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A member of the attaching and effacing (AE) family of pathogens, enterohemorrhagic
Escherichia coli (EHEC) induces dramatic changes to the intestinal cell cytoskeleton, includ-
ing effacement of microvilli. Effacement by the related pathogen enteropathogenic E. coli
(EPEC) requires the activity of the Ca+2-dependent host protease, calpain, which partici-
pates in a variety of cellular processes, including cell adhesion and motility. We found that
EHEC infection results in an increase in epithelial (CaCo-2a) cell calpain activity and that
EHEC-induced microvillar effacement was blocked by ectopic expression of calpastatin, an
endogenous calpain inhibitor, or by pretreatment of intestinal cells with a cell-penetrating
version of calpastatin. In addition, ezrin, a known calpain substrate that links the plasma
membrane to axial actin filaments in microvilli, was cleaved in a calpain-dependent manner
during EHEC infection and lost from its normal locale within microvilli. Calpain may be a cen-
tral conduit through which EHEC and other AE pathogens induce enterocyte cytoskeletal
remodeling and exert their pathogenic effects.
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INTRODUCTION
Enterohemorrhagic Escherichia coli (EHEC) causes serious diar-
rheal illnesses worldwide. A bacterium that can be found in a
variety of ruminants, EHEC can be transmitted to humans by
ingestion of contaminated foods. Amongst the various EHEC
strains, EHEC serotype O157:H7 has caused most of the seri-
ous outbreaks (for review, see Croxen and Finlay, 2010 and Kaper
et al., 2004). Symptoms of the disease include severe abdominal
cramping, watery diarrhea, hemorrhagic colitis, and in rare cases,
hemolytic uremic syndrome (HUS), a triad of hemolysis, throm-
bocytopenia, and renal failure. HUS, the leading cause of renal
failure in children in the US, is caused by systemic absorption of
the EHEC toxin, Shiga toxin (Stx), which inhibits protein synthesis
(for review, see Tarr et al., 2005).

Enterohemorrhagic E. coli is a member of the attaching and
effacing (AE) pathogen family, which also includes enteropatho-
genic E. coli (EPEC), an important cause of infantile diarrhea in
developing countries, and the mouse pathogen Citrobacter roden-
tium (Mundy et al., 2005; Borenshtein et al., 2008; Frankel and
Phillips, 2008). During infection of intestinal epithelial cells, these
extracellular pathogens induce dramatic changes in the host cell
membrane and cytoskeleton, collectively referred to as AE lesions.
At sites of bacterial attachment, surface microvilli are effaced, and
bacteria intimately adhere to the host cell surface, appearing to
partially “sink” into the mammalian cell. Also characteristic of
these lesions is the assembly of striking “pedestals” of filamentous

(F-) actin beneath bound bacteria (Caron et al., 2006; Campellone,
2010).

Microvilli are highly organized structures that not only allow
for a ∼30-fold increase in the apical surface area of intestinal
epithelial, but also serve as sites of robust specialized transport,
thereby enhancing enterocytes’ ability to absorb water and nutri-
ents (Tyska and Mooseker, 2002; Brown and Mcknight, 2010;
Lange, 2010). Loss of microvilli would therefore severely impair
absorptive capacity and facilitate diarrheal disease. In addition,
AE pathogens that are incapable of generating AE lesions display
severe colonization defects and reduced disease phenotypes (Don-
nenberg et al., 1993; Tzipori et al., 1995; Marches et al., 2000; Tacket
et al., 2000; Ritchie et al., 2003), and EHEC mutants defective in
stimulating actin pedestal formation fail to expand their initial
infectious niche (Ritchie et al., 2008; Crepin et al., 2010).

