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Glutamine synthetase mediates sorafenib sensitivity
in β-catenin-active hepatocellular carcinoma cells

Bo Hwa Sohn1,2, In Young Park2, Ji-Hyun Shin1, Sun Young Yim1,3 and Ju-Seog Lee1

The gene encoding β-catenin is frequently mutated in hepatocellular carcinoma cells. While the oncogenicity of β-catenin has

been extensively studied, β-catenin’s role in hepatocellular carcinoma tumor metabolism is currently less well understood. In this

study, we found that β-catenin regulates the expression of glutamine synthetase and triggers a series of metabolic changes

leading to induction of autophagy in hepatocellular carcinoma cells. β-Catenin-active Hep3B and HepG2 cells exhibited higher

basal levels of autophagic activity than did β-catenin wild-type cells. We also found that autophagy in β-catenin-active cells was

mediated by glutamine synthetase, as silencing of glutamine synthetase significantly reduced autophagic activity. We also

showed that β-catenin-active hepatocellular carcinoma cells were more sensitive to sorafenib than were β-catenin wild-type cells.

Our results demonstrated that glutamine synthetase-mediated autophagy explains the high sensitivity of β-catenin-active
hepatocellular carcinoma cells to sorafenib. Our results highlight the importance of glutamine metabolism in the regulation of

autophagy in hepatocellular carcinoma cells. More importantly, our study unravels the molecular mechanisms leading to

sorafenib sensitivity in hepatocellular carcinoma.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the deadliest cancers
in the world. HCC tumors are often advanced at diagnosis, and
treatment options are limited. Therefore, overall mortality rates
for HCC patients are higher than those for patients with many
other cancers.1–3 At present, surgical resection is the preferred
therapy for HCC. However, only about 15% of HCC patients
are eligible for surgical resection, and up to 70% of patients
who undergo resection experience disease recurrence within 5
years of surgery.4 Therefore, development of more individua-
lized and effective systemic therapies is necessary for HCC
patients who are not eligible for surgery and those with
recurrence after surgery.5 Sorafenib, currently the only
approved drug for first-line systemic treatment of advanced
HCC, is an orally active multikinase inhibitor. While rando-
mized phase III trials demonstrated that sorafenib has clinically
significant anticancer activity,6,7 its survival benefits were only
modest, suggesting that not all patients benefit from sorafenib
treatment.

The liver’s physiological homeostasis is maintained through
high levels of metabolic activity in hepatocytes, which is

regulated through structural and functional units of the liver
called hepatic lobules. The hepatocytes within a lobule express
different transcriptional programs depending on which meta-
bolic zone they are located in.8 Hepatocytes in the periportal
metabolic zone express genes involved in gluconeogenesis and
fatty acid metabolism, whereas hepatocytes in the perivenous
zone express genes involved in detoxification. β-catenin is a
master regulator of metabolic zonation in the liver, and its
activity is limited in the perivenous zone, where it maintains the
perivenous-specific transcriptome program.9 Glutamine synthe-
tase (GS) is a metabolic enzyme that produces glutamine from
glutamate and ammonia and is involved in detoxification of
ammonia in the liver. Because GS is part of the perivenous
transcriptome, its expression is restricted to hepatocytes in the
perivenous zone and is tightly regulated by β-catenin.9–11 The
gene encoding β-catenin, CTNNB1, is a frequently activated
oncogene in HCC; its aberrant activation is largely attributable to
somatic mutations, which occur in 20–30% of HCC
patients.10–13 In the current study, we discovered unexpected
roles of β-catenin and its downstream metabolic target gene that
may be associated with treatment response in HCC patients.
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MATERIALS AND METHODS

Cell lines and cell culture
SK-Hep1, HepG2, Hep3B and Huh7 human HCC cells were obtained
from the Health Science Research Resources Bank (Osaka, Japan), and
FOCUS HCC cells were kindly provided by Dr Snorri S. Thorgeirsson
at the National Cancer Institute (Bethesda, MD, USA). The cells were
maintained in Dulbecco’s modified Eagle’s medium with high glucose
and 4 mM glutamine (Invitrogen, Carlsbad, CA, USA) supplemented
with heat-inactivated 10% fetal bovine serum and penicillin/strepto-
mycin (Invitrogen).

Lentiviral GS overexpression vector and short hairpin RNAs
A GS-overexpressing lentiviral vector was constructed by cloning a
full-length coding DNA fragment into the NheI/NotI sites of a pCDH-
EF1-T2A-Puro vector (System Biosciences, Mountain View, CA,
USA). Lentiviral-based short hairpin RNAs (shRNAs) targeting human
GS (NM_002065.3-802s1c1, NM_002065.3-1450s1c1 and
NM_002065.4-1890s21c1) and control shRNA targeting enhanced
green fluorescent protein (GFP) (cat. no. SHC005V) were used for
knockdown experiments.

