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In current biology, exploring the biological functions of proteins is important. Given the large
number of proteins in some organisms, exploring their functions one by one through
traditional experiments is impossible. Therefore, developing quick and reliable methods for
identifying protein functions is necessary. Considerable accumulation of protein
knowledge and recent developments on computer science provide an alternative way
to complete this task, that is, designing computational methods. Several efforts have been
made in this field. Most previous methods have adopted the protein sequence features or
directly used the linkage from a protein–protein interaction (PPI) network. In this study, we
proposed some novel multi-label classifiers, which adopted new embedding features to
represent proteins. These features were derived from functional domains and a PPI
network via word embedding and network embedding, respectively. The minimum
redundancy maximum relevance method was used to assess the features, generating
a feature list. Incremental feature selection, incorporating RAndom k-labELsets to
construct multi-label classifiers, used such list to construct two optimum classifiers,
corresponding to two key measurements: accuracy and exact match. These two
classifiers had good performance, and they were superior to classifiers that used
features extracted by traditional methods.
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1 INTRODUCTION

Protein is a major component associated with the maintenance of normal physical functions in cells
(Milo, 2013). As the essential regulator and effector for almost all living creatures with cellular
structures, proteins participate in physical biological processes in two major approaches (Aebersold
and Mann, 2016). First, proteins contribute to the regulation of essential biological functions.
According to recent publications, proteins are associated with various biological processes, including
cell proliferation (Üretmen Kagıalı et al., 2017), enzyme-mediated metabolic processes (Davidi and
Milo, 2017), DNA replication (Mughal et al., 2019), cell signaling via ligand binding (Hotamisligil
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and Davis, 2016), and responses to internal or external
stimulations (Chivasa and Slabas, 2012), all of which are quite
complex and essential functions for living creatures. In addition,
proteins can construct basic cellular structures (Aebersold and
Mann, 2016), maintain the stability of cellular
microenvironment, and participate in the formation of
complex macrostructures of living creatures, such as hairs and
nails. Considering the significance of proteins for living creatures,
their biological functions and related detailed underlying
mechanisms have been widely studied as an irreplaceable field
in current biological studies.

Different kinds of proteins in humans are generated by 19823
predicted or confirmed protein-coding genes (Beck et al., 2011;
Milo, 2013). For mouse, as a widely used experimental model,
several proteins are translated from approximately 12300 specific
protein-coding genes and their isoforms (Church et al., 2009).
Therefore, considering the large number of proteins in humans
and mice, exploring protein functions by analyzing all candidate
proteins one by one through traditional experiments is
impossible. For the systematic study of protein functions,
computational methods and databases are introduced. Early in
2004, Ruepp et al. have already presented an effective and
simplified annotation scheme for systematic classification of
proteins (Ruepp et al., 2004). Using such annotation tools,
proteins can be clustered into 24 functional categories. The
final summary of these 24 categories is generated by balancing
manual operative convenience, categorial specificity, and
adaptability for further downstream analyses. Therefore,
annotating proteins with these 24 categories may be an
efficient and convenient way for the exploration of initial
protein function.

However, in the presence of clusters and related annotated
proteins, computational methods for classification may also be
necessary for further systematic protein function explorations. In
2011, Hu et al. proposed two computational methods, namely,
network-based and hybrid-property methods, to identify the
functions of mouse proteins among the aforementioned 24
categories (Hu et al., 2011). The final method integrated these
two methods in a way that the network-based method was
initially applied to make prediction; if this method cannot
provide predicted results, then the hybrid-property method
would make further prediction. In addition, Huang et al.
provided three computational methods for the prediction of
mouse protein functions based on the 24 candidate categories
(Huang et al., 2016). Considering the biochemical properties of
proteins and specific functioning approaches for most proteins
via protein–protein interactions (PPI), three methods were
presented for functional annotation/prediction: 1) sequence
similarity-based prediction, 2) weighted PPI-based prediction,
and 3) sequence recoding-based prediction using PseAAC (Shen
and Chou, 2008). The two above-mentioned studies all used
mouse proteins and their functional categories reported in the
Mouse Functional Genome Database (MfunGD, http://mips.gsf.
de/genre/proj/mfungd/) (Ruepp et al., 2006). However, the
above-mentioned methods were not absolute multi-label
classifiers as they can only provide the category sequence.
Moreover, determining predicted categories for a query

protein remains a problem. This study continued doing some
work in this field. Furthermore, Zhang et al. developed
I-TASSER/COFACTOR method for neXtProt project to
predict GO functions of proteins based on their structures and
interactions (Zhang et al., 2018; Zhang et al., 2019). NetGO
(https://issubmission.sjtu.edu.cn/ng2/) predicted protein
functions by integrating massive sequence, text, domain/family
and network information with Naïve GO term frequency,
BLAST-KNN, LR-3mer, LR-InterPro, LR-ProFET, Net-KNN,
LR-text and Seq-RNN (You et al., 2019; Yao et al., 2021).