To generate AE lesions, these pathogens inject effectors into
host cells via a contact-dependent type III secretion system (T3SS;
Kaper et al., 2004; Croxen and Finlay, 2010). An essential effector is
the translocated intimin receptor (Tir), which, after insertion into
the host cell apical membrane, binds the bacterial surface pro-
tein intimin, thus promoting an intimate connection to the host
cell (Kenny et al., 1997). The cytosolic domains of Tir then initi-
ate a signaling cascade that ultimately hijacks a host cell signaling
cascade to form filamentous actin pedestals beneath the bound
bacteria (Caron et al., 2006; Hayward et al., 2006; Campellone,
2010).
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Though both EHEC and EPEC translocate highly related Tir
molecules that are required for the formation of morphologi-
cally indistinguishable pedestals, the two pathogens trigger F-actin
assembly by different signaling pathways (Caron et al., 2006; Hay-
ward et al., 2006; Campellone, 2010). Pedestal formation by EHEC
requires a host adaptor, insulin receptor tyrosine kinase sub-
strate (IRTKS) or insulin receptor tyrosine kinase substrate p53
(IRSp53; Vingadassalom et al., 2009; Weiss et al., 2009), and an
additional type III-secreted bacterial effector, EspFU, also know
as Tir-cytoskeleton coupling protein (TccP), which stimulates the
actin nucleation factor neural Wiskott–Aldrich syndrome protein
(N-WASP; Campellone et al., 2004; Garmendia et al., 2004). In
contrast, EPEC pedestals require recruitment of the host adap-
tor protein Nck, which in turn binds and activates N-WASP
(Gruenheid et al., 2001; Campellone et al., 2002).

While pedestal formation by AE pathogens has been well
characterized, much less is known about the mechanisms pro-
moting microvillar effacement. The core bundle of F-actin in
a single microvillus is stabilized internally by villin and fim-
brin and tethered laterally to adjacent plasma membrane by
myosin1A:calmodulin cross-bridges. The bundle is anchored at
the base to the terminal web via conventional acto-myosin inter-
actions that ultimately associate with the basolateral membrane
domain terminating in adherens and tight junctions where adja-
cent epithelial cells are tethered to one another (Tyska and
Mooseker, 2002; Brown and Mcknight, 2010). In addition, ezrin,
an ERM family protein required for microvillar development, is
found at this apical cytoskeletal–membrane interface of polar-
ized intestinal epithelia, and is thought to bridge the apical plasma
membrane to microvillar F-actin core (Bretscher et al., 2002; Fehon
et al., 2010). Core microvillar components are also in constant
turnover, making microvilli highly dynamic structures (Tyska and
Mooseker, 2002; Brown and Mcknight, 2010). Because of this,
there are several potential host proteins that could be targeted
by EHEC to alter the cytoskeleton and yield AE lesions. Given
the complexity and inherent dynamic nature of microvilli, AE
pathogen-induced microvilli effacement likely involves partici-
pation of key host adaptor proteins, just as pedestal formation
does.

An important class of eukaryotic cytoskeletal regulators are
the calpains, Ca+2-dependent proteases that cleave a variety of
enzymes and regulatory proteins to modulate cellular function.
Calpains are ubiquitously expressed in vertebrates and have been
implicated in many important cellular processes, such as regula-
tion of signal transduction, cell spreading and motility, membrane
repair, cell death, embryogenesis, and tumor suppression (Pot-
ter et al., 1998; Croall and Ersfeld, 2007; Sorimachi et al., 2010).
Many reported calpain substrates are involved in regulating the
actin dynamics, especially during cellular adhesion and migra-
tion (Shuster and Herman, 1995; Potter et al., 1998; Franco and
Huttenlocher, 2005; Lebart and Benyamin, 2006; Chan et al., 2010;
Kotecki et al., 2010). Several microbial pathogens, promote disease
through the inappropriate activation of calpain (Fettucciari et al.,
2006; Wang et al., 2008; Goldmann et al., 2009; Dean et al., 2010;
Perry et al., 2010; Sumitomo et al., 2010; Zhang et al., 2010). EPEC
infection results in an increase intracellular Ca+2 levels in mam-
malian cells (Baldwin et al., 1991), and induces calpain activity in

a manner dependent on T3SS (Hardwidge et al., 2004; Dean et al.,
2010). We previously showed that calpain controls EPEC-induced
enterocyte effacement in vitro (Potter et al., 2003).

While calpain’s roles in effacement and intestinal barrier dis-
ruption have been documented for EPEC, its involvement in EHEC
infection has not been characterized. Since comparative analy-
sis of pedestal formation by EPEC and EHEC have revealed that
these related pathogens generate actin pedestals by fundamentally
different means (Caron et al., 2006; Hayward et al., 2006), we
sought to determine if calpain plays an important role in EHEC
effacement, as it does in EPEC (Potter et al., 2003). We show,
here, that infection of polarized CaCo-2a monolayers by EHEC
increased calpain activity, and inhibition of calpain blocked efface-
ment and reduced other morphological manifestations of cell
damage. Calpain-dependent ezrin disruption was also observed
upon EHEC infection. These results indicate that calpain, per-
haps by cleaving ezrin, likely plays a central role in EHEC-induced
microvillar effacement. An understanding of the calpain-regulated
cytoskeletal remodeling that controls host cell adaptive responses
to bacterial challenge may offer innovative therapeutic strategies
aimed at preventing EPEC and EHEC pathogenesis.

