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Sorafenib a multi-target tyrosine kinase inhibitor, is the first-line drug for treating advanced
hepatocellular carcinoma (HCC). Mechanistically, it suppresses tumor angiogenesis, cell
proliferation and promotes apoptosis. Although sorafenib effectively prolongs median
survival rates of patients with advanced HCC, its efficacy is limited by drug resistance in
some patients. In HCC, this resistance is attributed to multiple complex mechanisms.
Previous clinical data has shown that HIFs expression is a predictor of poor prognosis,
with further evidence demonstrating that a combination of sorafenib and HIFs-targeted
therapy or HIFs inhibitors can overcome HCC sorafenib resistance. Here, we describe the
molecular mechanism underlying sorafenib resistance in HCC patients, and highlight the
impact of hypoxia microenvironment on sorafenib resistance.
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INTRODUCTION

The globally cancer statistics of 2018 show that liver cancer is the sixth most commonly diagnosed
form of cancer, and a fourth cause of cancer-related deaths worldwide (1). Despite significant
progress being made in development of therapies for early diagnosis and treatment therapies for
HCC in recent years, over 50% of all HCC cases are still diagnosed at an advanced stage.
Additionally, approximately 70% of all HCC patients relapse within five years of initial treatment
(2). Current treatment options for HCC include radiotherapy, chemotherapy, local ablation and
molecular targeted therapy (3). Several targeted inhibitors have also been developed and applied in
clinical practice. For example, sorafenib, which acts as a multiple-target tyrosine kinase inhibitor
(TKI), was the first systematic drug to be approved for advanced HCC patients based on results of
two randomized clinical trials. Functionally, sorafenib inhibits proliferation and angiogenesis of
tumor cells, thereby delaying HCC progression while effectively prolonging the survival time
of patients (4). A previous Sorafenib Hepatocellular Carcinoma Assessment Randomized Protocol
(SHARP) trial confirmed that the drug was safe and efficacious in patients with advanced HCC. In
fact, these similar results were corroborated by findings in Asia-Pacific clinical trials (5, 6), in which
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sorafenib improved the clinical symptoms of about 30% of HCC
patients. However, this group of patients reportedly develop
resistance to sorafenib within 6 months of treatment (7).
Previous studies indicate that sorafenib inhibits activity of
various kinases, including Ras, Raf, MEK, and ERK, among
others, and further targets VEGFR, c-KIT, PDGFR-b, and
FLT-3, as well as other proteins that suppress tumor
angiogenesis (8, 9). Moreover, sorafenib plays an anti-tumor
role in HCC and other types of cancer, such as desmoid tumor,
renal cell carcinoma, lung cancer and thyroid cancer (10–13).
Although the drug effectively prolongs survival rates of HCC
patients, its efficacy is significantly limited by development of
drug-acquired resistance. The underlying mechanism of
sorafenib resistance is complex. Previous studies have shown
that the drug activates c-Jun, Akt pathway, epidermal growth
factor receptor (EGFR), cancer stem cells enrichment, epithelial-
mesenchymal transition (EMT) enhancement and reduces
autophagy. Recently, other factors, such as dysregulation of
miRNAs and lncRNAs in HCC have been implicated in
sorafenib resistance (9, 14). Moreover, sorafenib reportedly
induces hypoxia response in HCC, with dysregulation of
hypoxia microenvironment and HIF expression shown to
contribute to poor prognosis of HCC patients. In addition,
sorafenib has also been implicated in effective inhibition of the
HIF-1a/VEGFA signaling pathway (15). Weinberg et al.
described six hallmarks of cancer, namely evasion of growth
suppression, sustained proliferative signaling, induction of
angiogenesis, resistance to cell death, replicative immortality,
as well as activation of invasion and metastasis, and further
Frontiers in Oncology | www.frontiersin.org 2
demonstrated that these biological behaviors influence the degree
of malignancy (16). Hypoxia, a common event that plays
important roles in development and progression of malignant
tumors, has been implicated in development of drug resistance
and activation of tumor metastasis (17, 18). In the present study,
we sought to clarify the underlying mechanism of sorafenib
resistance, its relationship with the hypoxia microenvironment
and the effect of targeting HIFs on sorafenib resistance in
hepatocellular carcinoma.
SORAFENIB RESISTANCE IN HCC