This study also adopted mouse proteins and their function
annotations reported in MfunGD. For each protein, we extracted
features from two aspects. On the one hand, embedding features
derived from functional domains of proteins were extracted,
which can indicate the essential properties of proteins. The
functional domains were retrieved from the InterPro database
(Blum et al., 2021), and features were obtained by a natural
language processing method, Word2vec (Mikolov et al., 2013;
Church, 2017). On the other hand, other embedding features
were obtained from a PPI network, which contained the linkage
information to other proteins. We used the PPI network reported
in STRING (Szklarczyk et al., 2015), and Node2vec (Grover and
Leskovec, 2016) was applied to such network to obtain
embedding features. Embedding features were collected to
represent all mouse proteins. Afterward, a feature selection
procedure, including the minimum redundancy maximum
relevance (mRMR) method (Peng et al., 2005) and
incremental feature selection (IFS) (Liu and Setiono, 1998),
was designed to select essential embedding features. These
features were inputted to RAndom k-labELsets (RAKEL)
(Tsoumakas and Vlahavas, 2007) using a support vector
machine (SVM) (Cortes and Vapnik, 1995) or random forest
(RF) (Breiman, 2001) as the base classifier to construct the multi-
label classifiers. The comparison results indicated that our
classifiers were superior to classifiers using traditional protein
features.

2 METHODS AND MATERIALS

This study aimed to predict the functions of mouse proteins. First,
we usedWord2vec and Node2vec to obtain embeddings of mouse
proteins and identify the essential embedding features via the
mRMRmethod. Then, we applied RAKEL, incorporating SVM or
RF as the base classifier, to IFS to construct good multi-label
classifiers.

2.1 Dataset
The original mouse proteins and their functions were sourced
from a previous study (Hu et al., 2011), which were downloaded
from MfunGD (Ruepp et al., 2006). The functions of proteins
were determined by manual annotation of the literature and GO
annotation (Ashburner and Lewis, 2002; Camon et al., 2003).
After excluding proteins without functional domain or
interaction information, 9655 proteins were obtained. These
mouse proteins were further processed by CD-HIT (Fu et al.,
2012) with cutoff of 0.4. 6950 mouse proteins were kept. These
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proteins were classified into 24 functional categories, which are
listed in the second column of Table 1. In this table, the number
of proteins in each category is also provided (last column of
Table 1). The total number of proteins in all categories was 21584,
which was higher than the number of different proteins (6950),
indicating that several proteins were in more than one category.
Among 6950 proteins, 1299 proteins belonged to exact one
functional category, whereas others belonged to two or more
categories, and no proteins belonged to more than fifteen
categories. The distribution of 6950 proteins based on the
number of categories that they belonged to is shown in

Figure 1. Accordingly, assigning functional labels to mouse
proteins was a multi-label classification problem.

To fully evaluate the final classifiers, 6950 proteins were
divided into one training dataset and one test dataset, where
the training dataset contained 5560 (80%)mouse proteins and the
test dataset consisted of 1390 (20%) proteins. The distribution of
proteins in training and test datasets based on the number of
categories that they belonged to is shown in Figure 1. For
convenience, the training and test datasets were denoted as Str
and Ste, respectively. The number of proteins in Str and Ste for each
functional category is also listed in Table 1.

2.2 Feature Extraction
In this study, a novel feature representation scheme was
presented to encode each mouse protein. This scheme
extracted two types of embedding features. The first type of
features was derived from functional domains of proteins,
whereas the second one was obtained from a PPI network.