MATERIALS AND METHODS
ANTIBODIES AND PHALLOIDIN
Alexa 488- and 546-conjugated phalloidin, were obtained from
Invitrogen. Primary antibodies used were mouse anti-ezrin
(Zymed # 357300), rabbit anti-O157 (Gibco), and goat anti-
O157 (Fitzgerald Industries #70-XG13). Secondary antibodies
are species-specific Alexa 350-, 488-, and 546-labeled anti-IgG
(Invitrogen).

CELL CULTURE
CaCo-2a enterocytes, stably transfected with the calpastatin
high over-expression plasmid pRC/CMV-3ΔCSN (HOX) or the
pRC/CMV empty vector (CON), have been previously described
(Potter et al., 2003). Cells were grown in Dulbecco’s Modified
Eagle’s Medium supplemented with 10% fetal bovine serum, 1%
each penicillin–streptomycin–fungizone (PSF) and l-glutamine.
Sub-confluent cultures were maintained in T175 flasks. For
experiments, cultures were washed twice with HBSS, released
with trypsin–EDTA, and seeded at confluence (approximately
1.5 × 105 cells/cm2) in tissue cultures vessels precoated with colla-
gen (BD #354236). CaCo-2a cells were then allowed to differentiate
for 7–14 days, and fed every 2 or 3 days. For electron microscopy,
cells were seeded onto standard plastic six-well, tissue culture
plates. For immunofluorescence staining, cells were seeded into
24-well glass bottom tissue culture plates (Mattek #P24G-1.5-13F).
For calpain activity, cells were seeded into plastic 96-well black
walled tissue culture plates with optically clear bottoms (Potter
et al., 2003).

BACTERIAL STRAINS
Table 1 lists bacterial strains used in this study. The wild type,
Stx-deficient EHEC strain of serotype O157:H7, strain TUV-93,
a derivative of the prototypic E. coli O157:H7 strain EDL933,
has been previously described. The lack of Shigatoxin production
by TUV-93-0 permits the prolonged infection of a wide variety
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Table 1 | Bacterial strains used in this study.

Strain Description Resistance Reference

TUV-93 Stx-deficient EHEC

serotype O157:H7

N/A Campellone et al.

(2002)

JPN15 EPEC Serotype O127 Amp Jerse et al. (1990)

TUV-93ΔescN T3SS deficient EHEC

mutant derived from

TUV-93

Cam This study

of cell lines without the induction of Stx-mediated cytotoxicity.
TUV-93ΔescN was generated by lambda Red recombineering as
previously described (Murphy and Campellone, 2003).

INFECTION
In preparation for infection, individual colonies from freshly
streaked plates were grown in 1 mL of LB with appropriate antibi-
otics for up to 8 h. Ten microliter of this day culture was transferred
to DMEM/100 mM HEPES/antibiotics and incubated overnight at
37˚C with 5% CO2 to induce T3SS expression. For infection, bac-
teria were resuspended in DMEM/2% FBS/20 mM HEPES/2 mM
glutamine to the following MOI’s: EHEC at 500:1, EPEC at 100:1.
Higher MOI’s were necessary for EHEC infections due to less
efficient binding of EHEC to cultured cells; this is a commonly
observed phenotype that was noted at least two decades ago
(Cantey and Moseley, 1991). Strain TUV-93 also does not adhere
to in vitro cultured cells as well as EHEC harvested from infected
piglets (Brady et al., 2011). The latter observation suggests that the
poor cell attachment by in vitro-grown EHEC, as were analyzed
here (and in virtually all published cell binding studies), reflect the
relative lack of a putative adhesin (or adhesins) that is expressed
at higher levels when EHEC is growing in the mammalian host.