Lentiviral transduction
To produce lentiviral particles, the GS overexpression vector or
shRNA expression vectors were co-transfected with the lentiviral
packaging plasmids pLP1, pLP2 and pLP/VSVG (Invitrogen) into
293FT lentivirus packaging cells. Lipofectamine 2000 (Invitrogen) was
used as the transfection reagent. At 48–72 h after transfection, the
virus-containing cell culture medium was harvested and frozen in
aliquots. A moderate multiplicity of infection was used for transduc-
tion of cells to minimize negative effects on cell proliferation. All
experiments were performed 2–4 days after infection

Antibodies
Antibodies against phospho-p70 S6 kinase (Thr389), p70 S6 kinase,
phospho-S6 (Ser235/236), S6, LC3B and α-tubulin were purchased
from Cell Signaling Technology (Danvers, MA, USA; cat. nos. 9205,
9202, 4858, 2217, 2775 and 3873). Antibodies against GS were
obtained from EMD Millipore (Danvers, MA, USA; cat. no.
MAB302). Antibodies against β-actin were purchased from Sigma-
Aldrich (St. Louis, MO, USA; cat. no. A5441). Horseradish
peroxidase-conjugated anti-mouse immunoglobulin G and horserad-
ish peroxidase-conjugated anti-rabbit immunoglobulin G were pur-
chased from Santa Cruz Biotechnology (Santa Cruz, CA, USA; cat.
nos. sc-2748 and sc-2749).

MTT cell viability assay. To assess cell viability. A 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay
(Sigma-Aldrich) was performed as described previously5,6 using a
VMax kinetic microplate reader (Molecular Devices, Sunnyvale, CA,
USA) at 570 nm. Cells were fixed in 10% formaldehyde and stained
with 10% crystal violet (Sigma-Aldrich) for 10 min at ambient
temperature.

Flow cytometry
Samples were collected at 48 h after sorafenib treatment and fixed in
70% ethanol overnight. To measure the proportion of apoptotic cells,
we used an Annexin V apoptosis detection kit (Santa Cruz Biotech-
nology) according to the manufacturer’s protocol. Cells were stained
with Annexin V-fluorescein isothiocyanate and DAPI after sorafenib
treatment. Cells were evaluated for apoptosis via flow cytometry using
an LSR II flow cytometer (BD Biosciences, San Jose, CA, USA).

Autophagic puncta analysis
SK-Hep1 cells were stably transfected with pEGFP-LC3 and pDsRed2-
C1 or pDsRed2-GS constructs and plated on coverslips. The plated
cells were exposed to sorafenib for 24 h and then fixed with 4%
paraformaldehyde in phosphate-buffered saline. Autophagic puncta
were counted using an ECLIPSE TE2000-E fluorescence microscope
(Nikon, Melville, NY, USA).

RESULTS

β-catenin-active HCC cells are sensitive to sorafenib
Because expression of GS is tightly regulated by β-catenin in
perivenous hepatocytes and reflects β-catenin activity,9–11 we
determined the activation status of β-catenin by assessing GS
expression in five HCC cell lines. HepG2 cells were used as
positive controls for assessments of β-catenin activation
because β-catenin in HepG2 cells is known to be constitutively
activated by deletion mutations in negative regulatory sites.13

As expected, GS was highly expressed in HepG2 cells
(Figure 1a). GS was also highly expressed in Hep3B cells,
suggesting that β-catenin is highly active in this cell line. This
observation is in good agreement with a previous study
demonstrating that β-catenin is highly active in Hep3B and
that the tumorigenicity of xenografted Hep3B cells depends on
β-catenin expression.14 In contrast, expression of GS was
absent in FOCUS, SK-Hep1 and Huh7 cells, indicating that
β-catenin is not active in these cell lines.

HCC with activated β-catenin has a distinct clinical course;
studies showed that HCC patients with activated β-catenin
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Figure 1 Sensitivity to sorafenib is associated with glutamine
synthetase (GS) expression levels in hepatocellular carcinoma (HCC)
cells. (a) Representative western blots showing expression of GS in
five HCC cell lines. (b) Results of cell viability assays performed
48 h after treatment with the indicated doses of sorafenib. IC50
values were compared using a Student t test. Data shown are
means ± s.e’s. of the mean from three independent experiments.
*Po0.01.
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have better prognoses than do those with wild-type β-
catenin.15,16 Therefore, we determined whether β-catenin-
active HCC cells and HCC cells with wild-type β-catenin
responded differently to sorafenib.6,7 To measure the half
maximal inhibitory concentration (IC50) of sorafenib in each
HCC cell line, we treated five HCC cell lines with various
concentrations of sorafenib for 48 h and counted the viable
cells. Interestingly, the two HCC cell lines with activated β-
catenin, HepG2 and Hep3B, were more sensitive to sorafenib
than were those with inactive β-catenin activity (Figure 1b).
The IC50 values of sorafenib in β-catenin-active HepG2 and
Hep3B cells were two to three times lower than in cell lines
with inactive β-catenin (Po0.001 for all comparisons), sug-
gesting a link between β-catenin activation and sensitivity to
sorafenib.

