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Abstract: Lung adenocarcinoma cells express high levels of ALDH1L1, an enzyme of the one-carbon
pathway that catalyzes the conversion of 10-formyltetrahydrofolate into tetrahydrofolate and
NAD(P)H. In this study, we evaluated the potential of ALDH1L1 as a therapeutic target by deleting the
Aldh1l1 gene in KrasLA2 mice, a model of spontaneous non-small cell lung cancer (NSCLC). Reporter
assays revealed KRAS-mediated upregulation of the ALDH1L1 promoter in human NSCLC cells.
Aldh1l1−/− mice exhibited a normal phenotype, with a 10% decrease in Kras-driven lung tumorigenesis.
By contrast, the inhibition of oxidative phosphorylation inhibition using phenformin in Aldh1l1−/−;
KrasLA2 mice dramatically decreased the number of tumor nodules and tumor area by up to 50%.
Furthermore, combined treatment with pan-ALDH inhibitor and phenformin showed a decreased
number and area of lung tumors by 70% in the KrasLA2 lung cancer model. Consistent with this,
previous work showed that the combination of ALDH1L1 knockdown and phenformin treatment
decreased ATP production by as much as 70% in NSCLS cell lines. Taken together, these results
suggest that the combined inhibition of ALDH activity and oxidative phosphorylation represents a
promising therapeutic strategy for NSCLC.
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1. Introduction

Although KRAS is the gene most frequently mutated in lung adenocarcinoma, an effective
KRAS-targeted therapy has not yet been developed [1,2]. Developing drugs to target KRAS
mutations was known as “undruggable”. For years, alternative approaches have developed targeted
agents affecting the signaling cascades downstream of RAS, such as MAPK and PI3K pathways.
BRAF inhibitors (vemurafenib and dabrafenib) [3] and dual specificity MEK1/MEK2 inhibitors
(trametinib and combimetinib) [3] have been approved as single agents. Recent promising advances in
targeting KRAS G12C, such as AMG510 [4], have increased hope for approval in clinical trials as a
clinical agent.

Oncogenic KRAS promotes cellular survival, proliferation, migration, autophagy, anabolic
metabolism, and changes in the microenvironment [5,6]. The metabolic flux into the non-oxidative
pentose phosphate pathway increases nucleic acid biosynthesis and activates hexosamine biosynthesis
and the glycolytic pathway [7]. Bioinformatics analysis of metabolic enzymes in non-small cell
lung cancer (NSCLC) revealed upregulation of aldehyde dehydrogenase (ALDH) isoforms including
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ALDH1L1 [8,9]. Analysis of ALDH1L1 expression by immunohistochemical staining showed that
NSCLC cancer patients showed a higher expression level than normal control showed [10]. In folate
metabolism, ALDH1L1 (10-formyltetrahydrofolate dehydrogenase; EC 1.5.1.6), one of the most abundant
folate-binding proteins [11], plays a role in converting 10-formyl-tetrahydrofolate (THF) to THF and
CO2 with production of NAD(P)H, resulting in reduced purine synthesis in normal cells [12]. However,
when mitochondrial folate metabolism is dysregulated, the cytosolic folate pathway in which ALDH1L1
participates can support purine synthesis and proliferation in the opposite manner [12]. Formation of
THF through oxidation of 10-formyl-THF, catalyzed by ALDH1L1, contributes to recycling of THF for
purine synthesis [13]. Folate metabolism is an important metabolic pathway that produces one-carbon
units for nucleic acid synthesis [14]. In addition, ~50% of NAD(P)H production in cancer cells depends
on the 10-formyl-THF-pathway [15]. Hence, we investigated whether KRAS induces ALDH1L1 to
promote tumor growth. Subsequently, we assessed whether ALDH1L1 could have the potential to be a
therapeutic target by analyzing the effect of Aldh1l1 deletion in KrasLA2 mice, a surrogate model of
human NSCLC.

