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Abstract To efficiently navigate through the environment and avoid potential threats, an animal

must quickly detect the motion of approaching objects. Current models of primate vision place the

origins of this complex computation in the visual cortex. Here, we report that detection of

approaching motion begins in the retina. Several ganglion cell types, the retinal output neurons,

show selectivity to approaching motion. Synaptic current recordings from these cells further reveal

that this preference for approaching motion arises in the interplay between presynaptic excitatory

and inhibitory circuit elements. These findings demonstrate how excitatory and inhibitory circuits

interact to mediate an ethologically relevant neural function. Moreover, the elementary

computations that detect approaching motion begin early in the visual stream of primates.

Introduction
As an object approaches, the image of that object becomes larger on the surface of an observer’s

retina. Many animals use these size changes to estimate whether and when an object will collide

with the animal (Schiff and Detwiler, 1979; Lee, 1976; Kaiser and Hecht, 1995) and also to esti-

mate the animal’s own motion through the environment (Clifford et al., 1999; Schrater et al.,

2001). Neurons with such selectivity for approaching motion have been found in the dorsal visual

pathway of primates (Orban et al., 1992; Duffy and Wurtz, 1991; Wang and Yao, 2011). However,

it is not known whether similar approach selectivity is found earlier in the visual pathway of primates.

Several ganglion cell types found in the retinas of humans and non-human primates project to the

dorsal visual pathway, including parasol (magnocellular-projecting) cells (Rodieck and Watanabe,

1993). These cells can detect small changes in the reflectance of an object relative to the back-

ground (i.e. contrast), and their high contrast sensitivity has resulted in the hypothesis that these cells

contribute primarily to representations of object form (Kaplan and Shapley, 1986; Lee et al.,

1995). Less is known about how motion affects the response properties of these cells

(Chichilnisky and Kalmar, 2003; Frechette et al., 2005; Manookin et al., 2018).

Here, we report that parasol and other ganglion cell types in the macaque monkey retina display

a preference for approaching motion. We show that visual circuits downstream of parasol cells can

detect approaching motion based solely on the spike output of these cells. We further study the syn-

aptic basis for this computation using direct recordings and a computational model. In summary, the

elementary computations for detecting approach are present in the retinal input to the dorsal visual

pathway of primates.

Results
We recorded the spike responses of five ganglion cell types—broad thorny, On and Off smooth

monostratified, and On and Off parasol ganglion cells—in an in vitro preparation of the macaque

monkey retina to determine whether these cells showed preference for approaching or receding
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motion. Cells were identified based on their characteristic cell body sizes and shapes under infrared

illumination, their distinct light response properties, and dendritic morphologies (Puller et al., 2015;

Watanabe and Rodieck, 1989; Crook et al., 2008; Rhoades et al., 2019; Petrusca et al., 2007).

We begin by demonstrating that these cells show strong selectivity for approaching textures.

Five primate ganglion cell types show preference for approaching
textures
Humans and non-human primates use changes in spatial scale or object size in estimating the speed

of approaching objects and their own motion through the environment (Schiff and Detwiler, 1979;

Lee, 1976; Kaiser and Hecht, 1995; Clifford et al., 1999; Schrater et al., 2001). Further, this selec-

tivity for approaching motion is commonly thought to originate in the thalamus or visual cortex of

primates (Wang and Yao, 2011), and a retinal origin for this type of motion sensitivity has not been

considered.

To determine whether ganglion cells in the primate retina exhibited a preference for approaching

motion, we recorded cellular responses to moving stochastic textures (see Materials and methods).

The spatial scale of the textures changed as a function of time—increasing in scale to simulate

approaching motion or decreasing in scale to simulate receding motion. Further, both stimulus clas-

ses contained the same ranges of images scales—the receding motion stimuli were simply the time-

reversed image sequences of the approaching stimuli (Figure 1B; Schrater et al., 2001; Wang and

Yao, 2011). Further, we tested the same range of scale changes that have been shown to elicit per-

cepts of approaching motion in humans (Schrater et al., 2001).

As shown in Figure 1, approaching textures elicited larger spike responses than receding textures

in parasol, smooth monostratified, and broad thorny (On-Off type) ganglion cells. A large bistratified

ganglion cell–another type of On-Off cell—also showed increased spiking to approaching textures,

but the bias to approaching motion was not as strong as that observed in the other cell types

(Figure 1A, bottom). This finding indicated that preference for approaching motion was not a uni-

versal property of all primate ganglion cells, but was restricted to a subset of these cell types.

We quantified the degree to which a cell preferred approaching or receding motion by calculat-

ing the difference between the spike responses to approaching (Rapproaching) and receding (Rreceding)

motion divided by the sum of those responses, as described by Equation 1.

approach selectivity¼ Rapproaching�Rreceding

RapproachingþRreceding

(1)

Positive values indicate a preference for approaching motion and negative values for receding

motion while values near zero indicate a lack of preference. Indeed, the approaching textures eli-

cited higher spike rates in On- and Off-type parasol and smooth monostratified ganglion cells,

resulting in significant approach selectivity values in all four cell types (Figure 1C; p<7.8 � 10–3; Wil-

coxon signed rank test).

The smallest texture scales used in these experiments corresponded in size to the dendritic tree

diameters of the diffuse bipolar cells that provide excitatory synaptic input to parasol and smooth

monostratified ganglion cells in the mid-peripheral retina (~30–40 mm) (Dacey et al., 2000;

Boycott and Wässle, 1991; Tsukamoto and Omi, 2015; Tsukamoto and Omi, 2016; Turner and

Rieke, 2016). However, to reliably contribute to vision, these mechanisms must operate across the

broad range of spatial scales encountered in the natural environment (Field, 1987; Dong and Atick,

1995). To ensure that approach selectivity was not restricted to a limited subset of texture scales

(i.e. spatial frequencies), we repeated the texture experiments using four distinct scale ranges in the

same cell. The smallest scales in the texture sequences ranged from the approximate width of dif-

fuse bipolar cells (3.3 cycles degree–1) to the approximate dendritic tree width of parasol ganglion

cells in the mid-peripheral macaque retina (0.8 cycles degree–1).

Varying the scale ranges of the texture sequences did not change the preference for approaching

textures. Approach selectivity persisted in parasol and smooth monostratified cells across these stim-

ulus conditions (parasol: n = 16 cells, p<2.4 � 10–4; smooth monostratified: n = 7 cells, p<7.8 � 10–

3; Wilcoxon signed rank test). In fact, approach selectivity increased with increasing texture scale (i.e.

decreasing spatial frequency) in both parasol and smooth monostratified cells (Figure 1D). These

results indicated that the mechanisms mediating approach selectivity in these cells operate across a
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wide range of spatial scales. Further, the texture stimuli contained similar statistical properties to the

types of motion encountered during optical flow, indicating that signals from parasol and smooth

monostratified cells could be utilized in detecting this type of motion.
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Figure 1. Ganglion cells exhibit a preference for approaching textures. (A) Responses of several ganglion cell

types to receding (red) and approaching (black) Gaussian textures. Average spike rate is shown across 50–200

distinct randomly generated textures. The gray region indicates the period of motion. (B) Example of receding and

approaching texture stimuli used in the experiments (top). Scale bar indicates 0.5 mm. Bottom, Optical flow fields

computed from an example approaching texture movie. White areas show regions from which the texture

expanded during the stimulus sequence. (C) Approach selectivity index values for cell types in (A) to the texture

stimuli. Transparent shapes indicate individual cells. Opaque shapes and error bars indicate mean ± SEM. (D)

Approach selectivity (y-axis) as a function of the initial spatial frequency (x-axis) in parasol (n = 16) and smooth

monostratified ganglion cells (n = 7). Approach selectivity persisted at all spatial frequencies tested.

The online version of this article includes the following source data for figure 1:

Source data 1. Included is a data file containing a structure for the approach selectivity data in Figure 1.
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Approach motion selectivity predicted from nonlinear subunits
Neurons in macaque visual cortex show a preference for approaching textures, which is thought to

arise from the linear spatiotemporal receptive-field structure of these cells (Wang and Yao, 2011).

However, neural mechanisms operating much earlier in the visual pathway might also contribute to

the observed preference for approaching motion.