2.2.1 Features Derived From a Functional Domain
Using Word2vec
Functional domain is a type of information, which is widely used
to study various protein-related problems (Cai and Chou, 2005;
Xu et al., 2008; Chen et al., 2010; Zhou et al., 2017). One-hot is the
classic scheme to extract features from the functional domain. In
such scheme, each protein was encoded into a binary vector.
However, the model based on features obtained by this scheme
was quite sensitive to some domains. Here, we adopted natural
language processing to extract features. The functional domain

TABLE 1 | Number of proteins in each functional category.

Index Category Number of Proteins

Training dataset Test dataset Overall

1 METABOLISM 1152 280 1432
2 ENERGY 247 64 311
3 CELL CYCLE AND DNA PROCESSING 473 124 597
4 TRANSCRIPTION 906 229 1135
5 PROTEIN SYNTHESIS 213 45 258
6 PROTEIN FATE (folding, modification, destination) 983 234 1217
7 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT (structural or catalytic) 3316 868 4184
8 REGULATION OF METABOLISM AND PROTEIN FUNCTION 414 102 516
9 CELLULAR TRANSPORT, TRANSPORT FACILITIES AND TRANSPORT ROUTES 915 227 1142
10 CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM 1228 328 1556
11 CELL RESCUE, DEFENSE AND VIRULENCE 318 76 394
12 INTERACTION WITH THE ENVIRONMENT 501 138 639
13 SYSTEMIC INTERACTION WITH THE ENVIRONMENT 488 149 637
14 TRANSPOSABLE ELEMENTS, VIRAL AND PLASMID PROTEINS 3 1 4
15 CELL FATE 550 171 721
16 DEVELOPMENT (Systemic) 421 127 548
17 BIOGENESIS OF CELLULAR COMPONENTS 287 68 355
18 CELL TYPE DIFFERENTIATION 146 39 185
19 TISSUE DIFFERENTIATION 144 37 181
20 ORGAN DIFFERENTIATION 237 53 290
21 SUBCELLULAR LOCALIZATION 3920 947 4867
22 CELL TYPE LOCALIZATION 80 15 95
23 TISSUE LOCALIZATION 82 26 108
24 ORGAN LOCALIZATION 168 44 212

Sum number of proteins in all categories 17,192 4392 21,584
Number of different proteins 5560 1390 6950

FIGURE 1 | Distribution of training, test and overall samples based on
the number of categories that they belong to. Several samples belong to two
or more categories.
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information of all mouse proteins was retrieved from the InterPro
database (http://www.ebi.ac.uk/interpro/, October 2020) (Blum
et al., 2021). A total of 16,797 domains were involved. Eachmouse
protein was annotated by at least one domain. Domains were
regarded as words and proteins annotated by some domains as
sentences. Word2vec (Mikolov et al., 2013; Church, 2017) was
used to obtain embedding features of each domain. Its brief
description was shown as follows.

Word2vec was widely used to generate word embeddings in
natural language processing. It established the mapping of words
to part-of-speech relationships and converted words into fixed-
length real-valued vectors. The similarity of the words can be
measured and characterized by the similarity of vector space.
When using Word2vec, the word vector and sentence vector of
features must be calculated. The probability of feature wi of
sentence j in category n is defined as follows:

Pn,j(wi) � fn(wi)∑n∈Nfn(wi) (1)

wherefn(wi) indicates the frequency of featurewi in the sentence
of category n. Then, the weight of feature wi can be normalized as
follows:

ωi �
exp(Pn,j(wi) + 1)
∑exp(Pn,j(wi) + 1) (2)

The sentence vector of sentence j in category n is given as
follows:

Vn,j � 1
fj

∑m

i�1ωiW(wi) (3)

where fj represents the frequency of features in sentence j, and
W(wi) indicates the word vector of feature wi. After calculating
word vector W(wi) and sentence vector Vn,j of feature wi, the
importance of feature wi in the sentence can be measured by the
distance between the word vector and the sentence vector of
feature wi by using the cosine distance:

dis(Vn,j, W(wi)) � cos(Vn,j, W(wi))
� Vn,j W(wi)∣∣∣∣Vn,j|p|W(wi)

∣∣∣∣
(4)

The feature, whose distance value was within the scale, can be
selected on the basis of the ratio of feature selection to achieve the
purpose of screening and distinguishing multiple categories.

This study used the Word2vec program reported in genism
(https://github.com/RaRe-Technologies/gensim). This program
was performed with its default parameters. As mentioned
previously, each domain was called as a word. Thus, by
applying the Word2vec program, a 256-D feature vector was
assigned to each domain. The feature vector of a mouse protein
was defined as the average vector of feature vectors of domains,
which was annotated on such protein. For convenience, such
features were called domain embedding features.