QUANTIFICATION OF CALPAIN ACTIVITY
Calpain activity was assayed by either one of two fluorogenic cal-
pain substrate kits. For assays using AnaSpec’s Calpain Activity
Kit (#72150), CaCo-2a cell monolayers are seeded in 96-well TC
treated plates with clear bottoms and black walls (Ibidi #89626)
10–14 days prior to use. Cells were infected as described above.
Infected monolayers were washed twice with PBS. Fifty microliter
of assay buffer was added to each well and incubated at room
temperature (RT) for 5–10 min. Cells were scraped with a pipette
tip and 50 mL of fluorogenic substrate in assay buffer was added
to each well. Plates were spun at 1000 rpm on a tabletop cen-
trifuge (700 × g ) for 5 min to reduce bubbles and incubated at
RT in the dark for up to 60 min. For assays using Calbiochem’s
InnoZyme™Calpain Activity Assay Kit, (#CBA054), CaCo-2a cell
monolayers are seeded in six-well TC treated plates 10–14 days
prior to use. Cells were infected as described above. Infected mono-
layers were washed twice with PBS, and lysed with CytoBusterTM

(EMD #71009) on ice for 5 min. Cell lysates were scraped, trans-
ferred into 1.5 mL tubes and spun at 12,000 g at 4˚C for 15 min.
The supernatants were collected and used immediately for mea-
suring calpain activity per kit instructions or stored at −80˚C.
Fluorescence was measured using a Molecular Devices SpectraMax
Gemini XS at 354 nm excitation and 442 nm emission for the

Anaspec kit and 320 nm excitation and 480 nm emission for the
Calbiochem kit, and corrected for background fluorescence (i.e.,
that of wells with substrate only).

CALPASTAT TREATMENT
Calpastat, a cell-penetrating calpastatin peptide (Croce et al., 1999)
was synthesized at the Tufts Peptide Core Facility using solid phase
Fmoc chemistry. Peptides were purified by high performance liq-
uid chromatography; molecular mass and purity were confirmed
by mass spectrometry. A 25 mM peptide stock was prepared in
100 mM HEPES, pH 7.4 and stored at −20˚C. For treatments, cell
monolayers were washed once with HBSS and cell culture media
containing Calpastat at the specified concentrations was added.
Cells were incubated at 37˚C in 5% CO2 for 1 h.

SCANNING ELECTRON MICROSCOPY
Cell monolayers were washed twice with HBSS, then fixed by
immersion in 2.5% glutaraldehyde in 100 mM sodium phosphate
buffer (pH 7.2) for a minimum of 2 h at RT. The fixed samples
were then washed three times in the same buffer. Following the
third wash, monolayers were dehydrated through a graded series
of ethanol to 100% and then critical point dried in liquid CO2.
The bottoms of the dishes were cut off and using silver conductive
paste, the plastic disks with the cells attached on the surface were
affixed to aluminum scanning electron microscopy (SEM) stubs
and sputter coated with Au/Pd (80/20). The specimens were then
examined using an FEI Quanta 200 FEG MK II scanning electron
microscope at 10 kV accelerating voltage. Each specimen was sys-
tematically observed at 1000×, 2500×, and 5000× at five separate
areas spaced throughout the disk. Images were assessed by four
individuals, one of whom was blinded and another of whom was
not involved in the study. Assessments were unanimous concern-
ing the presence or absence of effacement. Representative images
at 10,000× were taken with disks tilted about 30˚.

IMMUNOFLUORESCENCE MICROSCOPY
For indirect immunofluorescence imaging studies, CaCo-2a cells
were seeded at confluence and allowed to differentiate in 24-well
glass bottom culture plates (Mattek #P24G-1.5-13F). At the indi-
cated time points following infection, cells were washed with warm
DMEM, then fixed in 4% formaldehyde/DMEM for 5 min at RT.
Cells were permeabilized with 0.1% Triton buffer for 90 s at RT,
washed three times with PBS,and then incubated with the specified
primary antibodies for 1 h at RT. Labeled secondary antibod-
ies and/or Alexa 488- or 544-conjugated phalloidin (Invitrogen)
were applied for 45 min at RT. Experiments were repeated three
times. For each experiment, greater than 5 fields were examined
per condition; roughly 20–50 cells per field were viewed/scored.
Images were acquired on a Zeiss 200 M inverted microscope with
a Hamamatsu cooled-CCD digital camera (ER) and MetaMorph
7.0 imaging software (Molecular Devices Corp, PA, USA).