We considered the excitatory synaptic output from retinal bipolar cells onto the dendrites of gan-

glion cells as a strong candidate for contributing to this type of stimulus selectivity. The synaptic out-

put of retinal bipolar cells is strongly rectified (nonlinear) (Demb et al., 1999; Schwartz et al., 2012)

and this rectification is critical for detecting certain types of visual motion (Demb et al., 2001;

Baccus et al., 2008; Kuo et al., 2016; Manookin et al., 2018). Thus, we used a combination of

computational modeling and synaptic current recordings to determine whether bipolar cells contrib-

uted to approach selectivity in parasol and smooth monostratified cells.

We created subunit receptive-field models based on direct measurements of the spatiotemporal

filtering properties and output nonlinearities of the diffuse bipolar cells that provide excitatory syn-

aptic input to parasol and smooth monostratified ganglion cells in the macaque monkey retina. The

spatial components of the model bipolar cell receptive fields were based on previous measurements

of these cells (Dacey et al., 2000; Boycott and Wässle, 1991; Tsukamoto and Omi, 2015;

Turner and Rieke, 2016) and the temporal filtering properties, electrical coupling, and output nonli-

nearities were based on our own direct measurements (Manookin et al., 2018).

The receptive-field profile of ganglion cells was modeled as a difference-of-Gaussians in which

the receptive-field center was opposed by a surround of opposite contrast polarity. This receptive-

field profile set the weighting of subunit inputs to model ganglion cells. The sizes and strengths of

the center and surround regions of the receptive field were determined directly by measuring spike

responses to sinusoidally modulated spots that varied in diameter (14–720 mm)—the relative sizes

and strengths of center (wC) and surround (wS) regions of the receptive field were estimated from

these response patterns (Figure 2B, C; see Materials and methods).

Both center and surround regions were comprised of subunits and the surround provided lateral

inhibition to the model ganglion cell with a temporal delay (see Materials and methods). This delay

occurs because surround inhibition typically arises via feedback from horizontal cells or amacrine

cells and, thus, must traverse an extra synapse relative to the direct excitatory synaptic input from

bipolar cells. We directly measured the surround delay by recording responses to spots presented

over the receptive-field center or annuli presented in the surround. Spot or annulus contrast was

drawn from a Gaussian distribution on each frame and the temporal filtering properties of center

and surround regions were measured directly by cross-correlating the contrast trajectory of the stim-

ulus with the cell’s spike output (see Materials and methods). The temporal delay between center

and surround regions was determined from the difference in the time-to-peak of the temporal filters

measured in the center and surround regions of the receptive field (Figure 2D, E). This delay was

then incorporated into the model at the level of the surround subunits.

To determine whether the subunit models predicted the observed approach selectivity, we

obtained the model outputs to moving textures. To simulate approaching or receding motion, the

spatial frequency content (i.e. spatial scale) of the textures changed as a function of time

(Schrater et al., 2001; Wang and Yao, 2011). We compared two models that were identical except

for the input-output function of the subunits—in one case the function was linear and in the other it

was nonlinear. The outputs of the linear subunit model were similar for both approaching and reced-

ing textures, resulting in a lack of approach selectivity (p>0.4 at all expansion rates; Figure 3A).

However, the nonlinear subunit model showed a very different pattern—approaching textures pro-

duced significantly larger outputs than receding textures for each expansion rate and this bias for

approaching motion increased with increasing rate (Figure 3B). These modeling results suggest that

the nonlinear output of retinal bipolar cells may contribute to approach selectivity in some ganglion

cell types (see Appendix 1 for a more detailed treatment of this subject).

These results are particularly important in the context of canonical models of motion sensitivity in

primates. Previous studies posited that this type of approach selectivity arose in the cortex or thala-

mus (Wang and Yao, 2011). Our physiological recordings, however, indicated that some primate

ganglion cell types showed approach selectivity. Moreover, our modeling results indicated that

approach sensitivity was predicted as a consequence of ganglion cells pooling across several
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Figure 2. Direct measurement of spatiotemporal receptive-field model parameters. (A) Model architecture. Center

(left) and surround (right) regions of the receptive field were comprised of subunits. Subunits also exhibited center-

surround receptive field structures based on published measurements. Following spatiotemporal filtering, signals

were passed through a static input-output nonlinearity after which they were normalized and integrated at the

level of model ganglion cells. (B) The sizes and weightings of center (wC) and surround (wS) inputs to the model

ganglion cells in (A) were calculated by recording spike responses to spots presented over an On parasol ganglion

cell’s receptive field. Spot contrast (0.5) was modulated sinusiodally at 2 Hz and spot radius varied on each trial.

The modulation depth (F1 amplitude) of the average cycle was largest at 145 mm (left) and fell off at smaller and

larger radii (right). Solid line shows difference-of-Gaussians fit to the data (right). (C) Same as (B) for an Off parasol

cell. (D–E) The temporal lag between center (D) and surround (E) regions of the receptive field was measured

using a Gaussian flicker stimulus. On each frame, the contrast of either a spot (center condition) or annulus

(surround condition) was drawn randomly from a Gaussian distribution with a mean of 0.0 and a standard deviation

of 0.1. Temporal filters were determined by cross-correlating the cell’s spike output with the stimulus sequence

(left) and the temporal lag between center and surround was determined from the time-to-peak of these filters.

Middle, Input-output nonlinearities were determined for the center and surround noise. Right, Unique contrast

sequences were interleaved with repeated sequences. The repeated sequences were not used in computing the

temporal filters, but were used to cross-validate the model. The average response to the repeated sequences

(black) showed high correspondence to the model prediction (green).

Appleby and Manookin. eLife 2020;9:e51144. DOI: https://doi.org/10.7554/eLife.51144 5 of 26

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.51144


nonlinear subunits. We will directly test the contribution of bipolar cells to approach motion selectiv-

ity later in this work, but first we examine whether retinorecipient brain regions could detect

approaching motion from the outputs of parasol ganglion cells.

Circuit model predicts selectivity for approaching motion
Our physiological recordings indicated that individual parasol cells could distinguish between

approaching or receding texture motion with a high degree of accuracy (Figure 1). We employed

our computational models to gain insight into how accurately the direction of moving textures could

be inferred by downstream neurons from the outputs of populations of On and Off parasol cells.

Each subclass of parasol ganglion cell (On or Off) forms a regularly spaced mosaic with neighbor-

ing cells of the same class, but the dendritic-field and receptive-field locations between On and Off

types are uncorrelated (Watanabe and Rodieck, 1989; Field et al., 2010). Thus, we randomly

shifted the locations of the model On and Off cell mosaics relative to each other. We tested the

model on 500 different textures moving at five different speeds (0.5–8 degrees s–1). As with our

direct recordings, the On and Off models showed larger responses for approaching textures relative

to their receding counterparts (Figure 4B).

We tested linear and quadratic decoding models to estimate how accurately downstream neu-

rons could distinguish between approaching and receding texture motion based on the outputs of

the model On and Off parasol cells. The output of the linear decoding model was the scaled sum of

the model parasol cell responses, and the quadratic model squared the outputs of these cells prior

to scaling and summation (see Materials and methods). We assessed the models’ ability to distin-

guish between approaching and receding motion by calculating the Jensen-Shannon distance

between the model outputs to these stimuli (Endres and Schindelin, 2003; Österreicher and Vajda,

2003). This metric quantifies the degree of dissimilarity between the response distributions—values

near zero indicate a high degree of similarity while values near one occur when the distributions are

more distinct (see Materials and methods; Equation 17). Indeed, both decoding models showed

Jensen-Shannon distance values �0.28 under all conditions and values near one at the higher speeds

A

nonlinear

subunit model

linear

subunit model

-2

0

2

n
o
rm

a
liz

e
d
 o

u
tp

u
t

80
expansion rate

(deg/s)

approaching
receding

Off model
linear subunits

2

0n
o
rm

a
liz

e
d
 o

u
tp

u
t

80
expansion rate

(deg/s)

approaching
receding

Off model
nonlinear subunits

-2

0

2

n
o
rm

a
liz

e
d
 o

u
tp

u
t

80
expansion rate

(deg/s)

approaching
receding

On model
linear subunits

2

0n
o
rm

a
liz

e
d
 o

u
tp

u
t

80
expansion rate

(deg/s)

approaching
receding

On model
nonlinear subunits

B

Figure 3. Approach selectivity to moving textures predicted from nonlinear receptive-field subunits. (A)

Normalized outputs of linear subunit models to 500 textures that either approached or receded at five different

rates. Approaching and receding motion was not distinguishable at any rate for either the On or the Off subunit

models. (B) Outputs of models containing nonlinear subunits. Adding a nonlinearity at the model bipolar cell

output produced selectivity for approaching textures at all expansion rates. Error bars indicate mean ± SEM.
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tested (Figure 4D, E). These results indicated that downstream circuits could accurately detect

approaching motion with very simple processing of the inputs from On and Off parasol cells.