2. Results

2.1. Aldh1l1 Expression is Associated with KRAS Mutation in Lung Cancer Cell Lines

We examined the KRAS-mutant NSCLC cell lines A549 (G12S), H460 (Q61H), H23 (G12C),
and HOP-62 (G12C), as well as the KRAS wild-type (WT) lines H1299 and H1975. To confirm that KRAS
mutation was correlated with ALDH1L1 expression, we treated KRAS-mutant NSCLC cells with KRAS
siRNA (Figure 1a). The silencing of KRAS reduced ALDH1L1 levels by 70%, 70%, 60%, and 70% in H23,
HOP-62, H490, and A549, respectively. Next, we confirmed that ALDH1L1 expression was increased
by the overexpression of mutant KRAS (Figure 1b). When the KRAS WT line H1299 was transfected
with WT or mutant (G12D) KRAS, the level of ALDH1L1 increased 2.6-fold and 2.0-fold when mutant
and WT KRAS were over-expressed, respectively (Figure 1b left). A similar pattern was observed in
H1975 cells (3.2-fold and 2.3-fold, respectively; Figure 1b right). This result suggests that the regulation
of ALDH1L1 expression in NSCLC cells depends on mutant or WT KRAS expression level.
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Figure 1. KRAS regulates ALDH1L1 expression. (a) KRAS-mutant NSCLC cells were treated with 
control or KRAS siRNA, and then subjected to immunoblotting with the indicated antibodies. (b) 
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Figure 1. KRAS regulates ALDH1L1 expression. (a) KRAS-mutant NSCLC cells were treated with
control or KRAS siRNA, and then subjected to immunoblotting with the indicated antibodies.
(b) KRAS WT NSCLC cells were transfected with control (empty vector), WT KRAS, or mutant
(G12D) KRAS and subjected to immunoblotting with the indicated antibodies. Quantifications of
protein density were presented as mean ± standard deviation (n = 3, vs. control, ** p < 0.01, *** p < 0.001
and **** p < 0.0001). Detailed information about western blot can be found at Figure S1.
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2.2. KRAS Response Region in the ALDH1L1 Promoter

To determine whether ALDH1L1 transcription is regulated by KRAS, we constructed a reporter
vector for measuring ALDH1L1 promoter activity using the dual-luciferase system (Figure 2a). A549,
H23, H460, and HOP-62 cells stably expressing the ALDH1L1 promoter reporter were transfected with
KRAS siRNA. ALDH1L1 promoter activity was decreased ~35% by KRAS knock-down (Figure 2b),
whereas when KRAS was over-expressed, ALDH1L1 promoter activity increased ~1.15- and 1.21-fold
in H1299 and H1975, respectively (Figure 2c). An increase in ALDH1L1 expression as the result of
KRAS wild type overexpression is not very relevant because KRAS is not transcription factor that
direct affect gene expression. However, KRAS triggers signaling cascades including Raf-MEK-Erk
signaling for Myc and Max transcription factor activation or Rho-Rac-JNK for Elk1 transcription factor
activation [16]. Therefore, the knockdown of KRAS showed stronger effect of ALDH1L1 expression
compared to over expression of KRAS in cancer cells, because all transcription factors, as well as
downstream signaling molecules, may be required to increase the transcription activity of ALDH1L1.
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Figure 2. ALDH1L1 is a target of oncogenic KRAS. (a) Schematic representation of the reporter construct
used in the cell-based transduction system. This lentiviral reporter construct expressed firefly luciferase
under the control of the ALDH1L1 promoter and Renilla luciferase under the control of the HSV TK
promoter. (b) KRAS-mutant NSCLC cells stably expressing the reporter system described in (a) were
treated with control or KRAS siRNA. Firefly and Renilla luciferase activities were normalized against
the corresponding levels in the sample transfected with control siRNA. Bars show relative luciferase
activity (n = 3). (c) KRAS WT NSCLC cells stably expressing the reporter system described in (a)
were transfected with control (empty vector), KRAS WT, or KRAS mutant (G12D). Firefly and Renilla
luciferase activities were normalized against the corresponding levels in the sample transfected with
empty vector. Bars indicate relative luciferase activity (n = 3). (d) In silico prediction of binding sites for
transcription factors downstream of KRAS: SP1, transcription factor Sp1; Elk-1, ETS Like-1 transcription
factor. (e) Immunohistochemical staining of ALDH1L1 in lungs isolated from KrasLA2 mice at 8, 12,
and 16 weeks of age. The scale bar represents 200 mm (** p < 0.01, *** p < 0.001 and **** p < 0.0001).