Sensitivity to sorafenib in β‐catenin-active HCC cells is
mediated by GS
Because the most distinctive liver-specific function of β-catenin
is control of glutamine metabolism through expression of GS,17

we next tested whether GS plays a role in sorafenib sensitivity
in β-catenin-active HCC cells. First, we assessed sorafenib
sensitivity after silencing GS expression with lentiviral shRNAs
in GS-high HCC cell lines (HepG2 and Hep3B). When GS was
depleted by transduction with two GS-specific shRNAs, HepG2
cells develop resistant to sorafenib (Figure 2a). The IC50 value
of sorafenib increased from 5.4 μM in parental HepG2 cells to
9.1 μM and 9.9 μM (both Po0.001) in HepG2 cells with
silenced GS expression (n= 3). Similarly, depletion of GS via
transduction with two shRNAs made Hep3B cells resistant to

sorafenib (Po0.001; Figure 2b), strongly suggesting that GS
regulates the sensitivity of HCC cells to sorafenib.

We next overexpressed GS in GS-low SK-Hep1 cells by
transducing them with a lentivirus harboring an exogenous
GS gene. We examined the viability of the transduced
cells after 48 h of sorafenib treatment. GS overexpression
sensitized SK-Hep1 cells to sorafenib (Figure 3a).
The IC50 value decreased from 11.9 μM in parental SK-Hep1
cells to 4.7 μM in GS-overexpressing cells (n= 3; Po0.001).
GS overexpression also significantly sensitized FOCUS
cells to sorafenib (Figure 3b; Po0.001), confirming that the
sensitivity of β-catenin-active HCC cells to sorafenib is
mediated by GS.

Finally, we examined apoptosis rates in GS-overexpressing
SK-Hep1 cells using flow cytometry. Sorafenib treatment
induced apoptosis at a significantly higher rate in GS-
overexpressing SK-Hep1 cells than in low-GS parental SK-
Hep1 cells (Po0.001, Figure 3c and d). Because exogenous
overexpression of GS had little effect on the apoptosis rate in
untreated SK-Hep1 cells, it is unlikely that the observed
increase in sensitivity to sorafenib could be attributed to GS-
mediated toxicity in HCC cells. Therefore, these results
suggested that sensitivity to sorafenib strongly depends on GS
expression levels in HCC cells.

GS induces autophagy
A previous study showed that increased intracellular produc-
tion of glutamine was correlated with induction of
autophagy,18 suggesting that β-catenin-active HCC cells should
exhibit high levels of autophagy. Autophagic activity is also
known to be high in the perivenous zone, where β-catenin is
highly active.19 Thus, we next tested whether β-catenin induces
autophagy in HCC cells.

We estimated basal autophagy levels by measuring the
conversion of microtubule-associated light chain 3 (LC3-I)
to its lipidated form (LC3-II), which is a key step in
autophagosome formation and a biomarker of autophagy
initiation.20 As expected, basal levels of autophagic activity
as represented by the LC3-I/LC3-II ratio were substantially
higher in β-catenin-active Hep3B cells than in the other cell
lines (Figure 4a). The LC3-II level in Hep3B cells was
several times higher than that in SK-Hep1 and FOCUS cells.
Because GS is a major metabolic target of β-catenin in HCC
cells, we next determined whether the high levels of GS
expression in Hep3B cells accounted for their high basal
level of autophagic activity. We assessed autophagic activity
by measuring the LC3-II/LC3-I ratio in GS-silenced Hep3B
cells and GS-overexpressing SK-Hep1 cells. Depletion of GS
in Hep3B cells by transduction with two independent
shRNAs reduced LC3-II formation (Figure 4b). Conversely,
exogenous GS expression increased autophagic activity in
SK-Hep1 cells (Figure 4c). To verify autophagy induction,
we generated a transient construct that expressed GFP)LC3
and transfected it into SK-Hep1 cells. Fluorescence micro-
scopy showed that GFP-LC3 was expressed diffusely in the
cytoplasm of mock-transfected SK-Hep1 cells. However,
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Figure 2 Depletion of glutamine synthetase (GS) expression
decreased sorafenib sensitivity in hepatocellular carcinoma (HCC)
cells. Results of cell viability assays performed 48 h after sorafenib
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GFP-LC3 formed autophagic puncta in GS-expressing SK-
Hep1 cells (Figure 4d), indicating that the increased
formation of autophagosomes was mediated by GS. These
results suggest that GS expression induces autophagy in
HCC cells.