To determine whether decoding accuracy varied with the number of ganglion cell outputs, we

calculated model performance while varying the number of On/Off output pairs (1–6 pairs). Pairings

were established by calculating the nearest Euclidean distance between neighboring cells. Increasing

the number of model ganglion cell pairs providing input to the linear decoder produced a modest

increase in performance (Figure 4D). The effect on the quadratic decoder was more varied—increas-

ing the number of ganglion cells greatly improved performance at the slowest expansion rates, but

the effects were inconsistent at faster expansion rates. These results are consistent with the premise

that integrating over a larger number of retinal outputs improved performance in detecting

approaching textures. However, model performance was high for single ganglion cell pairs, indicat-

ing that little integration or post-processing of the retinal output was required to reliably detect

approaching motion.
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Figure 4. Computational model predicts selectivity for approaching textures. (A) Example approaching and

receding textures. The same texture sequence was presented from highest-to-lowest spatial frequency

(approaching) or lowest-to-highest spatial frequency (receding). Models were run on 500 unique texture sequences

at five different expansion rates. (B) Average responses of On (top) and Off models (bottom) to 500 textures that

approached or receded at 2.0 degree s–1. (C) Basic organization of decoding models. Model bipolar cells

provided input to ganglion cell mosaic which, in turn, provided input to the decoder. (D) The output of the linear

decoding model was the weighted sum of the outputs from the On and Off models. The model produced larger

outputs for approaching than receding motion for each of the textures, shown as individual circles (left). Jensen-

Shannon distance values computed between the distributions for approaching and receding textures at five

expansion rates (middle). This approach bias persisted across a range of expansion rates and was highest at

higher rates. Lines are color coded for the number of ganglion cells combined by the decoder. Right, Jensen-

Shannon distance (y-axis as function of the maximum spatial frequency in the moving textures (x-axis).

Discriminability of the approaching textures persisted across a broad range of spatial frequencies and fell off when

spatial frequency content was very low (<0.3 cycles degree–1). (E) Same as (D) for the quadratic decoding model.
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The type of motion that we studied with the approaching and receding texture stimuli is com-

monly encountered as an animal moves through the environment (Schrater et al., 2001; Dong and

Atick, 1995). The results presented thus far in our study support the premise that the output of the

primate retina contains reliable information that could be used by downstream neural pathways for

detecting approaching motion. Our next goal was to understand the specific neural circuit mecha-

nisms mediating the observed motion preference.

Approach motion selectivity present for moving annuli
The subunit model in Figure 3 demonstrated that the nonlinear input-output properties of bipolar

cell subunits could account for much of the observed approach selectivity to texture motion. We

next wanted to determine whether this output nonlinearity accounted for all the observed effect or

whether other circuit mechanisms also contributed. We did this by designing a stimulus paradigm

which should not elicit approach selectivity for the nonlinear subunit circuit motif described in

Figure 3. Thus, if approach selectivity were observed, other circuit mechanisms must also contribute.

The stimulus used was a ring (annulus) that expanded outwardly (approaching) or contracted

inwardly (receding) along the dendritic tree (Figure 5A). Figure 5B illustrates the widest extent of

the annulus relative to the receptive-field profiles of example On and Off parasol cells that were

measured using the stimulus paradigm described in Figure 2. The annulus was contained within the

receptive-field center, which allowed us to probe cellular and model response properties without

strongly engaging the surround.

We tested the predictions of three model configurations on the approaching and receding annuli:

(1) a model in which the subunit outputs were linear (linear subunit model), (2) a model in which the

output of each subunit was passed through an output nonlinearity (nonlinear subunit model), and (3)

a model in which simulated electrical coupling between subunits occurred prior to the output nonlin-

earity (coupled subunit model).

Unlike their predictions for the texture stimuli (Figure 3), the linear and nonlinear subunit models

both predicted a lack of approach selectivity for the moving annuli, as model outputs were similar

for the approaching and receding annuli at all contrasts (Figure 5C, D). The coupled subunit model,

however, predicted larger responses to approaching annuli than to receding annuli (Figure 5E).

What accounts for the approach bias predicted by the coupled subunit model? It was proposed

to us that the effect of coupling in expanding the subunit receptive-field size could explain the

observed approach motion bias. Indeed, some studies have proposed that electrical coupling signifi-

cantly increases the size of bipolar cell receptive fields (Dacey et al., 2000; Kujiraoka and Saito,

1986; Saito and Kujiraoka, 1988), but see Berntson and Taylor (2000). We sought insight into

whether altering the subunit receptive-field size could account for the observed approach bias. We

did this by varying the subunit receptive-field diameters in models lacking electrical coupling

between subunits.

We used a receptive-field diameter of 32 mm in our coupled subunit model that exhibited

approach selectivity to moving annuli (two-standard-deviation diameter; Figure 5E). This value was

based on a previous study in which we used direct measurements of excitatory synaptic currents in

parasol ganglion cells to determine the subunit size, coupling gain between subunits (gain, 0.1), and

space constant for electrical coupling in the diffuse bipolar cell networks (l, 36.4 mm)

(Manookin et al., 2018). These model parameters would expand the subunit receptive field by ~7

mm. Thus, if approach selectivity were a result of subunit receptive-field expansion, we would expect

to observe comparable approach selectivity values for the coupled model and a model lacking elec-

trical coupling with subunit diameters of ~39–40 mm. However, this was not the case (Figure 5G, H).

The coupled subunit models showed approach selectivity values of ~0.5 when the coupling gain was

0.1 (On model, 0.56; Off model, 0.46), but the same models that lacked coupling and with subunit

diameters of 40 m exhibited much lower approach selectivity (enlarged subunit model: On model,

0.09; Off model, 0.03). In fact, doubling the subunit receptive-field diameters did not reproduce the

level of approach selectivity observed in the coupled subunit model or in our direct recordings from

parasol ganglion cells (Figure 5G, H). Thus, approach bias does not arise primarily from enlarging

subunit receptive fields.

These modeling simulations produced two principal results. First, the nonlinear subunit model

predicted approach selectivity to the expanding texture stimuli (Figure 3), but not to the expanding

Appleby and Manookin. eLife 2020;9:e51144. DOI: https://doi.org/10.7554/eLife.51144 8 of 26

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.51144


30

0
n
S

-1 0 1
contrast

approaching
receding

40

0

n
S

0 0.5time (s)

approaching
receding

On parasol cell
linear subunit model 30

0

n
S

-1 0 1
contrast

approaching
receding40

0

n
S

0 0.5time (s)

approaching
receding

On parasol cell
nonlinear subunit model

60

0

n
S

-1 0 1
negative contrast

approaching
receding60

0

n
S

0 0.5time (s)

approaching
receding

Off parasol cell
linear subunit model 60

0

n
S

-1 0 1
negative contrast

approaching
receding

60

0

n
S

0 0.5time (s)

approaching
receding

Off parasol cell
nonlinear subunit model

coupled

subunit model

nonlinear

subunit model

linear

subunit model

40

0

n
S

-1 0 1
negative contrast

approaching
receding50

0

n
S

0 0.5time (s)

approaching
receding

Off parasol cell
coupled subunit model

30

0

n
S

-1 0 1
contrast

approaching
receding40

0

n
S

0 0.5time (s)

approaching
receding

On parasol cell
coupled subunit model

C

E F

Dlinear subunit model predictions nonlinear subunit model predictions

coupled subunit model predictions

60

0
n
S

-1 0 1
contrast

approaching
receding

60

0

n
S

0 0.5time (s)

approaching
receding

Off parasol cell
enlarged subunit model

30

0

n
S

-1 0 1
contrast

approaching
receding

40

0

n
S

0 0.5time (s)

approaching
receding

On parasol cell
enlarged subunit model

enlarged

subunit model

enlarged subunit model predictions

approaching

receding

approaching

receding

coupled subunit model predictions enlarged subunit model predictions
G H

1

0

0.50.0
coupling gain

Off model
1

0

a
p

p
ro

a
c
h

 s
e

le
c
ti
v
it
y

0.50.0
coupling gain

On model
1

0

6432
subunit diameter (µm)

Off model
1

0

a
p

p
ro

a
c
h

 s
e

le
c
ti
v
it
y

6432
subunit diameter (µm)

On model

-200 0 200

µm

On parasol cell
Off parasol cell

two-dimensional receptive-field profilesA B

broadest extent of 

annulus stimulus

Figure 5. Canonical receptive-field models predict a lack of approach selectivity. (A) Stimulus paradigm for approaching and receding annuli. Annuli

either rapidly increased in radius (approaching) or decreased in radius (receding). (B) Two-dimensional spatial receptive-field profiles used in the model.