2.2.2 Features Derived From a Protein–Protein
Interaction Network Using Node2vec
The above-mentioned embedding features of proteins were
extracted from the essential properties of proteins. They
cannot reflect the relationship among proteins. Recently,
several network embedding algorithms, such as DeepWalk
(Perozzi et al., 2014), Node2vec (Grover and Leskovec, 2016),
and Mashup (Cho et al., 2016), have been proposed, which can
abstract linkages in one or more networks and obtain a feature
vector for each node. Features accessed in this way contained
quite different information from those derived from essential
properties of samples. The combination of these two types of
features may fully represent each sample. To date, several models
with features derived by network embedding algorithms have
been set up to investigate different biological problems (Luo et al.,
2017; Zhao et al., 2019; Zhou JP. et al., 2020; Pan et al., 2021a; Pan
et al., 2021b; Liu et al., 2021; Zhu et al., 2021; Yang and Chen,
2022). In this study, we selected Node2vec to extract embedding
features of pdsluroteins.

A network was necessary to execute Node2vec. Here, we used
the PPI network reported in STRING (version 10.0) (Szklarczyk
et al., 2015). The PPI information of mouse was first downloaded
from STRING. Each PPI contained two proteins, encoded by
Emsenbl IDs, and one confidence score. Such score was obtained
by investigating several aspects of proteins, such as close
neighborhood in genomes, gene fusion, occurrence across
different species, gene coexpression, literature description, etc.
Thus, it can widely assess the relationship among proteins.
Accordingly, the PPI network used proteins as nodes, and two
nodes were connected by an edge if and only if their
corresponding proteins can constitute a PPI that had a
confidence score larger than 0. Furthermore, we placed weight
on each edge, which was defined as the confidence score of the
corresponding edge. The PPI network contained 20684 nodes and
2849682 edges.

Node2vec was applied to the above-mentioned PPI network to
obtain embedding features of proteins. Node2vec can be deemed
as a network version of Word2vec. It produced several paths by
setting each node in the network as the starting point. Each path
was extended by considering the neighbors of the current end
point. After generating a predefined number of paths, the nodes
in each path were called as words, whereas each path was
considered as a sentence. A feature vector was obtained for
each node through Word2vec.

In this study, we used the Node2vec program downloaded
from https://snap.stanford.edu/node2vec/. For convenience,
default parameters were used. Such program was performed
on the mouse PPI network. The dimension was set to 500.
Finally, each mouse protein was represented by a 500-D
feature vector. Features derived from PPI network via
Word2vec were called network embedding features.

By combining the domain and network embedding features
derived from functional domains of proteins and a PPI network, a
756-D feature vector was obtained to represent each mouse
protein.
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2.3 Feature Selection
The embedding features obtained by Word2vec and Node2vec
were concatenated as the final representation of a protein. We
obtained a 756-D vector for each protein. Evidently, some
features may be important for assigning functional labels to
mouse protein, whereas others were not. Therefore, using a
feature selection procedure is necessary to screen out essential
features. As several proteins had two or more functional labels,
that is, they belonged to two or more functional categories, the
original dataset, in which samples were assigned to multiple
labels, was transformed into a new dataset in the following
manner. If one sample had multiple labels, then this sample
would be copied multiple times with different single labels. Then,
each sample in the new dataset had only one label.

2.3.1 Minimum Redundancy Maximum Relevance
All features were analyzed by the mRMR method (Peng et al.,
2005). Such method evaluated the importance of features by
assessing their relevance to class labels and redundancies to other
features. A feature list, known as the mRMR feature list, was
produced by the mRMR method. This list was produced by
selecting features one by one. Initially, the list was empty. A
feature with maximum relevance to class labels and minimum
redundancies to features already in the list was selected and
appended to the list. When all features were in the list, the
procedures stopped. Evidently, features with high ranks
implied that they had high relevance to class labels and low
redundancies to other features. Thus, some top features in such
list can comprise a compact feature space for a certain
classification algorithm.

The current study used the mRMR program downloaded from
http://penglab.janelia.org/proj/mRMR/. It was performed with its
default parameters.

2.3.2 Incremental Feature Selection
The mRMR method only generated a feature list. However,
selecting the features for constructing the model remained a
challenge. Here, IFS (Liu and Setiono, 1998) was used.