SUBCELLULAR FRACTIONATION AND WESTERN BLOTTING
Infected and uninfected cells were washed with warm TBS to
remove media and unattached bacteria. Extraction buffer con-
taining 40 mM HEPES pH 7.2, 50 mM PIPES, 75 mM NaCl,
1 mM MgCl2, 0.5 mM EGTA, Protease Inhibitor Cocktail (1:1000,
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Sigma), 1 mM sodium orthovanadate, and 0.1% Triton detergent
was applied to the cultures, 0.5 ml per well of a six-well plate, and
plates were placed on an orbital shaker at 50 rpm for 10 min at
RT. The extraction buffer was then removed to tubes held on ice.
The remaining cellular residue was collected with 200 μL boil-
ing hot Laemmli sample buffer (Sambrook and Russell, 2001).
All extracts were dialyzed against 4 L distilled water at 4˚C for
4 h with one water change at 2 h, using SnakeSkin dialysis tub-
ing, 10 K MWCO (Pierce). Dialyzed samples were snap frozen in
liquid nitrogen, lyophilized overnight, and brought up in 200 μL
each Laemmli sample buffer. All samples were boiled for 3 min
and loaded onto 10% acrylamide gels for SDS-PAGE, followed by
transfer to nitrocellulose membranes. Membranes were stained for
ponceau to confirm equal protein loading, then probed for ezrin
using monoclonal mouse anti-ezrin (Zymed #357300).

RESULTS
CALPAIN ACTIVITY IS INCREASED UPON EHEC INFECTION
To investigate whether calpain activity is affected by EHEC,
we used two different commercially available kits that utilized
calpain-specific fluorogenic substrates. Compared to uninfected
cell monolayers, calpain activity increased after 3 h of infection
by EHEC. As reported (Dean et al., 2010), EPEC also induced
an increase in calpain activity, while the T3SS deficient EHEC
mutant Δescn did not. Figure 1 shows the results of one represen-
tative experiment. Pretreatment of polarized cell monolayers with
a cell-penetrating calpastatin inhibitor for 1 h prior to EHEC infec-
tion reduced EHEC-induced calpain activation to near uninfected
levels (Data not shown).

FIGURE 1 | Enterohemorrhagic Escherichia coli increased calpain

activity during infection. Calpain activity was measured with a
fluorogenic, calpain-specific substrates in lysates of uninfected CaCo-2a
cells, or of cells infected with EHEC, EPEC and EHEC ΔescN for 3 h.
Shown are the means (±SE) with (*) indicating significance of p < 0.05 by
student’s T -test compared against the uninfected group.

CALPASTAT, A CELL-PENETRATING CALPAIN INHIBITOR PREVENTS
EHEC-INDUCED EFFACEMENT
To assess the role of calpain in EHEC-induced effacement, we
infected polarized CaCo-2a CON cells with or without pretreat-
ment with Calpastat, a cell-penetrating version of the endoge-
nous calpain inhibitor, calpastatin (Croce et al., 1999; Carragher,
2006). SEM of uninfected control cells revealed distinct microvilli
and cellular borders, although some variation in the density and
arrangement of microvilli was observed (Figure 2A, and data not
shown).

When CON cells were infected with EHEC and assessed by
SEM at low (1000×) magnification (Figure 2) or TEM (data not
shown), CON cells suffered severe “blebbing” and rounding, indi-
cating cellular damage (Figure 2B). This apparent toxicity was
not observed after infection with EPEC (Figure 2C), in which
cell monolayers looked nearly identical to uninfected monolayers
(Figure 2A). Pretreatment with 2.5 mM Calpastat for 1 h prior to
EHEC infection diminished these effects (Figure 2D), suggesting
that calpain activity is required for this cellular damage and rais-
ing the possibility that calpain may be critical for EHEC-induced
cellular pathogenesis.