Next, we performed an in silico analysis to predict which transcription factors acted downstream
of KRAS to induce expression of the ALDH1L1. Previous studies reported that KRAS activates ELK1,
ETS1, SP1, SP3, and RREB1 [17]. Based on our analysis, we identified possible SP1 and ELK1 binding
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sites in the ALDH1L1 promoter region (Figure 2d), suggesting that the regulation of ALDH1L1 by
KRAS is mediated by activation of SP1 and ELK1. ALDH1L1 expression was highly increased in tumor
nodules of the lung tissue from the KrasLA2 murine mouse model (Figure 2e).

2.3. Generation of Aldh1l1-Deficient Mice

To investigate the role of ALDH1L1 in vivo, we generated Aldh1l1-knockout mice. Mice with a
knockout one allele (tm1a) of Aldh1l1 was received from IMPC (International Mouse Phenotyping
Consortium). The Aldh1l1 knockout allele was generated by crossing the Aldh1l1tm1a allele with a Cre
deleter strain (zp3-Cre, Jackson laboratory strain 003651). After Cre-loxP recombination, exons 3 and
4 of Aldh1l1 were deleted (Figure 3a). The mutant alleles could be transmitted from both male and
female Aldh1l1 heterozygous mice, and homozygous mice could be obtained by interbreeding the
heterozygotes. Aldh1l1 heterozygous and homozygous progeny were identified by PCR genotyping
(Figure 3b). As a result of the deletion of exons 3 and 4, only the first 42 of the 902 amino acids of
ALDH1L1 were correctly translated, and normal full-length ALDH1L1 protein could not be detected
in knockout mouse tissues (Figure 3c). Homozygotes did not exhibit abnormal phenotypes in most
tissues, including muscle, respiratory, immune/hematopoietic, neurological/nervous, and reproductive
tissues, consistent with previously reported phenotypic characterization of this mutant (https://www.
mousephenotype.org/data/genes/MGI:1340024).
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Figure 3. Generation of Aldh1l1-knockout mice. (a) Strategy for generating Aldh1l1 knockout mice.
(b) Aldh1l1 gene disruption was confirmed by PCR genotyping. Tail genomic DNA was amplified,
with specific primers for wild-type (311 bp) and mutant (307 bp) Aldh1l1 alleles. +/+, wild-type; +/−,
heterozygous; −/−, homozygous (knockout). (c) Immunoblotting analysis showing the absence of
ALDH1L1 in protein extracts of tissues from an Aldh1l1−/− mouse. Detailed information about western
blot can be found at Figure S2.

2.4. The Combination of Aldh1l1 Deficiency and Phenformin Treatment Suppresses KRAS-Driven
Lung Tumorigenesis

For subsequent experiments, we used the KrasLA2 murine lung cancer model, which harbors a
targeted, latent KrasG12D allele that is activated by recombination [18]. The in vivo recombination event
generates in an activated allele (KrasG12D) that induces varying grades of tumors, from hyperplasia to
carcinomas similar to human NSCLC (Figure 4). With regard to histopathology, KrasLA2 mice developed
tumor progression and increased the number of nodules with age. Mice showed, predominantly,
hyperplasia and adenoma, up to 32 weeks of age. As the tumor progressed, the hyperplasia ratio in
nodules was decreased and the adenoma ratio in nodules was increased (Figure 4).

https://www.mousephenotype.org/data/genes/MGI:1340024
https://www.mousephenotype.org/data/genes/MGI:1340024
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Figure 4. Characterizations of KrasLA2 mice lungs. (a) Representative photomicrographs of hematoxylin
and eosin (H&E) staining in mouse lungs, harvested from 4 to 32 weeks after birth. Black box indicates
hyperplastic lesion and red box indicates adenoma in 32 weeks of KrasLA2 mice lung, respectively.
The scale bar represents 400 µm. (b) Quantitative analysis of number of tumor nodules in mouse
lungs from 4 to 32 weeks after birth (n = 5). (c) KrasLA2 mice lungs were analyzed and all lesions were
classified for hyperplasia and adenoma. p-values were obtained by one-way or two-way ANOVA test
and are indicated by asterisks (* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001).