Values were determined directly from parasol cell recordings as shown in Figure 2. Gray regions indicate the widest extent of the moving annuli. (C)

The linear subunit model was created in which subunit input was integrated linearly prior to a single nonlinearity at the ganglion cell output. Model

parameters came directly from measurements of spatiotemporal receptive field properties. On and Off models predicted similar responses for both

approaching and receding annuli. (D) A model in which the output of each subunit was passed through the output nonlinearity prior to integration at

the level of the ganglion cell also predicted similar responses to approaching and receding annuli. The nonlinear subunit model also predicted similar

responses in Off parasol cells to approaching and receding annuli of a given contrast. (E) Output of On and Off models with electrical coupling

between bipolar cells. This models produced excitatory conductances that were biased toward approaching motion. (F) A model in which coupling

between subunits was absent, but the subunit receptive-field sizes were enlarged to simulate lateral spread through gap junctions. Approach selectivity

was absent from this model, indicating that the increase in subunit receptive-field size alone could not account for the approach selectivity observed in

(E). (G) Approach selectivity index calculated for the On and Off cell coupled subunit models at a series of coupling gains. Approach selectivity was

highest for gains of ~0.1–0.4. (H) Approach selectivity for the enlarged subunit models calculated for a series of subunit diameters. Selectivity was

relatively low even at large diameters.

The online version of this article includes the following video, source code and figure supplement(s) for figure 5:

Source code 1. Included is a MATLAB file containing code used to generate a simplified coupling model.

Figure supplement 1. Parasol cell responses to briefly flashed annuli.

Figure 5—video 1. Movie illustrating model subunit activations during the annulus stimulus paradigm.

https://elifesciences.org/articles/51144#fig5video1

Appleby and Manookin. eLife 2020;9:e51144. DOI: https://doi.org/10.7554/eLife.51144 9 of 26

Research article Computational and Systems Biology Neuroscience

https://elifesciences.org/articles/51144#fig5video1
https://doi.org/10.7554/eLife.51144


annuli. Thus, if this model accurately reflects the underlying circuitry, then we should observe a lack

of approach selectivity to the annulus stimulus in our direct recordings from primate ganglion cells.

Another important result of the simulations was the divergent predictions of the nonlinear and

coupled subunit models (Figure 5D, E). These models were identical other than that the latter

model simulated electrical coupling between subunits prior to the output nonlinearity. Thus, the dif-

ferences in predicted output pattern between these two models suggested that electrical coupling

in the bipolar cell network contributes to approach bias for certain classes of stimuli such as the mov-

ing annuli (see Appendix 1). If such a mechanism were engaged by these stimuli, we would expect

to observe approach selectivity to the moving annuli in our cellular recordings. Indeed, we next

tested these predictions by recording the responses of ganglion cells to the moving annulus stimulus

paradigm.

Consistent with the predictions of the coupled subunit model, parasol cells exhibited pronounced

asymmetries to approaching and receding annuli. In On parasol cells, approaching bright annuli

evoked much larger spike responses than receding annuli of the same contrast—at the highest con-

trast, approaching motion elicited 85.4 ± 10.9 spikes s–1 versus 7.1 ± 4.3 spikes s–1 for receding

motion (contrast, +1.0; mean ± SEM; n = 26 cells; p=8.3 � 10–6; p<2.6 � 10–5 at all contrasts; Wil-

coxon signed rank test, here and below). Likewise, approaching motion to strong negative contrasts

in Off parasol cells evoked 148.7 ± 12.8 spikes s–1 versus 55.2 ± 9.4 spikes s–1 for receding motion

(contrast, –1.0; mean ± SEM; n = 24 cells; p=2.1 � 10–5; p<3.4 � 10–5 at all contrasts).

We calculated the approach selectivity index for each cell (Figure 6H). Unlike to the moving tex-

tures, Off smooth monostratified and broad thorny cells lacked consistent approach selectivity to

the annulus stimulus, but approach selectivity persisted in On smooth monostratified and On and

Off parasol cells. Besides demonstrating that approach selectivity generalized to a broader range of

visual stimuli in the latter three cell types, these results aligned well with the predictions of the cou-

pled subunit model, suggesting that electrical coupling or other lateral interactions within the net-

work contributes to approach selectivity in these cells. To gain further insight into the circuit

mechanisms involved, we performed synaptic current recordings from parasol cells to the moving

annulus stimulus paradigm.

Distinct contributions of the On and Off visual pathways to approach
motion selectivity
We presented the approaching and receding annuli while recording the excitatory and inhibitory

synaptic inputs to parasol ganglion cells (see Materials and methods). Excitatory and inhibitory cur-

rents were measured by holding a cell’s membrane voltage at the reversal potentials for inhibitory

(ECl, –70 mV) and excitatory synaptic currents (Ecation, 0 mV), respectively. The pattern of excitatory

synaptic inputs mirrored the observed spiking pattern—excitatory currents were largest for

approaching annuli matching the cell’s preferred contrast polarity—positive contrasts in On cells and

negative contrasts in Off cells (compare Figure 6, Figure 7). For example, 100% preferred-contrast

approaching annuli evoked excitatory inputs that were much larger than receding annuli in both On

(approaching, 40.4 ± 9.3 pC; receding, 0.7 ± 5.5 pC; n = 16 cells; p=4.4 � 10–4) and Off parasol cells

(approaching, 97.5 ± 17.2 pC; receding, 29.0 ± 10.5 pC; n = 19 cells; p=1.3 � 10–4). In addition,

receding annuli that were of a non-preferred contrast evoked larger responses than approaching

annuli of the same contrast. These data indicated that the sensitivity to approaching motion

observed in the parasol cell spike outputs was present in the excitatory synaptic inputs from diffuse

bipolar cells to parasol ganglion cells (Figure 7).

Inhibitory synaptic input to parasol cells showed the opposite pattern to that of excitation. Pre-

ferred-contrast receding annuli produced larger inhibitory currents than approaching annuli of the

same contrast polarity (On: approaching, 89.4 ± 26.9 pC; receding, 127.4 ± 28.6 pC; n = 13 cells;

p=0.15; Off: approaching, 64.1 ± 27.7 pC; receding, 114.4 ± 29.3 pC; n = 13 cells; p=1.7 � 10–2).

This finding indicated that the increased selectivity to approaching motion was mediated by a com-

bination of increased synaptic excitation and reduced synaptic inhibition relative to receding motion;

this pattern of synaptic input amplified the differences in parasol cell responses to approaching and

receding motion.

Our synaptic current recordings revealed an apparent contribution of inhibitory synaptic input to

approach selectivity. Inhibitory input to parasol cells arises primarily from crossover inhibition

(Cafaro and Rieke, 2010; Cafaro and Rieke, 2013). This type of inhibition emerges from amacrine
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Figure 6. Approach motion selectivity for moving annuli. (A) Spike responses in an On parasol ganglion cell to

receding (left) and approaching (middle) annuli presented at a series of contrasts. Right, Average spike rate during

movement of receding (red) and approaching (black) annuli as a function of stimulus contrast. (B–F) Same as (A)

for Off parasol (B), On smooth monostratified (C), Off smooth monostratified (D), broad thorny (E), and large

Figure 6 continued on next page
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cells with opposing contrast polarity—Off-type amacrine cells inhibit On parasol cells and On-type

amacrine cells inhibit Off parasol cells. In addition to directly inhibiting ganglion cells, circuits for

crossover inhibition can modulate glutamate release from retinal bipolar cells by directly inhibiting

their synaptic terminals, and this can produce pronounced effects on ganglion cell firing (Cafaro and

Rieke, 2013; Liang and Freed, 2010). Thus, crossover inhibition can manifest in both the direct inhi-

bition onto the ganglion cell and in the excitatory input from bipolar cells.