Higher magnification assessment of monolayers at 5000× to
10,000× revealed that a 2-h infection by EHEC resulted in the pre-
dicted microvillar effacement (Figure 3B) as compared to unin-
fected controls (Figure 3A). When CON cells were subjected to a
1-h pretreatment with 2.5 mM of Calpastat prior to EHEC infec-
tion and assessed by 10,000× magnification SEM, most EHEC-
bound cells retained largely intact microvilli (Figure 3C), similar

FIGURE 2 | Enterohemorrhagic Escherichia coli infection produced

additional gross monolayer damage that was diminished by inhibition

of calpain. Uninfected CaCo-2a CON monolayers (A), or monolayers
infected for 2 h with EPEC (C) or EHEC, with (D) or without (B) a 1-h
pretreatment with Calpastat (2.5 μM) were visualized by SEM under 1000×
magnification. Scale bars are 100 μm.
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FIGURE 3 | A cell-penetrating calpain inhibitor prevents microvilli

effacement by EHEC. Uninfected CaCo-2a CON monolayers (A) and
monolayers infected for 2 h with EHEC without (B) or with (C) 1 h
pretreatment with 2.5 μM Calpastat, or infected with EPEC (D) were
visualized by SEM at 10,000× magnification with a 30˚ tilt. Scale bars are
10 μm.

in quality to uninfected CaCo-2a CON monolayers (Figure 3A). As
expected, the control infection by EPEC in the absence of Calpastat
treatment also revealed effacement (Figure 3D).

ECTOPIC EXPRESSION OF CALPASTATIN INHIBITS EFFACEMENT BY
EHEC
We previously showed that the calpastatin-overexpressing CaCo-
2a cell line, HOX, for which the pRC/CMV vector-transfected
CaCo-2a CON line serves as an appropriate “wildtype” control,
resists effacement by EPEC (Potter et al., 2003). Like the parent
CaCo-2a and vector control CON line, these cells polarize and
appear to differentiate, in that they develop trans-epithelial resis-
tance and, by SEM, generate microvilli (albeit morphologically
distinct from those on CON cells; Potter et al., 2003). Like CON
cells, some cell-to-cell variability with respect to microvillar length
and density (data not shown) were observed. HOX microvilli were,
intact and in general, shorter than those observed in CON cells,
(Figure 4A). As reported; these phenotypic differences compared
to wild type CaCo-2 cells are likely due to the altered cytoskeletal
architecture resulting from disrupted calpain-driven cytoskeletal
remodeling (Potter et al., 2003).

When stained for F-actin using fluorescent phalloidin and
imaged near the apical surface of the monolayers, the microvillar
F-actin core bundles of polarized CON and HOX cells appeared as
a punctate fluorescent pattern on the apical surface (Figures 4C,E)
when viewed “end-on,” while the circumferential “belt” of F-
actin encircling the apical cytoskeletal–membrane domain could
also be readily distinguished. This apical F-actin staining pattern
was consistent with the pattern of microvilli observed by SEM

FIGURE 4 |The calpastatin overexpressing cell line, HOX, resisted

microvillar effacement by AE pathogens. Uninfected polarized CaCo-2a
HOX monolayers (A) and polarized HOX monolayers infected for 2 h with
EHEC (B) were visualized by SEM at 10,000× magnification and with a 30˚
tilt. Scale bars for SEM’s are 10 μm. Polarized control CaCo-2a CON (C,D)

and calpastatin-overexpressing CaCo-2a HOX cells (E,F) were stained for
F-actin (red) and EHEC (green) without (C,E) or with infection (D,F) by
EHEC. F-actin was stained using Alexa 568-conjugated phalloidin; EHEC
were stained with anti-O157 antibody.

(Figures 3D and 4A). In addition, infection of polarized CON
cells by EHEC induced the loss of this punctate fluorescent stain-
ing (Figure 4D), consistent with the loss of microvilli observed
during EHEC-induced effacement as revealed by high magnifica-
tion SEM (Figure 3A). (Note that the EHEC strain used in this
study requires 4–6 h of infection to form actin pedestals, and were
not detected in the timeframe of the current study.)