Sorafenib sensitivity is mediated by autophagy
The results of previous studies indicate that sorafenib can
induce autophagy in HCC cells and that excessive autophagy
can induce cell death.21,22 Thus, we hypothesized that the
increase in sorafenib sensitivity observed in GS-expressing
HCC cells is largely attributable to excessive autophagy that
is jointly mediated by GS and sorafenib. Consistent with the
results of previous reports,21,22 we found that sorafenib
treatment increased autophagic activity in Hep3B cells and
that GS depletion via knockdown using shRNAs substantially
reduced sorafenib-induced autophagy (Figure 5a). These

findings strongly suggest that the reduction in autophagic
activity caused by GS inactivation explains resistance to
sorafenib in HCC cells. To validate this conclusion, we over-
expressed GS in SK-Hep1 cells and measured LC3-II using
western blot analysis. Consistently, expression of the autophagy
marker LC3-II was substantially increased by exogenous over-
expression of GS (Figure 5b), and this increase in autophagic
activity coincided with increased sorafenib sensitivity in SK-
Hep1 cells (Figure 3a). These findings suggest that the high
sensitivity of β-catenin-active HCC cells to sorafenib is
mediated by their high basal level of GS-induced autophagy.
In agreement with the results of the western blot analysis,
analysis of autophagic puncta demonstrated that exogenous GS
overexpression increased GFP-LC3 punctate formation in
sorafenib-treated SK-Hep1 cells (Figure 5c). These results
further validated our conclusion that the increased formation
of autophagosomes was indeed mediated by GS. Taken
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together, these results strongly support the notion that sor-
afenib sensitivity in β-catenin-active HCC cells is mediated by
GS, which triggers a high basal level of autophagy.

DISCUSSION

In the current study, we identified a novel GS-mediated
mechanism by which β-catenin induces autophagy. This
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finding is similar to recent findings that the oncogenes MYC
and RAS can stimulate autophagy.23,24,25 Because autophagy is
activated to relieve cells in stress conditions, such as those
under metabolic or environmental stress, autophagy generally
promotes cell survival. In fact, autophagy induction by
oncogenic RAS is necessary for cancer cell survival and
oncogenic transformation.26 Our data strongly suggest that β-
catenin activation relieves stress in HCC cells and promotes cell
survival through activation of a liver-specific transcriptome
involving GS.

Although sorafenib is the only approved systemic drug for
the treatment of patients with HCC, its efficacy is limited, as
evidenced by the only 2- to 3-month increase in survival
duration observed in clinical studies.6,7 Only a small subset of
patients experiences a response to treatment. Sorafenib is well
known to exert its antitumor effects by inhibiting several
kinases. It also induces autophagy as other chemotherapy
agents.21,22 While autophagy is best known as a pro-survival
mechanism, recent studies have shown that prolonged autop-
hagy impedes cell recovery and survival, triggering cell
death.27,28 HCC cells with high levels of GS expression may
be particularly sensitive to sorafenib because they already have
high basal levels of autophagy. Our data clearly demonstrated
that β-catenin-activated HCC cells were more sensitive to
sorafenib. We further demonstrated that sensitivity to sorafenib
was mediated by high GS expression, which is a direct
downstream target of β-catenin in HCC cells.

Taken together, our data suggest that HCC with activated β-
catenin is not only a genetically distinct subtype of HCC but
also a clinically distinct subtype of this disease. Understanding
how a tumor’s genetic subtype may affect its sensitivity to
standard treatment may be useful for guiding treatment
decisions. For instance, patients with HCC with activated β-
catenin mutations may be more likely to benefit from sorafenib
treatment.

In summary, we uncovered a connection between a liver-
specific transcriptome regulated by β-catenin and the sensitivity
of HCC cells to sorafenib, the standard treatment for HCC.
Our results highlight the importance of glutamine metabolism
in the regulation of autophagy in HCC cells. When activated by
oncogenic mutations that lead to hepatotumorigenesis, β-
catenin also activates a liver-specific transcriptome program
that produces GS overexpression in HCC cells. More impor-
tantly, high GS expression in β-catenin-active HCC increases
autophagy by modulating metabolic flux, which contributes to
increased sorafenib sensitivity. Collectively, our results suggest
that β-catenin-regulated metabolic activity may dictate clinical
outcomes for patients with HCC.
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