To measure the presynaptic and postsynaptic contributions of crossover inhibition to approach

motion selectivity, we recorded synaptic currents in Off parasol cells while blocking crossover

Figure 6 continued

bistratified ganglion cells (F). (G) Approach sensitivity index values for the stimulus paradigm. Transparent shapes

indicate individual cells. Opaque shapes and error bars indicate mean ± SEM. Asterisks indicate statistically

significant values, determined using the Wilcoxon signed rank test.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Included is a data file containing a structure for the approach selectivity data in annulusspikes.

Figure supplement 1. Ganglion cell responses to moving spots.

+ ++

-3

0

c
u
rr

e
n
t 
(n

A
)

0 0.5time (s)

contrast:
      +1.0
      1.0

Off parasol cell
receding excitation

-3

0

0 0.5time (s)

contrast:
      +1.0
      1.0

Off parasol cell
approaching excitation

150

0

p
C

-1 0 1
negative contrast

approaching
receding

Off parasol cell
excitation

80

0

p
C

-1 0 1
contrast

approaching
receding

On parasol cell
excitation

-1

0

c
u
rr

e
n
t 
(n

A
)

0 0.5time (s)

contrast:
      +1.0
      1.0

On parasol cell
receding excitation

-1

0

0 0.5time (s)

contrast:
      +1.0
      1.0

On parasol cell
approaching excitation

2

0

c
u
rr

e
n
t 
(n

A
)

0 0.5time (s)

contrast:
      +1.0
      1.0

Off parasol cell
receding inhibition

2

0

0 0.5time (s)

contrast:
      +1.0
      1.0

Off parasol cell
approaching inhibition 100

0

p
C

-1 0 1
negative contrast

approaching
receding

Off parasol cell
inhibition

600

0

p
C

-1 0 1
contrast

approaching
receding

On parasol cell
inhibition

10

0c
u
rr

e
n
t 
(n

A
)

0 0.5time (s)

contrast:
      +1.0
      1.0

On parasol cell
receding inhibition

10

0

0 0.5time (s)

contrast:
      +1.0
      1.0

On parasol cell
approaching inhibition

A
C

E

excitatory

circuitry

F

B

D

–

+

crossover inhibition

circuitry

O
n

 b
ip

o
la

r 
c

e
ll

On amacrine cell

Off ganglion cell

O
ff

 b
ip

o
la

r 
c

e
ll

Off ganglion cell

-1

0

1

a
p
p
ro

a
c
h
 s

e
le

c
ti
v
it
y

O
n 

pa
ra

so
l

O
ff 

pa
ra

so
l

-1

0

1

a
p
p
ro

a
c
h
 s

e
le

c
ti
v
it
y

O
n 

pa
ra

so
l

O
ff 

pa
ra

so
l

excitatory synaptic

currents

(16) (19)

(13) (13)

* *

inhibitory synaptic

currents

Figure 7. Asymmetrical synaptic input patterns underlie approach motion selectivity. (A) Excitatory synaptic currents measured in an On parasol

ganglion cell to receding (left) and approaching (middle) annuli presented at a series of contrasts. Right, Excitatory charge during movement of

receding (red) and approaching (black) spots as a function of stimulus contrast. (B) Same as (A) for an Off parasol cell. (C) Approach selectivity index for

excitatory synaptic currents for On (green) and Off parasol cells (blue). Individual cells are shaded; solid circles indicate mean ± SEM. (D) Inhibitory

synaptic currents measured in an On parasol ganglion cell to receding (left) and approaching (middle) annuli presented at a series of contrasts. Right,

Inhibitory charge as a function of contrast in the On cell. (E) Same as (D) for the Off parasol cell. (F) Approach selectivity index for inhibitory synaptic

currents for On (green) and Off parasol cells (blue). Individual cells are shaded; solid circles indicate mean ± SEM. Statistical significance is indicated

with an asterisk and was determined using the Wilcoxon signed rank test.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Included is a data file containing a structure for the approach selectivity data in currents.

Figure supplement 1. Crossover inhibition contributes to selectivity for approaching motion.
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inhibition with agents that selectively disrupt signaling between photoreceptors and On-type bipolar

cells (Slaughter and Miller, 1981). We used an mGluR6 agonist/antagonist combination (L-APB, 5

mM; LY341495, 7.5 mM), which has been shown to silence crossover inhibition while minimizing off-

target effects in primate retina (Ala-Laurila et al., 2011). A comparable pharmacological manipula-

tion was not available for isolating crossover inhibition on On-type ganglion cells (Manookin et al.,

2018), so we focused on Off parasol cells for these experiments.

Crossover inhibition can act both presynaptically, by modulating bipolar cell glutamate release,

and postsynaptically, by directly inhibiting ganglion cell dendrites (Murphy and Rieke, 2008;

Pang et al., 2007; van Wyk et al., 2009; Cafaro and Rieke, 2013; Liang and Freed, 2010;

Molnar et al., 2009). We measured these effects by recording excitatory and inhibitory synaptic

input before and after blocking crossover inhibition (Figure 7—figure supplement 1). The effect of

blocking crossover inhibition on excitatory synaptic inputs differed for approaching and receding

motion. Blocking crossover inhibition did not significantly affect the magnitude of evoked excitatory

synaptic currents to approaching motion, but to receding motion, excitatory currents increased fol-

lowing crossover blockade relative to the control condition (Figure 7—figure supplement 1A, B).

This subsequently reduced approach selectivity relative to the control condition (Figure 7—figure

supplement 1C; n = 6 cells; p=1.6 � 10–2; Wilcoxon signed rank test). These data indicated that dur-

ing receding motion, the amacrine cell responsible for crossover inhibition provided inhibition at

presynaptic bipolar terminals, but this presynaptic inhibition was not present during approaching

motion.

These excitatory and inhibitory synaptic recordings indicated that crossover inhibition was more

strongly recruited by receding motion than approaching motion. Thus, crossover inhibition enhanced

approach motion selectivity by suppressing excitatory synaptic release and directly inhibiting gan-

glion cell dendrites during receding motion. Despite the apparent contribution of crossover inhibi-

tion to approach motion selectivity, excitatory synaptic input was larger for approaching motion

than receding motion with crossover inhibition blocked. This indicated that the observed bias for

approaching motion was present in both the bipolar cell and amacrine cell circuitries and was ampli-

fied by interactions between these circuit elements.

Discussion
We compared the responses of several primate ganglion cell types to approaching and receding

motion. We found that parasol and smooth monostratified ganglion cells consistently showed larger

responses to approaching textures and annuli relative to receding stimuli of the same type (Figure 1,

Figure 6). We further demonstrated that the asymmetrical response patterns of these cells to

approaching and receding motion arises from the concerted activity of excitatory and inhibitory syn-

aptic inputs to these ganglion cells (Figure 5, Figure 7, Figure 7—figure supplement 1). Further,

approach selectivity was weak or absent from several On-Off type cells indicating that it was not a

general property of primate ganglion cells. Below, we note some functional implications of these

results.

Contributions of circuit nonlinearities to visual coding
Canonical receptive-field models have been used to describe the visual properties of many ganglion

cell types including parasol cells (Enroth-Cugell and Robson, 1966; Chichilnisky and Kalmar, 2002)

and smooth monostratified cells (Crook et al., 2008; Petrusca et al., 2007). These models can accu-

rately predict neural responses to a small subset of potential visual inputs such as briefly presented

stimuli (Figure 5—figure supplement 1) or spatiotemporally uncorrelated noise (Chichilnisky and

Kalmar, 2002), but they perform poorly at predicting responses to stimuli containing spatiotemporal

correlations (Manookin et al., 2018; Kuo et al., 2016), including naturalistic stimuli (Heitman et al.,

2016; Turner and Rieke, 2016; Turner et al., 2018). These failures occur because retinal circuits

contain many nonlinearities that are not considered in classical receptive field models. Indeed, the

traditional linear-nonlinear spatiotemporal model failed to accurately predict the strong asymmetries

observed to approaching and receding motion (Figure 5, Figure 5—figure supplement 1,

Figure 6).