Given a feature list (e.g., mRMR feature list), IFS constructed
all possible feature subsets. Each subset included some top
features in the list. Of each feature subset, a classifier was set
up and assessed by a cross-validationmethod (Kohavi, 1995). The
feature subset with the best performance can be obtained.
Features in such subset were called optimum features, whereas
the classifier using these features was called the optimal classifier.

2.4 Multi-Label Classifier
As mentioned in Section 2.1, several proteins were in multiple
functional categories. A multi-label classifier should be
constructed to assign mouse proteins into functional
categories. In general, two schemes were used to construct
multi-label classifiers. The first one was problem
transformation. It converted the original multi-label
classification problem into some single-label classification
problems. The second one was algorithm adaption. It
extended specific single-label classifiers to deal with multi-label

classification problems. This study adopted the first one to
construct the multi-label classifier.

The powerful multi-label classification method, RAKEL
(Tsoumakas and Vlahavas, 2007), was used to construct the
multi-label classifier. Given a problem containing l labels
(l=24 in this study), denoted by L1, L2, . . . , Ll, RAKEL
randomly produced m label subsets that contained k labels,
where m and k were the main parameters of RAKEL. For each
label subset, the power set was generated, and the members of
this set were deemed as new labels. Based on the original labels
of one sample, a new label in the power set was assigned to
such sample. For example, suppose that the label subset
contained three labels, say L1, L2 and L3 and a sample had
three labels, say L1, L3 and L5. In this case, this sample was
assigned a new label {L1, L3}, which was a member of the
power set of the label subset. With such operation, each
sample had only one label. Accordingly, a single-label
classifier with a base classifier can be set up. RAKEL
integrated (m) such single-label classifiers as the final
multi-label classifier.

This study used “RAkEL” in Meka (http://waikato.github.io/
meka/) (Read et al., 2016). Such tool obtained by the RAKEL
method was used to construct multi-label classifiers. The
parameters m and k were all set to 10.

2.5 Base Classifiers
In this study, RAKEL was used to construct the multi-label
classifier. It needed a base classifier to construct multiple
single-label classifiers, which would be integrated into the final
multi-label classifier. Here, two classic base classifiers, namely,
SVM (Cortes and Vapnik, 1995) and RF (Breiman, 2001), were
used, which were widely applied in tackling many biological
problems (Kandaswamy et al., 2011; Nguyen et al., 2015; Chen
et al., 2017; Zhou JP. et al., 2020; Zhou J.-P. et al., 2020; Liang
et al., 2020; Liu et al., 2021; Onesime et al., 2021;Wang et al., 2021;
Zhu et al., 2021; Chen et al., 2022; Ding et al., 2022; Li et al., 2022;
Wu and Chen, 2022).

2.5.1 Support Vector Machine
SVM was a supervised learning method using statistical learning
theory. It can find an optimum hyperplane, which has a
maximum margin between the two types of samples, in the
N-dimensional space (N represented the number of features)
using a Kernel technology (such as a Gaussian kernel), which can
map data points to a given category for data classification
prediction. The generalization error gradually decreased as the
margin increased. A “one-to-one” strategy of SVM corresponded
to the binary problem. When the problem extended to multiple
classes, the strategy of SVM also changed to a “one-versus-the-
rest” strategy.

This study used tool “SMO” integrated in Meka, which
implemented a type of SVM. Moreover, this SVM was
optimized by Sequential Minimization Optimization (SMO)
algorithm (Platt, 1998). Default parameters were adopted. The
kernel was a polynomial function and the regularization
parameter C was set to 1.
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2.5.2 Random Forest
RF was a classic classifier used to process classification and regression
problems, which was a general machine learning algorithm widely
used in bioinformatics. It contained several decision tree classifiers,
and subtle differences can be observed among these decision trees. RF
determined its output class by aggregating votes produced by
different decision trees. Compared with the decision tree, RF can
avoid the overfitting problem and improve the performance.

Likewise, this study used the “RandomForest” tool integrated
in Meka, which implemented RF. For convenience, default
parameters were used, where the number of decision trees was
set to 100.