To explore the role of ALDH1L1 in tumorigenesis, we genetically targeted the Aldh1l1 gene as
described above, and then crossed KrasLA2 and Aldh1l1−/− mice to generate KrasLA2; Aldh1l1+/+ and
KrasLA2; Aldh1l1−/− mice (Figure 5). The drug was administered once a day, 5 days a week, for 10 weeks
from 6 to 16 weeks after birth of KrasLA2; Aldh1l1−/− mice. The phenotype of hyperplasia and adenoma
were differentially observed between groups (Figure 5b–d). Cytokeratin 19 (CK-19) was studied as a
diagnostic marker of adenocarcinoma, which is known as a marker of endometrioid adenocarcinomas,
pancreatic adenocarcinoma and head and neck cancer [19] (Figure 5d). Number of nodule was
decreased about 53% in KrasLA2; Aldh1l1−/− mice with phenformin treatment, while that was decreased
about 9% in KrasLA2; Aldh1l1−/− mice (Figure 5e). Tumor area was also reduced about 54% in KrasLA2;
Aldh1l1−/− mice with phenformin treatment while that was decreased about 14% in KrasLA2; Aldh1l1−/−

mice (Figure 5f). During the experiment, we did not observe the weight loss of the mice (Figure 5g).
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Figure 5. Deletion of Aldh1l1 in combination with phenformin treatment suppresses Kras-driven lung
tumorigenesis. (a) Scheme of the experimental protocol. KrasLA2; Aldh1l1+/+ or KrasLA2; Aldh1l1−/−

mice were treated with phenformin (100 mg/kg) or vehicle control by oral administration. Drug was
administered once a day, 5 days a week, for 10 weeks from 6 to 16 weeks after birth. (b) Representative
photomicrographs of hematoxylin and eosin (H&E) staining (Top), hyperplasia lesion (Middle, black box)
and adenoma lesion (Bottom, red box) in mouse lungs harvested 16 weeks after birth. Scale bar = 400 µm.
(c) Lungs of mice were analyzed, and all lesions were classified for hyperplasia and adenoma.
(d) Representative photomicrographs of cytokeratin 19 staining in mouse lungs harvested 16 weeks
after birth. Quantitative analysis of (e) number of tumor nodules and (f) tumor area in mouse lungs
16 weeks after birth. Tumor area (expressed as %) was calculated by dividing the total tumor area
by the total area of the lung. p-values were obtained by one-way ANOVA test and are indicated by
asterisks (* p < 0.05; ** p < 0.01; *** p < 0.001). (g) Body weight was measured once a week (n = 7).