In vertebrates, the principal retinal nonlinearities arise at the level of bipolar cell glutamate

release (Demb et al., 2001; Demb et al., 1999). Additional nonlinearities are produced by electrical
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coupling between bipolar cells (Kuo et al., 2016; Manookin et al., 2018; Trenholm et al., 2013;

Hoggarth et al., 2015) and by inhibitory amacrine cells (Kim and Kerschensteiner, 2017;

Dong and Werblin, 1998; de Vries et al., 2011; Baccus et al., 2008). Further, a recent study

revealed strong nonlinearities in the interactions between different dendritic branches of smooth

monostratified ganglion cells, providing an additional level of nonlinear interactions after the bipolar

cell nonlinearities (Rhoades et al., 2019). Besides frustrating attempts by researchers to produce

accurate computational models of retinal processing, these nonlinearities form the basis for extract-

ing (or rejecting) specific features from visual inputs. For example, amacrine cell input allows the ~15

bipolar cell types to differentially affect the ~30–40 ganglion cell pathways (Asari and Meister,

2012; Asari and Meister, 2014; Masland, 2012; Wässle, 2004). Further, these interactions contrib-

ute to spatial selectivity (Greschner et al., 2016; Olveczky et al., 2003; Cook and McReynolds,

1998; Taylor, 1999; Flores-Herr et al., 2001) and short-term plasticity (Naecker, 2018;

Kastner and Baccus, 2011; Kastner and Baccus, 2013; Appleby and Manookin, 2019;

Kastner et al., 2019).

The prominent type of inhibitory input at play in approach motion selectivity, crossover inhibition,

arises via interactions between the On and Off visual pathways. The circuit motif for crossover inhibi-

tion has been conserved across several vertebrate species including fish (Rosa et al., 2016), sala-

manders (Pang et al., 2007), guinea pigs (Liang and Freed, 2010; Manookin et al., 2008), rodents

(Münch et al., 2009; van Wyk et al., 2009), rabbits (Molnar et al., 2009), and primates

(Cafaro and Rieke, 2010; Cafaro and Rieke, 2013), and it contributes to a variety of visual functions

(reviewed in Werblin, 2010). Here, we demonstrate that crossover inhibition amplifies the asymmet-

rical responses of primate ganglion cells to approaching and receding motion by providing inhibition

both at the level of the diffuse bipolar cell terminals and at the level of the ganglion cell dendrites

(Figure 7, Figure 7—figure supplement 1; Münch et al., 2009).

In addition, our findings highlight the utility of electrical synapses in neural computation. Electrical

coupling between neighboring bipolar cells enhances responses to visual inputs containing spatio-

temporal correlations and endows certain ganglion cells with generalized motion selectivity

(Kuo et al., 2016; Manookin et al., 2018) and enhanced direction selectivity in others

(Hoggarth et al., 2015). Our results here suggest that the effects of electrical synaptic transmission

varies with the type of motion—potentiation occurs during approaching motion and was absent dur-

ing receding motion (Figure 5, Appendix 1). Perhaps, the prevalence of these synapses in the retina

was partly an adaptation, early in vertebrate evolution, for processing the spatiotemporal correla-

tions that are so common in visual environments (Völgyi et al., 2013; Field, 1987), including those

generated during an animal’s own motion through the environment (Figure 1, Figure 4;

Clifford et al., 1999; Schrater et al., 2001; Dong and Atick, 1995).

Relationship to previous findings
In rodent retina, approach selectivity is found only in a single ganglion cell class—the Off Alpha gan-

glion cell and is absent from several other types (Münch et al., 2009). We found approach selectivity

to be more ubiquitous in the primate retina, manifesting in parasol, smooth monostratified, and

broad thorny ganglion cells to varying degrees (Figure 1, Figure 6). This variation may reflect the

distinct ethological demands on these species. For example, the need to quickly detect approaching

dark objects, such as overhead predators would be necessary for survival in prey species like mice

(Zhang et al., 2012). Thus, expression of approach selectivity in an Off-type ganglion cell would

allow these vital computations to occur early in the visual pathway. Likewise, the arboreal habitats of

early primates increased the need to quickly and accurately perform visually guided movements with

the arms and hands and led to the expansion of areas in the parietal cortex responsible for these

tasks (Goodale and Milner, 1992). These habitats may have also produced a need for light/dark

symmetry in detecting approaching motion as well as self-motion through the environment

(Clifford et al., 1999; Schrater et al., 2001).

Contributions to visual processing in primates
The selectivity of these macaque ganglion cell types to approaching motion should be distinguished

from the looming-sensitive neurons found in retinorecepient brain regions. For example, looming-

sensitive neurons in the optic tectum of pigeons respond when an object moves toward the animal,
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but do not respond when the animal moves toward the object (Sun and Frost, 1998). The ganglion

cells that we tested would not be able to distinguish self-motion and object motion in this way.

Instead, the approach motion selectivity that we observed would be an initial step in a series of com-

putations culminating in the detection of approaching objects.

Indeed, the same circuit nonlinearities that enhanced selectivity to approaching motion also pro-

duced ambiguities between the direction (approaching/receding) and contrast (light/dark) of moving

objects. This result indicates that downstream visual circuits receiving input from parasol and smooth

monostratified ganglion cells would also require input from other retinal pathways to resolve these

ambiguities. For example, downstream circuits might obtain a more faithful readout of the reflec-

tance of a moving object from the concerted activity of midget ganglion cells and then, with the aid

of this information, determine whether the object were approaching or receding. However, future

studies will be needed to determine how and where in the visual stream such ambiguities are

resolved.

Materials and methods
Experiments were performed in an in vitro, pigment-epithelium attached preparation of the

macaque monkey retina (Manookin et al., 2015). Eyes were dissected from terminally anesthetized

macaque monkeys of either sex (Macaca fascicularis, mulatta, and nemestrina) obtained through the

Tissue Distribution Program of the National Primate Research Center at the University of Washing-

ton. All procedures were approved by the University of Washington Institutional Animal Care and

Use Committee.

Tissue preparation and electrophysiology
The retina was continuously superfused with warmed (32–35˚C) Ames’ medium (Sigma) at ~6–8 mL

min–1. Recordings were performed from macular, mid-peripheral, or peripheral retina (2–8 mm, 10–

30˚ foveal eccentricity). Physiological data were acquired at 10 kHz using a Multiclamp 700B ampli-

fier (Molecular Devices), Bessel filtered at 3 kHz (8-pole [900 CT, Frequency Devices] in series with 4-

pole in Multiclamp), digitized using an ITC-18 analog-digital board (HEKA Instruments), and acquired

using the Symphony acquisition software package developed in Fred Rieke’s laboratory (http://sym-

phony-das.github.io).

Recordings were performed using borosilicate glass pipettes containing Ames medium for extra-

cellular spike recording or, for whole-cell recording, a cesium-based internal solution containing (in

mM): 105 CsCH3SO3, 10 TEA-Cl, 20 HEPES, 10 EGTA, 2 QX-314, 5 Mg-ATP, and 0.5 Tris-GTP, pH

~7.3 with CsOH, ~280 mOsm. Series resistance (~3–9 MW) was compensated online by 50%. The

membrane potential was corrected offline for the approximately –10 mV liquid junction potential

between the intracellular solution and the extracellular medium. Excitatory and inhibitory synaptic

currents were isolated by holding cells at the reversal potentials for inhibitory currents (Echloride, ~–70

mV) and excitatory currents (Ecation, 0 mV), respectively.

Visual stimuli
Visual stimuli were generated using the Stage software package developed in the Rieke lab (http://

stage-vss.github.io) and displayed on a digital light projector (Lightcrafter 4500; Texas Instruments)

modified with custom LEDs with peak wavelengths of 405, 505, and 640 nm. Stimuli were focused

on the photoreceptor outer segments through a 10X microscope objective. Mean light levels were

in the medium photopic regime, (in photoisomerizations [R*] cone–1 s–1) L-cone: 1.5 � 104–1.5 �
105, M-cone: 1.2 � 104–1.3 � 105, S-cone: 3.9 � 103–5.5 � 104, rod: 3.6 � 104–4.0 � 105. The ratios

of L-cone:M-cone:S-cone activations approximate the equal-energy white point after removing the

lens (J. Kuchenbecker and M. Manookin, in preparation). Contrast values for annuli are given in

Weber contrast and for texture stimuli in root-mean-squared (RMS) contrast.

