss, and a likely continuum of neuronal dysfunction that
precedes neuronal death.

CONCLUSION
However, both for simplicity and to illustrate the relatively rig-
orous predictions that can be made on the basis of cell death

alone – for which reasonably well-agreed upon figures exist –
we have provided theoretical calculations that can demonstrate
potentially fruitful experimental algorithms that can help answer
the key questions addressed.

Readers are likely to feel, like us, bewildered by the grow-
ing complexity of this challenging topic, and especially by the
dilemma of how to factor together and prioritize the information
relevant to physical exercise, its role in maintaining and enhanc-
ing cognitive and behavioral abilities, and perhaps even more
so, in palliating and preventing the devastating effects of aging.
The rapidly increasing amount of putative molecular mechanisms
(Figure 5) relevant to this problem is perhaps the most chal-
lenging aspect of this dilemma, but it is by no means the only
essential aspect. The reward for accomplishing an eventual new
synthesis will indeed be vast, but necessitate addressing unresolved
biotechnology and conceptual challenges posed by the Damage
Signals hypothesis of AD pathogenesis (Fernández et al., 2008),
the multi-dimensional formulation of both normal and disordered
cognition (Kuljiš, 2009) and other rapidly redeveloping reformu-
lations on the pathogenesis of dementia, especially on AD, as
decades-old dogmas crumble under the weight of on-going exper-
imental lack of confirmation (Herrup, 2010; Kuljiš, 2010a). In a
nutshell, as more putative mechanisms are proposed, there is no
agreed upon conceptual framework to assemble them together
into a coherent framework that can be implemented into an
experimental testing algorithm that is capable of rigorously refut-
ing this apparent network of mechanisms. This is all made even
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more complex by the fact that such mechanisms span multiple
spatio-temporal and conceptual levels, at least from the molecu-
lar through the evolutionary, passing through the behavioral and
the societal levels (Kuljiš, 2009, 2010a,b). The clearly established
but poorly understood interconnections between physical exer-
cise and cognition/behavior are no exception to this dilemma, but

their study – like the interrelation between dementia and diabetes
(Kuljiš and Šalkovic-Petrišic, 2011) – is quite likely to provide
key conceptual and empirical tools to eventually overcome the
problem, and thus obtain practical solutions to increasingly com-
mon, diseases that compound and mutually worsen each other
and afflict us world-wide (Kuljiš, 2010c).
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