In stark contrast to the effacement of CON cells by EHEC,
infected HOX cells retained their microvillar-associated punc-
tate F-actin fluorescence staining (Figure 4F). The retention of
microvillar integrity by HOX cells after 2 h (Figure 4F) or 3 h
(data not shown) was confirmed by SEM (Figure 4B and data not
shown). These results indicate that ectopic expression of calpas-
tatin and the concomitant inhibition of calpain renders HOX cells
resistant to effacement by EHEC infection.
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THE CALPAIN SUBSTRATE EZRIN IS CLEAVED IN RESPONSE TO EHEC
INFECTION AND LOST FROM MICROVILLI
We have previously shown that calpain-mediated cleavage of ezrin
occurs during cell spreading and migration, a process that, like
effacement, involves extensive actin remodeling (Shuster and Her-
man, 1995; Potter et al., 1998, 2003). Given that EHEC induces
calpain activity upon infection of mammalian cells, we tested for
ezrin cleavage upon infection by EHEC. Immunoblotting of sub-
cellular fractions of EHEC-infected CaCo-2a CON cells revealed
ezrin cleavage (Figure 5A). The full-length 80 kDa species was
detected in both soluble and insoluble fractions. The cleaved
55 kDa ezrin fragment, which is not associated with the plasma
membrane, was detected at very slight levels in the soluble fraction
of uninfected CON cells. Endogenous calpain activity is present
in all cells, supporting various functions in situ such as cellular
differentiation, membrane polarization, or cell cycle progression.
Therefore a small amount of cleaved ezrin should exist, even
in uninfected cells. Infection with EHEC increased this pool of
cleaved ezrin. A significant amount of full-length ezrin was still
detected in EHEC-infected CON monolayers likely because, as can
be seen in Figures 4D,F, EHEC does not infect cells uniformly, but
rather heavily infects a fraction of cells. Thus, a mixture of infected
and uninfected cells contributes to the lysate collected for western
blotting. The 55 kDa ezrin cleavage product was not observed in
uninfected or EHEC-infected HOX cells, indicating that calpain is
required for its generation (Figure 5A).

Immunofluorescence staining of ezrin in polarized CaCo-2a
CON cells revealed a punctate pattern at the apical surface almost
identical to that of microvilli staining by phalloidin (Figure 5B).
Images taken at the apical surface showed a staining pattern that
is consistent with its role in linking the plasma membrane to core
microvillar actin bundles (Fehon et al., 2010). To determine if
EHEC-mediated cleavage of ezrin correlated with a change in the
cellular distribution of ezrin, we stained CON cells for ezrin after
EHEC infection. Interestingly, the apical punctate ezrin pattern
disappeared throughout the entire infected cell (Figure 5C). Cleav-
age of ezrin would result from its release from the apical surface,
thus appearing as a loss of staining in the focal plane imaged. This
change in localization was dependent on calpain activity, because
calpastatin-overexpressing HOX cells retained their punctate ezrin
staining pattern during infection (Figure 5D).

DISCUSSION
In response to challenge by AE pathogens, intestinal epithelial
cells undergo a coordinated and robust remodeling of the apical
membrane–cytoskeletal domain (Goosney et al., 2000; Hardwidge
et al., 2004; Caron et al., 2006). Highly organized core bun-
dles of actin in the microvilli are disassembled while the apical
membrane conforms to newly synthesized actin pedestals. These
structural alterations likely disrupt overall epithelial cell function
and integrity and contribute to EHEC- and EPEC-induced gas-
troenteritis and diarrhea. While the process of pedestal formation
is well characterized, the mechanisms of microvillar effacement
are poorly understood. Previous work indicated that EPEC infec-
tion triggers a rise intracellular Ca+2 in mammalian cells (Baldwin
et al., 1991), and EPEC-mediated effacement requires the Ca+2-
regulated host protease, calpain (Potter et al., 2003). In this study,

FIGURE 5 | Enterohemorrhagic Escherichia coli infection caused

calpain-dependent loss of mirovillar ezrin and ezrin cleavage. Lysates
from subcellular fractions of polarized control CaCo-2a CON and HOX
monolayers with and without 6 h EHEC infection by were probed for ezrin
by western blot. Asterisk (or arrow) indicates the ∼55 kDa ezrin cleavage
product (A). Polarized CaCo-2a CON cells without (B) and with 6 h infection
by EHEC (C) and EHEC-infected polarized HOX monolayers (D) were
stained for ezrin (green) and EHEC (red). EHEC was detected by anti-O157
antibody.

we showed that EHEC infection of CaCo-2a cells induces an
increase in calpain activity that is required for EHEC-mediated
effacement. By analogy to EPEC,we postulate that type III-secreted
effectors play a role in both calpain activation and microvillar
effacement (Hardwidge et al., 2004; Dean et al., 2010). In fact, an
EHECΔescN mutant, which is defective in type III secretion, did
not trigger an increase in calpain activity.