Spike rate values in the text are given relative to the maintained spike rate prior to presenting the

stimulus. For several of the stimulus conditions (e.g. receding motion of a preferred contrast), these

spike rates fell below zero and, as a result, the values were set to zero when calculating the

approach selectivity index.

For extracellular recordings, currents were wavelet filtered to remove slow drift and amplify

spikes relative to the noise (Wiltschko et al., 2008) and spikes were detected using either a custom
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k-means clustering algorithm or by choosing a manual threshold. Spike rate (in spikes s–1) was calcu-

lated using a Gaussian temporal envelope (SD, 0.67 ms). Prior to analysis, data were downsampled

to 1 kHz using a Chebushev filter (type I IIR; filter order, 8). Whole-cell recordings were leak sub-

tracted and responses were measured relative to the median membrane currents immediately pre-

ceding stimulus onset (0.25–0.5 s window).

Stochastic textures
The stochastic texture stimuli used in the model were generated by bandpass filtering a matrix of

random noise (Schrater et al., 2001). To simulate approaching or receding motion, the center fre-

quency of the filter changed on each frame such that each frame was a rescaled version of the origi-

nal texture (geometric mean spatial frequency, 1.6 cycles degree–1). This bandpass filter was a

cosine function in the spatial frequency domain:

F̂ð!Þ ¼ 0:5þ 0:5cosðWÞ;�p�W �p (2)

where

W ¼ log2 ð
!

2f ðtÞÞ (3)

where ! are the spatial frequencies in the image with the F0 component shifted to the center of

the spectrum (using the fftshift function in MATLAB). Values of W (in radians) were constrained to fall

between ±p. Texture spatial frequency (f ) changed exponentially as a function of time:

f ðtÞ ¼ expð loge ½f0�� rtÞ (4)

where f0 is the peak frequency of the filter at time zero and r is the rate of texture expansion in

Hz. Spatial frequency proceeded from the highest to the lowest values for approaching textures and

from the lowest to the highest values for receding textures as in Equation 4.

Difference-of-Gaussians receptive-field model
For each of the computational circuit models, the parasol cell receptive field was modeled as a dif-

ference-of-Gaussians. Receptive-field parameters were measured using sinusoidally modulated spots

that varied in size. Spike responses were fit with Equation 5 (Enroth-Cugell et al., 1983; Troy et al.,

1999):

R¼wcenter 1� exp � r2

2s2
center

� �� �

�wsurround 1� exp � r2

2s2

surround

� �� �

(5)

where wx is the weighting of the center or surround and x is the standard deviation of the center

or surround. The sizes and weightings of center and surround regions were then used in the pooling

stage of our computational models.

Determining the difference in kinetics between center and surround
The kinetics of center and surround regions of the receptive field were measured using a Gaussian

temporal flicker stimulus. On each stimulus frame, center or surround regions were uniformly pre-

sented with a single contrast which was drawn pseudo-randomly from a Gaussian distribution with a

mean of 0.0 and a standard deviation of 0.1. Temporal filters were then determined by cross-corre-

lating the presented contrast trajectory (S) with the cell’s spike output (R; Equation 6; Baccus and

Meister, 2002).

FðtÞ ¼
Z

RðtÞSðtþ tÞdt (6)

These filters were then modeled as a damped oscillator with an S-shaped onset (Schnapf et al.,

1990; Angueyra and Rieke, 2013) as described by Equation 7,

FðtÞ ¼ A
ðt=triseÞn

1þðt=triseÞn
expð�t=tdecayÞ cosð

2pt

tperiod
þ’Þ (7)
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where A is a scaling factor, trise is the rising-phase time constant, tdecay is the damping time con-

stant, tperiod is the oscillator period, and ’ is the phase (in degrees). For surround subunits, a tempo-

ral lag of 15 ms was included in the temporal component of the receptive field to account for the

delay relative to the center (see Figure 2).

The relationship between input and output (i.e. the nonlinearity) was calculated by convolving the

temporal filter and stimulus to generate the linear prediction (P).

PðtÞ ¼
Z

FðtÞSðt� tÞdt (8)

The prediction (x-axis) and response (y-axis) were modeled as a cumulative Gaussian distribution

(Chichilnisky, 2001).

NðxÞ ¼ "þ a
ffiffiffiffiffiffi

2p
p

Z x

�¥
e
�ðbtþgÞ2

2 dt (9)

where a indicates the maximal output value, � is the vertical offset, b is the sensitivity of the out-

put to the generator signal (input), and g is the maintained input to the cell. In practice, Equation 9

was invoked using MATLAB’s cumulative distribution function (normcdf).

Neural circuit models
We created models of the retinal circuitry to gain a deeper understanding of how synaptic nonlinear-

ities and circuit motifs could shape neural response properties. The model was implemented in the

following stages:

1. Space-time filtering stage

. Generate the subunit spatiotemporal receptive fields (F).

. Generate a stimulus (S) with the same dimensionality as the receptive field. Stimulus values
are given in contrast.

. Generate the subunits linear response (R) by convolving the stimulus and receptive field;
add Poisson noise.

2. Coupling stage (coupling model only)
. Calculate the Euclidean distance between each pair of subunits (d).
. Calculate the change in current in each subunit due to simulated electrical coupling.

3. Subunit input-output stage

. Pass the result (R) through the appropriate input-output function.
4. Pooling stage

. Apply temporal delay to subunits forming the ganglion cell’s receptive-field surround.

. Weight each subunit according to its distance from the model ganglion cell’s receptive
field center.

. Sum subunit inputs to the model ganglion cell.

Stage 1: Subunit space-time filtering

We first generated a hexagonal grid of model subunits with an average spacing of 32 mm between

neighboring units. The location of each subunit was randomly shifted in the x and y dimensions to

simulate randomness in the bipolar cell mosaic (s. d. ±2 mm). Subunit spatial filtering was modeled

with a difference-of-Gaussians receptive-field model (Equation 5) using parameters based on previ-

ous measurements from diffuse bipolar cells in macaque retina (Dacey et al., 2000; Boycott and

Wässle, 1991; Tsukamoto and Omi, 2015; Tsukamoto and Omi, 2016). Temporal filtering was per-

formed using parameters from Equation 7 obtained by direct measurement of excitatory synaptic

outputs of diffuse bipolar cells onto parasol cell dendrites (Manookin et al., 2018). Thus, the subu-

nit’s spatiotemporal receptive field (F) was the product of a two-dimensional difference-of-Gaussians

(spatial domain, x) and a temporal filter (time domain, t). The output of each subunit (R) was deter-

mined by convolving the stimulus (S) with the subunit’s spatiotemporal receptive field (F) as

described in Equation 10.
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RðtÞ ¼
Z

t

0

dt

Z

d2xFð~x;tÞSð~x; t� tÞ (10)

Random fluctuations in membrane potential were simulated by adding Poisson noise to subunit

responses; noise values were based on our previous direct measurements of diffuse bipolar cell syn-

aptic outputs (Manookin et al., 2018).

Stage 2: Apply coupling between subunits
For the coupling model, we first calculated the Euclidean distance between model subunits from

their x- and y-locations.

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi� xjÞ2 þðyi� yjÞ2
q

(11)

where dij is the distance between the ith and jth subunits.

Subunits in the coupling model shared a portion of their output based on differences in driving

force and distance between subunits (Equation 12). The response of each subunit following coupling

was determined by adding the change due to coupling to the response prior to coupling (R0).

RiðtÞ ¼ R0iðtÞþ
X

n

j¼1

g ðR0iðtÞ�R0jðtÞÞ expð�di;j=lÞ
" #

(12)

where g is the coupling gain or portion of the response shared between subunits, l is the cou-

pling length constant, di;j is the pairwise Euclidean distance between the ith and jth subunits, and n

is the total number of subunits in the model.

Stage 3: Subunit input-output functions
The response of each subunit was then passed through the appropriate input-output function—

responses in the linear subunit model were passed through a linear function (i.e., y ¼ x) and the non-

linear and coupled subunit models were passed through the nonlinear function that we directly mea-

sured from excitatory synaptic inputs to parasol ganglion cells (see Equation 9).