2.6 Performance Measurement
K-fold cross-validation (Kohavi, 1995) is a widely used method to
assess the performance of classifiers. In this method, samples are
randomly and equally divided into K partitions. One partition is
singled out as test dataset one by one, which is used to test the
performance of classifier based on rest partitions. Accordingly,
each sample is tested only once. The comparison of predicted
labels and true labels can lead to some measurements to indicate
the performance of classifiers. In this study, we selected 10-fold
cross-validation to test all multi-label classifiers.

After the 10-fold cross-validation, each sample was assigned
with one or more labels. Some measurements can be computed to

assess the predicted results. As a multi-label classifier, accuracy
and exact match were the widely used measurements (Zhou JP.
et al., 2020; Zhou J.-P. et al., 2020; Pan et al., 2021b; Chen et al.,
2021; Tang and Chen, 2022). They can be calculated using the
following equations:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Accuracy � 1
n
∑n
i�1
(||Li ∩ L′

i||
||Li ∪ L′

i||
)

Exact match � 1
n
∑n
i�1
Θ(Li, L

′
i)

(5)

where n stands for the number of samples; Li and L’i denote the set
consisting of true labels and predicted labels of the i-th sample,
respectively; Θ(Li, L’i) is defined as follows:

Θ(Li, L
′
i) � { 1, If L′

i is identical to Li

0, Otherwise.
(6)

Evidently, the higher the accuracy or exact match, the higher
the performance.

3 RESULTS AND DISCUSSION

In this study, some novel multi-label classifiers were proposed to
identify the functions of mouse proteins. The entire procedures

FIGURE 2 | Entire procedures to construct the multi-label classifiers for predicting functions of mouse proteins. Mouse proteins and their function annotations are
retrieved from MfunGD. These proteins are randomly divided into one training dataset and one test dataset. Embedding features were derived from protein functional
domains and protein–protein interaction network through Word2vec and Node2vec, respectively. A feature selection procedure is used to analyze embedding features,
and essential features are fed into RAKEL to construct the multi-label classifiers. Proteins in the test dataset are fed into these classifiers to further evaluate their
performance.
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are shown in Figure 2. In this section, we provided the detailed
results of all procedures and made some comparisons to elaborate
the unity of the classifier.

3.1 Results of the mRMR Method on
Training Dataset
Each protein in Str was represented by 756 embedding
features. These features were analyzed by the mRMR
method, resulting in a feature list, which is called the
mRMR feature list. This list is provided in Supplementary
Table S1.

3.2 Results of IFS on Training Dataset
Based on the mRMR feature list provided in Supplementary
Table S1, IFS was used to construct several feature subsets
and set up a multi-label classifier on each feature subset.
Each multi-label classifier was set up with RAKEL, and the
SVM or RF was selected as the base classifier. 10-fold cross-
validation was used to assess the performance of each
classifier. The predicted results were assessed by calculating
the accuracy and exact match, as mentioned in Section 2.6,
which are available in Supplementary Table S2. Some IFS
curves are plotted in Figure 3 to show the performance of
multi-label classifiers with different base classifiers and
feature subsets, where the X-axis represented the number
of features, and the Y-axis represented the accuracy or
exact match.

As shown in Figure 3A, when the base classifier was RF, the
highest accuracy was 0.542, which was produced by using the
top 702 features in the list. Thus, we can construct an
optimum multi-label classifier with these features and RF.
As for another base classifier SVM, the highest accuracy was
also 0.542, which was produced by using the top 746 features.
An optimum multi-label classifier with SVM can be built
using these features. Above two optimum classifiers provided
the same accuracy. However, the exact match of the classifier
with RF was 0.182 and that of the classifier with SVM was
0.179. Accordingly, the optimum multi-label classifier with
RF can be deemed to be superior to the optimum multi-label

classifier with SVM. When accuracy was used as the key
measurement, we can construct a multi-label classifier using
the top 702 features and RF. However, the efficiency of such
classifier was not very high because lots of features were
involved in such classifier. From Figure 3A, we can see that
the IFS curve of RF followed a sharp increasing trend when a
few features were used. It can quickly provide a quite high
accuracy using much less features than SVM. By carefully
checking accuracy listed in Supplementary Table S2 and
Figure 3A, we can find that when top 48 features were
adopted, the classifier with RF can yield the accuracy of
0.530, which was only a little lower than that of the
optimum classifier. Such classifier can be picked up as a
tool to predict functions of query mouse proteins.