Effacement likely involves disruption of protein–protein
and protein–plasma membrane interactions that contribute to
microvillar integrity. Calpain is known to target a number of
cytoskeletal elements, including the ERM family member ezrin
(Shuster and Herman, 1995; Potter et al., 1998; Frame et al., 2002;
Franco and Huttenlocher, 2005; Lebart and Benyamin, 2006),
which contributes to microvillar integrity by indirectly linking the
plasma membrane to the axial actin microfilamentous bundles
(Shuster et al., 1996; Bretscher et al., 2002; Saotome et al., 2004).
Another gut pathogen, H. pylori, triggers calpain-dependent cleav-
age of ezrin in gastric parietal cells, resulting in redistribution
of the protein, distortion of microvillar structure and disrup-
tion of apical secretory function (Wang et al., 2008). We showed
here that EHEC-mediated effacement of microvilli is accompa-
nied by calpain-dependent cleavage of ezrin and loss of its apical
localization.

The targeting of ezrin by AE pathogens is likely to induce
widespread changes in the structure and function of intestinal
epithelial cells. EPEC triggers the transient formation of filopodia
that are significantly destabilized by the expression of a dominant
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negative ezrin mutant (Berger et al., 2009). Ezrin has also has
been implicated in the assembly of junctional complexes (Pujuguet
et al., 2003), and we found that EHEC infection results in a
calpain-dependent redistribution away from cell–cell junctions.
This relocalization may well have functional consequences on
epithelial barrier function, given the observations that the addi-
tion of calpain-inhibitory peptides (Dean et al., 2010) and or the
expression of a dominant negative ezrin mutant (Simonovic et al.,
2001) diminish EPEC-induced disruption of tight junctions and
trans-epithelial resistance.

More generally, apical and junctional cytoskeletal domains
are functionally integrated: F-actin rich microvillar rootlet struc-
tures penetrate the terminal web, making intimate contact with
the circumferentially disposed array of filamentous actin, con-
ventional myosins and intermediate filaments, which all join
together in the terminal web at adherens and tight, occluding
junctions (Drenckhahn and Dermietzel, 1988; Bretscher, 1991;
Nelson, 2003). Thus, the ability of AE pathogens to dramati-
cally alter the apical cytoskeleton is likely to induce changes in
the basolateral and terminal web-associated cytoskeleton includ-
ing the membrane–cytoskeletal interface. Consistent with this
notion, EPEC infection is known to cause the redistribution of
many junctional and basolateral domain proteins (Goosney et al.,
2001; Muza-Moons et al., 2003, 2004; Guttman et al., 2006, 2007),
some of which are recruited to actin pedestals (Peralta-Ramirez
et al., 2008; Huett et al., 2009). It will be of interest to deter-
mine whether the requirement for calpain in the redistribution
of ezrin is reflected in a similar requirement for the redistribu-
tion of some or all of these other molecules. Finally, we observed
EHEC infection of confluent epithelial cell monolayers resulted
in striking cell rounding and “blebbing”, which to our knowl-
edge has not been previously reported in response to infection
by AE pathogens but is consistent with a general disruption of
membrane–cytoskeletal interactions and cell adhesion. Although

this damage was calpain-dependent, similar cellular damage was
not induced by EPEC, indicating that this manifestation is sepa-
rable from effacement and is specific to EHEC. This difference
could reflect the fact that EHEC encodes a larger number of
injected T3SS effectors than does EPEC (Tobe et al., 2006; Wong
et al., 2011). Although EHEC-mediated cell rounding could be
specifically linked to ezrin cleavage, other actin-associated calpain
substrates, such as the focal adhesion protein talin and actin assem-
bly factor and cortactin might also or alternatively be involved
(Frame et al., 2002; Franco and Huttenlocher, 2005; Lebart and
Benyamin, 2006).

In summary, AE pathogens such as EHEC induce a broad range
of cytoskeletal disruption, among them pedestal formation, tight
junction disruption and microvillar effacement. These alterations
are predicted to diminish both the absorptive capacity and the
barrier function of intestinal epithelium, thereby contributing to
diarrhea, a major and potentially life-threatening manifestation
of disease. The manifold cellular consequences of infection are
undoubtedly in part due to diversity of effectors translocated to
the cell (Tobe et al., 2006). In addition, an emerging picture is
that a central modulator such as calpain, which has the potential
to alter many cytoskeletal structures, may be a conduit through
which AE family members, as well as other infectious agents, exert
pleomorphic pathogenic effects.
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