Stage 4: Pooling
The final stage of the model, the pooling stage, was then performed for each of the three subunit

models. Model ganglion cell responses were the weighted (wx) sum of inputs from center and sur-

round subunits (zx).

zRGCðtÞ ¼wcenterzcenterðtÞ�wsurroundzsurroundðtÞ (13)

where the weightings of the center and surround regions of the ganglion cell receptive field (wx)

were determined via direct measurements from parasol cells (see Figure 2, Equation 5). To deter-

mine the pooled inputs from center and surround subunits (zx), subunit responses (N) following spa-

tiotemporal filtering (linear subunit model) or the output nonlinearity (nonlinear and coupled subunit

models) were pooled according to Equation 14,

zxðtÞ ¼
X

n

i¼1

NiðtÞexpð�d2i =2s
2

xÞ (14)

where di is the Euclidean distance from the ith subunit’s receptive field center to the center of the

ganglion cell’s receptive field and sx is the standard deviation of the center or surround regions of

the ganglion cell’s receptive field (see Figure 2, Equation 5).

Decoding models
We employed two decoding models to better understand how accurately downstream visual circuits

could determine the direction of texture motion from the outputs of model On and Off parasol cells.
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The linear model summed the scaled outputs of the model On and Off cells as described in

Equation 15,

flinear ¼ aonronþ aoffroff (15)

where aON and aOFF are scaling constants. The quadratic model was similar in structure except

that the response from each pathway was squared prior to summation (Equation 16),

fquadratic ¼ aon1ron1 þ aon2r
2

on2 þ aoff1roff1þ aoff2r
2

off2 (16)

We evaluated the ability of the decoding models to distinguish between approaching and reced-

ing textures using the Jensen-Shannon distance. Model output was discretized by rounding to the

nearest integer value. The Jensen-Shannon distance (i.e. the square-root of the Jensen-Shannon

divergence) was calculated from the Kullback-Leibler divergence (DKL) between the probability distri-

butions for the model outputs to each approaching (P) and receding (Q) texture sequence.

JSdistðP;QÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
DKLðP

PþQ

2
ÞþDKLðQ

PþQ

2
Þ

� �

s

(17)

The Kullback-Leibler divergence between the model output distributions was calculated accord-

ing to Equation 18.

DKLðPQÞ ¼
X

n

pn log2 ð
pn

qn
Þ (18)

where pn is the probability of observing an output of magnitude n in the sample window during

approaching motion and qn is the probability of observing an output of n in the sample window dur-

ing receding motion.

Quantification and statistical analysis
All statistical analyses were performed in MATLAB (R2018b, Mathworks). Reported p values in this

study were paired and were calculated using the Wilcoxon signed-rank test. Final figures were cre-

ated in MATLAB (version R2018b), Igor Pro (version 8), and Adobe Illustrator.
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Appendix 1

Organization of the subunit network and shape of the
input-output curve confers activation bias
We sought insight into the mechanisms that biased electrically coupled networks to

approaching motion. To do this, we created a simplified model of subunit interactions. During

approaching motion, activation through electrical coupling spreads from a few subunits at the

very center of the ganglion cell receptive field to a greater number of subunits located in more

distal regions of the receptive-field center. Likewise, our model contained two types of

subunits: proximal subunits that were analogous to the more centrally located bipolar cells

and distal subunits that were analogous to the bipolar cells located farther out in the

receptive-field center.
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Appendix 1—figure 1. Current redistribution and nonlinearity shape determine network bias.

(A) Activation pattern for converging subunit network. Distal subunits (orange) imparted a

portion of their input to proximal subunits (blue). Subunit inputs then pass through input-

output functions prior to being summed as the converging response (Rconverging). (B) Activation

pattern for diverging subunit network in which proximal subunits impart a portion of their

current to distal subunits. (C) Shapes of different input-output functions evaluated with the

network model. (D) Ratio of outputs from diverging (Rdiverging) and converging (Rconverging)

activations (y-axis) as a function of the percentage of proximal subunits in the network (x-axis).

The nonlinearity measured directly from excitatory synaptic inputs to parasol cells produced a

large bias for diverging network activation when distal subunits outnumbered proximal

subunits by ³ 3:1. (E–F) Contributions of nonlinearity shape to output bias of subunit networks.

(E) During convergent activation, the numerical mismatch between proximal and distal

subunits and the shape of the input-output nonlinearity drives the small number of proximal

subunits to saturating regions of the output curve, whereas the large number of distal subunits

decrease their outputs. This results in a relatively small network output (Rconverging). (F) During
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divergent activation, a small number of distal subunits are suppressed while a large number of

distal subunits are potentiated, causing the network output to increase (Rdiverging).

We simulated the subunit activation patterns encountered during approaching and

receding annuli with diverging and converging network activations, respectively. Diverging

network activation occurred when proximal subunits imparted current to the distal subunits,

and converging activation occurred when the distal subunits imparted current to proximal

subunits. In all cases, the total amount of input current in the network was conserved (x-axis).

Following subunit activation, the input of each subunit was passed through an input-output

function. Four different input-output functions were tested—a function in which the mapping

between input and output was linear (i.e., y ¼ x) and three nonlinear functions with differing

shapes to their input-output relationships.

To determine whether the overall output of the network differs with network configuration,

we varied the ratio of proximal and distal subunits and we computed the ratio of network

output for diverging activation (RdivergingÞ and converging activation (Rconverging). For the linear

and rectified linear unit (ReLU) input-output functions, the ratio of diverging and converging

network activations was equivalent for all conditions tested, and the Softplus nonlinearity also

lacked a bias for diverging subunit activation (Selectivity to approaching motion in retinal

inputs to the dorsal visual pathway Appendix 1—figure 1D). However, the input-output

function that we directly measured in parasol ganglion cells produced a very different result.

Under conditions in which the relative number of proximal subunits was low, the network

output was much (>100%) larger for diverging network activation than for converging

activation, reminiscent of the approach motion bias observed in our subunit models (Figure 3,

Figure 5).

Why does the shape of the input-output function produce such different network

behaviors? The key to answering this question is in understanding the way in which the input

currents are redistributed during network activation. When subunits impart a portion of their

current, this current is divided equally among the recipient subunits. Thus, the current from a

large number of subunits would produce a large positive movement along the input (x) axis if

it were divided among a relatively small number of recipient subunits, and the subunits

imparting the current would then show smaller negative movements along the input axis.

Under conditions in which the movements occur along linear regions of the input-output

function, the loss of current by imparting subunits and the gain in current by recipient subunits

would cancel. However, if this gain in current occurred in a region in which the function

saturates, as is the case for the function we directly measured in parasol cells, further increases

along the input axis would produce negligible changes along the output axis; however, loss of

current by imparting subunits would still produce a decrease along the output axis, resulting in

a relatively small network output (Selectivity to approaching motion in retinal inputs to the

dorsal visual pathway Appendix 1—figure 1E). Indeed, this is precisely the case in our

network model when distal subunits greatly outnumber proximal subunits—converging

network activation increases the inputs of a relatively small number of proximal subunits and

decreases inputs of a large number of distal subunits. Proximal subunits are then pushed to

regions of the curve that produce saturation in the output. The output of distal subunits,

however, decreases and this, coupled with the saturation of proximal subunits, produces a

relatively small output from the network.

Diverging subunit activation produces a very different pattern. A relatively small number of

proximal subunits impart a portion of their current to distal subunits. As a result, the proximal

subunits decrease their outputs, while the distal subunits increase their outputs. Because the

imparted current of a few proximal subunits is spread out over many more distal subunits,

these distal subunits are unlikely to end up in a saturating region of the curve. Together, these

factors result in a relatively large network output (Selectivity to approaching motion in retinal

inputs to the dorsal visual pathway Appendix 1—figure 1F).

These simplified network simulations highlight two principles that are key to understanding

how bias for approaching motion can arise from networks of electrically coupled subunits.

First, the sequence in which the subunits are activated is critical—activation of a few subunits

that then spreads to a larger number of subunits, as is the case during approaching motion,
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potentially produces the largest network outputs (Selectivity to approaching motion in retinal

inputs to the dorsal visual pathway Appendix 1—figure 1D). Second, the shape of the input-

output function is essential to the observed effects. Linear (linear; ReLU) or accelerating (e.g.,

Softplus) functions did not strongly affect network output. The nonlinearity we directly

measured with our synaptic input recordings was sigmoidal, causing saturation at large

positive values along the input axis. This saturation favors conditions in which activation is

distributed over a larger number of subunits rather than strongly activating a few subunits.

Thus, prudent selection of the shape of an input-output nonlinearity can be as important to

neural circuit function as the placement of that nonlinearity within the circuit.
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