2.5. Treatment with Gossypol and Phenformin Suppresses KRAS-Driven Lung Tumorigenesis

Previously, we have shown that treatment of an NSCLC mouse xenograft model with the alcohol
dehydrogenase inhibitor gossypol or mitochondrial complex I inhibitor phenformin led to only
modest tumor regression, but combined treatment with both drugs led to marked synergistic tumor
regression [10]. To test the therapeutic effects of gossypol and phenformin, we used KrasLA2 mice,
which are commonly used as a model of human NSCLC. Oral administration of vehicle or gossypol
(40 mg/kg) combined with phenformin (100 mg/kg) five days per week was initiated when KrasLA2 mice
were at 6 weeks old and continued until the age of 16 weeks (Figure 6a). After the mice were sacrificed
at the indicated times, the area and the number of tumor nodules were lower in the combined treatment
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group than in the control group. Sixteen-week-old KrasLA2 mice exhibited hyperplasia in both the
control and combined treatment groups; adenomas were detected in these animals, but adenocarcinoma
lesions were not observed (Figure 6b,c). Immunohistochemical staining of cytokeratin 19 (CK-19)
revealed a dramatic increase in tumor nodules, followed by tumor progression, in the KrasLA2 control
group (Figure 6d). Compared with KrasLA2 littermates, the combined treatment group developed
significantly fewer visible lung tumors from eight weeks after birth. At 16 weeks, the ratio of tumor area
to normal area in the combined treatment group decreased to about one third of that the non-treated
control group (Figure 6e,f), as did the number of nodules (Figure 6e,f). During the experiment, we did
not observe any weight loss in the mice (Figure 6g). Together, these results demonstrate that combined
treatment with gossypol and phenformin reduces lung tumor development in vivo.
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Figure 6. Combined treatment with gossypol and phenformin suppresses KRAS-driven lung
tumorigenesis in mice. (a) Scheme of the experimental protocol. KrasLA2 mice were divided into two
groups: one group was the control, and the other was treated with gossypol (40 mg/kg) and phenformin
(100 mg/kg) by oral administration once a day, 5 days a week, for 10 weeks, from 6 to 16 weeks after birth.
(b) Representative photomicrographs of hematoxylin and eosin (H&E) staining (Top), hyperplasia
lesion (Middle, black box) and adenoma lesion (Bottom, red box) in mouse lungs harvested 16 weeks
after birth. Scale bar = 400 µm. (c) Lungs of mice were analyzed, and all lesions were classified for
hyperplasia and adenoma. (d) Representative photomicrographs of cytokeratin 19 staining in mouse
lungs, harvested 16 weeks after birth. (e) Quantitative analysis of the number of tumor nodules and
(f) tumor area (expressed as %) in the lung of control (n = 4) or gossypol/phenformin treated (n = 4)
KrasLA2 mice at 8, 12, and 16 weeks after birth. Tumor burden (expressed as %) was calculated by
dividing the total tumor area by the total area of the lung. p-values were obtained by one-way ANOVA
test and are indicated by asterisks (** p < 0.01; *** p < 0.001; **** p < 0.0001). (g) Body weight was
measured once a week (n = 4).
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Oncogenic KRAS plays a key role in controlling tumor metabolism, by changing multiple metabolic
pathways to give a favor to cancer cells, including the stimulation of glucose uptake, differential
channeling of glucose intermediates, reprogrammed glutamine metabolism, increased autophagy,
and micropinocytosis [20]. Cells require one-carbon units for nucleotide synthesis, methylation and
reductive metabolism, and these pathways support the high proliferative rate of cancer cells [21].
In this study, KRAS also induces ALDH1L1 in the one-carbon pathway.

3. Discussion

In cancer cells, KRAS mutation induces transcription of genes encoding key enzymes of anabolic
glucose metabolism, including glucose transporter 1, hexokinases, phosphofructokinase 1, and lactate
dehydrogenase A [7]. KRAS mutation also promotes ribose biosynthesis through the non-oxidative
pentose phosphate pathway (PPP), thereby decoupling ribose biogenesis without affecting cellular redox
balance (NADP/NADPH ratio) [22]. One glycolytic intermediate, 3-phosphoglycerate, drives carbon
into serine synthesis. Serine is required in biosynthesis of other molecules, such as glycine, cysteine,
glutathione, and sphingolipids. Serine is also a major donor of one-carbon units to the folate metabolism
cycle [12]. Thus, the induction of ALDH1L1 by KRAS promotes the one-carbon pathway in NSCLC
(Figure 7).
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Figure 7. KRAS promotes glycolysis, protein and lipid synthesis and one carbon pathway [23]. Induction
of ALDH1L1 by KRAS promotes the one-carbon pathway in NSCLC. Gossypol and phenformin reduces
NADH and ATP production, respectively.

ALDH1L1 (10-formyltetrahydrofolate dehydrogenase, EC 1.5.1.6) converts
10-formyltetrahydrofolate (10-formyl-THF) to tetrahydrofolate (THF) and CO2 in an NADP+-dependent
reaction [24]. The ALDH1L1 protein is the product of a natural fusion of three unrelated genes and
consequently consists of three distinct domains: formyl dehydrogenase, 10-formyl-THF hydrolase,
and ALDH [24]. Like other ALDH isotypes, ALDH1L1 performs the aldehyde dehydrogenase reaction
using NADP+ or NAD+, although the Km for NAD+ is three orders of magnitude higher [25]. However,
in the cytosol, the NADP+/NADPH ratio [26] is as much as three orders of magnitude lower than the
NAD+/NADH ratio [27], because NADPH is abundantly supplied for anabolism, whereas NADH is
rapidly oxidized to NAD+ for catabolism. Exact measurements of NADH or NADPH production by
ALDH1L1 have not been performed. NSCLC cells harboring an ALDH1L1 knockdown produce about
10% less NADH than wild-type cells, but no change in the NADPH level was observed [10]. Treatment
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with the pan-ALDH inhibitor gossypol also decreases the NADH level by about 60% but does not
affect the level of NADPH [10]. We observed no reduction of tumor growth in Aldh1l1−/−; KrasLA2