For the exact match, two IFS curves corresponding to two
different base classifiers are plotted in Figure 3B, from which
we can see that the base classifier RF generated the highest
exact match of 0.186 when the top 690 features were
used, whereas SVM yielded the highest exact match of
0.179 when the top 445 features were used. Evidently, the
best multi-label classifier with RF was superior to the best
multi-label classifier with SVM when exact match was
regarded as the key measurement. Accordingly, we can
construct a multi-label classifier using the top 690 features
and RF. The same problem also existed for such classifier,
i.e., low efficiency. It can be observed from Figure 3B that the
IFS curve of RF was quite similar to that in Figure 3A. The
increasing trend was much sharper at the beginning of the
curve than that of IFS curve of SVM. This meant that RF can
provide a high exact match using a small number of features.
When top 53 features were used, the classifier with RF can
produce exact match of 0.170, which was a little lower than
that of the best multi-label classifier with RF. Accordingly,
such classifier can be an efficient tool to identify functions of
mouse proteins.

As previously mentioned, different key measurements can lead
to different multi-label classifiers. For different prediction
purposes, users can select the key measurement and use the
corresponding classifier. The performance of above-mentioned
classifiers is listed in Tables 2, 3.

FIGURE 3 | IFS curves on embedding features using different classification methods. (A) Accuracy is set to the Y-axis. (B) Exact match is set to the Y-axis.
RAKEL_RF/RAKEL_SVM indicates that RAKEL with RF/SVM as the base classifier is used to construct the multi-label classifiers.
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3.3 Distribution of Embedding Features
Used in Two Efficient Classifiers
Two efficient classifiers were constructed as mentioned above, which
can be efficient tools for identification of protein functions. 48 and 53
embedding features were involved in these two classifiers,
respectively. Their distributions on domain and network
embedding features are shown in Figure 4. For the classifier with
48 features, 13 were domain embedding features, whereas 35 were
network embedding features. As for that with 53 features, similar
results can be observed (14 for domain embedding features and 39 for

network embedding features). These results indicated that network
embedding features gave more contributions for constructing two
classifiers. However, domain embedding features were also
important. Their combination was one important reason why
these two classifiers yielded such good performance.

3.4 Performance of Classifiers on Test
Dataset
Based on accuracy and exact match, three multi-label classifiers
were built, respectively. These classifiers were further evaluated

TABLE 2 | Accuracy of the important multi-label classifiers with different features on training and test datasets.

Method Feature Number of Features Accuracy

Training dataset Test dataset

RAKEL_RF Embedding features 702 0.542 0.536
RAKEL_SVM Embedding features 746 0.542 0.537
RAKEL_RF Embedding features 48 0.530 0.530
RAKEL_RF Domain features 26 0.429 0.426
RAKEL_SVM Domain features 27 0.429 0.428
RAKEL_RF Linkage features 233 0.462 0.460
RAKEL_SVM Linkage features 234 0.432 0.424
RAKEL_RF Domain and linkage features 221 0.470 0.462
RAKEL_SVM Domain and linkage features 227 0.449 0.433

TABLE 3 | Exact match of the important multi-label classifiers with different features on training and test datasets.

Method Feature Number of Features Exact match

Training dataset Test dataset

RAKEL_RF Embedding features 690 0.186 0.171
RAKEL_SVM Embedding features 445 0.179 0.157
RAKEL_RF Embedding features 53 0.170 0.159
RAKEL_RF Domain features 25 0.077 0.078
RAKEL_SVM Domain features 29 0.075 0.077
RAKEL_RF Linkage features 158 0.130 0.123
RAKEL_SVM Linkage features 225 0.113 0.104
RAKEL_RF Domain and linkage features 201 0.135 0.130
RAKEL_SVM Domain and linkage features 215 0.132 0.111

FIGURE 4 | Distribution of embedding features used in two efficient classifiers. (A) Distribution of embedding features used in the classifier selected by accuracy.
(B) Distribution of embedding features used in the classifier selected by exact match.
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on Ste. Their performance is listed in Tables 2, 3. For the three
classifiers selected by accuracy, the optimum classifiers with RF or
SVM yielded the accuracies of 0.536 and 0.537 (Table 2),
respectively, which were slightly lower than those on Str. The
accuracy of the efficient classifier with RF produced the accuracy
of 0.530 (Table 2), same as that on Str. These results indicated that
the generalization of these classifiers was quite good. As for the
three classifiers selected by exact match, they provided exact
match values of 0.171, 0.157 and 0.159 (Table 3), respectively.
They were lower than those on Str. However, the decrease was in
an acceptable range. Thus, the generalization of these classifiers
was also satisfied.