mice, but treatment of these mice with phenformin decreased tumor growth by ~70% (Figure 5),
consistent with the 70% reduction in NADH level when ALDH1L1-knockdown NSCLC cells are
treated with phenformin [10]. We also confirmed that combined treatment with gossypol and
phenformin synergistically decreased the lung tumor area in KrasLA2 mice (Figure 6). As a result
of the catalytic reaction by ALDH1L1, NADH is yielded as a by-product from the conversion of
10-formyltetrahydrofolate to carbamate, which turns into ATP through oxidative phosphorylation [28].
We demonstrated that knock down of ALDH1L1 using siRNA or ALDH inhibition using gossypol
induced a significant reduction of ATP production in NSCLC [10]. Anti-cancer effect of gossypol alone,
however, showed about 20% reduction of tumor growth, while combination treatment of gossypol
and phenformin showed about 80% reduction of NSCLC tumor growth [10]. These observations are
consistent with a previous report, showing that severe depletion of ATP to levels less than 25% of
control triggers cell death [29].

In summary, targeting ALDH1L1 alone did not have an anti-cancer effect in the KrasLA2 lung cancer
model, whereas simultaneous inhibition of ALDH1L1 and oxidative phosphorylation significantly
decreased tumor formation.

4. Materials and Methods

4.1. Cell Culture

Cell lines were obtained from the National Cancer Institute (NCI; MTA no. 2702-09). Growth
medium was complete RPMI-1640, supplemented with 10% fetal bovine serum. Cells were maintained
at 37 ◦C in a humidified incubator with 5% CO2.

4.2. Antibodies and Reagents

Anti-ALDH1L1 (Cat. Ab56777 and Ab175198, 1:1000) and cytokerain 19 (Cat. Ab52625) were
purchased from Abcam (Cambridge, UK). Anti-β-actin (Cat. Sc-47778, 1:1000) was purchased from
Santa Cruz Biotechnology (Dallas, TX, USA). Anti-KRAS (Cat. H00003845-M01, 1:1000) was purchased
from Abnova (Taipei, Taiwan). Control siRNA (sc-37007) and KRAS siRNA (Cat. Sc-35731) were
purchased from Santa Cruz Biotechnology. Hs.KRAS4B (Cat. 83129) and Hs.KRAS4B G12D (Cat. 83131)
were purchased from Addgene (Watertown, MA, USA). Transfection was performed with jetPEI and
INTERFERin (Polyplus, New York, NY, USA). Gossypol acetic acid (Cat. G4382) and phenformin
hydrochloride (Cat. P7045) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

4.3. Immunoblotting

Whole cell lysates were prepared using RIPA buffer (Cat. R0278, Sigma-Aldrich), with protease
inhibitor cocktail (P8340, Sigma-Aldrich). Protein concentrations were determined using the Bradford
protein assay (Cat. 23227, Thermo Fisher Scientific, Waltham, MA, USA). Proteins were resolved by
SDS-PAGE and transferred to PVDF membranes. Membranes were blocked in 5% BSA for 1 h at room
temperature (RT), and then incubated overnight at 4 ◦C with the indicated antibodies. Membranes
were washed for 1 h at RT in TBS-T, followed by incubation with a horseradish peroxidase-conjugated
secondary antibody for 1 h at RT. Finally, membranes were washed for 1 h at RT in TBS-T. Protein band
images were visualized using ECL reagent (Ab frontier, Seoul, Korea) on a FUSION solo (VILBER,
Collégien, France).

4.4. ALDH1L1 Promoter Assay

The ALDH1L1 promoter reporter construct was generated by inserting the human ALDH1L1
promoter (including 1 kb upstream) into pLenti6-MINp-FLuc-Rluc-TKp. The pLenti6-MINp-FLuc-Rluc-
TKp vector was constructed by inserting the herpes simplex virus (HSV)-thymidine kinase (TK)
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promoter (TKp) and Renilla luciferase (Rluc) in the opposite directions in the pLenti6-MINp-FLuc
vector. The pLenti6-MINp-FLuc vector was constructed by inserting a minimal promoter (MINp) and
firefly luciferase (Fluc) into pLenti6-GFP (Addgene Plasmid #35637) in place of the CMV enhancer,
CMV promoter, and GFP.

Firefly and Renilla luciferase activities were measured using the Dual-Glo Luciferase Assay system
E2940 (Promega, Madison, WI, USA). Briefly, after treatment with KRAS siRNA for 24 h, 75 µL
Dual-Glo luciferase reagent was added to each well, and the plates were incubated for 10 min at room
temperature. After measurement of firefly luminescence, Dual-Glo Stop & Glo reagent was added
to the plate. After incubation at room temperature for 10 min, Renilla luminescence was measured,
and the ratio of firefly to Renilla luminescence was calculated.

In silico transcription factor binding suite predictions were performed with ConSite (http:
//consite.genereg.net).

4.5. Spontaneous Lung Cancer Model

To assess the therapeutic effects of gossypol and phenformin, we employed the KrasLA2 murine lung
cancer model, which contains a targeted, latent KrasG12D allele that is activated by recombination [18].
Mice were obtained from the NCI mouse repository (strain number: 01BM3, common strain name:
KrasLA2, strain nomenclature: B6.129S-Krastm3Tyj/Nci). KrasLA2 mice were backcrossed to C57BL/6 for at
least six generations. After the weaning period (6 weeks after birth) the KrasLA2 mice (four per group)
were treated with a combination of gossypol (40 mg/kg) and phenformin (100 mg/kg) for 5 days a
week, until they were sacrificed at 8, 12, and 16 weeks of age. For determination of tumor incidence
and grade, whole lungs were manually inflated with 10% neutral-buffered formalin, placed in fixative
for 1 day, embedded in paraffin, and sectioned. H&E staining was performed by standard procedures.
Lung tumor areas were determined using ImageJ. Tumor burden was expressed as the total tumor
area divided by normal lung area. This study was reviewed and approved by the Institutional
Animal Care and Use Committee (IACUC) of National Cancer Center Research Institute. NCCRI is an
AAALAC International accredited facility and abides by the Institute of Laboratory Animal Resources
(ILAR) guide. The ethical code is NCC-15-277 (19 September 2016), NCC-17-277B (30 June 2018) and
NCC-18-277B (31 August 2019).

4.6. Automated Immunohistochemistry

Immunohistochemistry assays were performed on a VENTANA Discovery XT automated staining
instrument (Ventana Medical Systems, Tucson, AZ, USA). Slides were de-paraffinized using EZ Prep
solution (Ventana Medical Systems) for 30 min at 75 ◦C. Epitope retrieval with CC1 solution (Ventana
Medical Systems) was performed for 64 min at 95 ◦C. Antibodies were first titered over a range of
concentrations to provide the optimum ratio of specific staining to background staining. Once titers
were set, antibodies were transferred with diluent to user-fillable dispensers for use on the automated
stainer. Anti-ALDH1L1 (ab175198, 1:50) and cytokeratin 19 (ab52625, 1:1000) antibodies were acquired
from Cell Signaling Technology (Danvers, MA, USA). Slides were developed using the OptiView DAB
detection kit (Ventana Medical Systems). Briefly, samples were incubated with inhibitor for 8 min,
linker for 8 min, multimer for 12 min, DAB/peroxide for 8 min, and copper for 4 min. The slides
were then counterstained for 8 min with hematoxylin II (Ventana Medical Systems). Antibody titers
were determined for each antibody using positive and negative control tissues, according to the
manufacturer’s instructions.

5. Conclusions

KRAS upregulates the expression of ALDH1L1 in NSCLC cells, which exhibited an increase
of ALDH1L1 in Kras-driven lung cancer model. Although targeting ALDH1L1 alone did not have
an anti-cancer effect in the KrasLA2 lung cancer model, simultaneous inhibition with gossypol and

http://consite.genereg.net
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phenformin significantly decreased tumor formation. These results suggest that combined inhibition of
ALDH activity and oxidative phosphorylation represents a promising therapeutic strategy for NSCLC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/6/1382/s1,
Figure S1: Detailed information about western blot in Figure 1, Figure S2: Detailed information about western
blot in Figure 3.
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