3.5 Comparison With Other Classifiers
In this study, we adopted a novel set of features to represent each
mouse protein and constructed some multi-label classifiers to
predict their functions. This section adopted some classic features
to construct the classifiers and make some comparisons.

Two types of embedding features were used in this study. They
were derived from the protein functional domain and PPI
network. For the protein functional domain, the classic usage
of encoding proteins was the one-hot scheme. In detail, a protein

was encoded into a binary vector under such scheme. Each
domain was used as a dimension, and the component was set
to one if the protein had the corresponding domain annotation;
otherwise, the component was set to zero. Here, 16797 domains
were involved, inducing a 16797-D binary vector for each mouse
protein. For an easy description, these features were called as
domain features in this study. As for the PPI network, such
information can be directly used by selecting all linkages between
a protein and all proteins in the network and collecting them in a
vector to encode the protein. Accordingly, each mouse protein
was represented by a 20684-D vector, as 20684 proteins were
found in the PPI network. These features were called as linkage
features. Each mouse protein was represented by domain features
or linkage features or both of them, inducing three
representations of proteins. We investigated the performance
of classifiers on each protein representation.

As previously mentioned, proteins were represented by lots of
features in each representation. A feature selection procedure was
necessary. However, given the large number of features, we first
adopted Bortua (Kursa and Rudnicki, 2010; Zhang et al., 2021) to
exclude irrelevant features. 37 and 243 features were selected by
Bortua for domain and linkage feature representations,

FIGURE 5 | IFS curves on domain features using different classification methods. (A) Accuracy is set to the Y-axis. (B) Exact match is set to the Y-axis. RAKEL_RF/
RAKEL_SVM indicates that RAKEL with RF/SVM as the base classifier is used to construct the multi-label classifiers.

FIGURE 6 | IFS curves on linkage features using different classification methods. (A) Accuracy is set to the Y-axis (B) Exact match is set to the Y-axis. RAKEL_RF/
RAKEL_SVM indicates that RAKEL with RF/SVM as the base classifier is used to construct the multi-label classifiers.
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respectively. When domain and linkage features were combined
together to encode mouse proteins, 236 features were kept by
Bortua. Then, these remaining features were evaluated by the
mRMR method, resulting in an mRMR feature list for each
representation. IFS was used to construct optimum multi-label
classifiers for accuracy and exact match. We still used RAKEL to
construct the classifiers, and SVM or RF was selected as the
base classifier. The IFS results are provided in Supplementary
Tables S3-S5. Likewise, some IFS curves are plotted in
Figures 5–7.

The best accuracies for different base classifiers on Str are
listed in Table 2, in which those obtained by embedding
features are also provided. When the base classifier was RF,
the accuracies obtained by domain features, linkage features
and both of them were all lower than 0.5, which were much
lower than those of the classifiers on embedding features.
Furthermore, the base classifier (SVM) yielded similar results
(see Table 2). As for the exact match, the best values for
different base classifiers are listed in Table 3, in which those
obtained by embedding features are also listed. Evidently, the
exact match obtained by embedding features was also higher
than that obtained by domain features or linkage features or
both of them regardless of the base classifier used (RF or
SVM). The improvement was at least 3%. Furthermore, from
Tables 2, 3, the classifiers with embedding features also
yielded better performance on test dataset Ste than those
with domain features or linkage features or both of them.
All above results indicated that the novel features used in this
study were more efficient than the features produced by
traditional methods in predicting protein functions. In
addition, it can be observed from Tables 2, 3 that when
domain and linkage features were combined to represent
proteins, the classifiers were always better than those only
using domain features or linkage features. This fact indicated
that combination of the domain and network information of
proteins can improve the performance of classifiers. These
two types of information can complement each other in
predicting functions of proteins.

4 CONCLUSION

In this paper, we proposed some multi-label classifiers to predict
the functions of mouse proteins. These classifiers adopted novel
features, which were derived from protein functional domains
and the PPI network via word embedding and network
embedding, respectively. The performance of the classifiers
was better than those using features extracted by traditional
methods, thereby indicating that the novel features have
stronger discriminative power. Therefore, the newly proposed
classifiers can be used to predict protein functions, and such
novel features can be used to tackle other protein-related
problems.
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