Drug resistance is divided into the primary and acquired
resistance, based on the time and sequence of exposure to the
drug. Although both categories involve a complex chemical
resistance mechanism, signaling pathways, characterized by
up-/down-regulation and changes in molecular targets,
represent the two most important factors (19). Elucidating the
underlying mechanism of drug resistance is imperative to
development of effective strategies to prevent or overcome its
development (Figure 1).

c-Jun also known as AP-1 transcription factor subunit.
It’s located at 1p32-p31, Deletion and translocation of this
chromosomal region has been associated with development of
malignant tumors. A previous study reported that regulation of
mitotic signals can activate AP-1 (20). while others have shown
demonstrated its significance in hepatocyte activity and liver
regeneration, as well as in development of hepatocellular
FIGURE 1 | Molecules and signal pathways related to sorafenib resistance in hepatocellular carcinoma. Sustained sorafenib treatment will affect the expression of
the molecules and activate pathways, leading to sorafenib resistance in hepatocellular carcinoma. VEGFA, vascular endothelial growth factor A; EGFR, epidermal
growth factor receptor; PDGFR, Platelet-derived growth factor receptor; c-kit, tyrosine kinase receptors hepatocyte factor receptor; EMT, epithelial–mesenchymal
transition; CSCs, cancer stem cells; PI3K, phosphatidylinositol-3-kinase; AKT, protein kinase B; ERK, extracellular signal-regulated kinase; JAK, janus tyrosine kinase;
STAT, signal transducer and activator of transcription.
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carcinoma (21). Previous studies have also shown that c-Jun was
remarkably activated in sorafenib-treated HCC cells, with its
downregulation found to significantly elevate apoptosis of HCC
cells induced by sorafenib (22). Another in vitro study found that
sorafenib treatment could activate expression of c-Jun, while its
inhibition significantly enhanced sorafenib-induced apoptosis in
HCC cells (23). Results from a clinical trial revealed that HCC
patients approached with sorafenib, the expression of
Phosphorylation C-Jun was remarkably higher in the non-
responder group than in the responder group (24). Therefore,
c-Jun is probably one of the molecules that causes of HCC
resistance to sorafenib.

The PI3K/AKT signaling pathway plays a role in regulation of
apoptosis and chemotherapeutic resistance in malignant tumors.
Previous studies have shown that sorafenib-mediated inhibition
of AKT expression enhanced apoptosis induction in HCC cells
(25). Moreover, Zhang et al. found that long term exposure of
HCC cells to sorafenib could activate the PI3K/Akt signaling
pathway, thereby whereas inhibiting PI3K using LY294002 could
reverse sorafenib resistance (26). In another study, sorafenib
effectively promoted AKT phosphorylation but did not
significantly affect that of other proteins in the PI3K/AKT/
mTOR signaling pathway (27). Therefore, activation of the
PI3K/AKT signaling pathway is considered a compensatory
mechanism for acquired sorafenib resistance. In fact,
numerous studies have demonstrated that HCC cells with
acquired sorafenib resistance exhibit significantly higher levels
of phosphorylation AKT than parental cells, although
suppression of AKT can reverse acquired sorafenib resistance
(27, 28). The activation of AKT pathway has an important
impact in sorafenib resistance in HCC.

Epidermal growth factor receptor (EGFR), which belongs to
the protein kinase superfamily, can induce receptor dimerization
and regulate autophosphorylation of tyrosine thereby causing
cell proliferation. This phenomenon has been shown to be a
potential indicator of sorafenib resistance in HCC cells. In HCC
cells with higher EGFR expression, the efficacy of sorafenib is
significantly weakened. A previous study demonstrated that
sensitivity of cells to sorafenib could be increased by
downregulating EGFR expression or inhibiting its kinase
activity (29). In, Moreover, the EGFR pathway is overexpressed
in HCC cells with acquired resistance to sorafenib, where it acts
as the driving force for maintaining HCC cell proliferation under
sorafenib (30).

Epithelial–mesenchymal transformation (EMT) contributes
to migration and drug resistance, and is therefore an important
cellular program (31). Previous studies have reported that EMT
is associated with cancer chemotherapeutic resistance, with its
inhibition found to reverse this drug-resistant outcome (32). For
example, Fisher et al. established a genetically engineered mouse
model and demonstrated the relationship between cancer drug
resistance and EMT (33). Moreover, induction of EMT
reportedly promotes tumor progression and sorafenib
resistance in HCC. Although EMT development is inhibited by
sorafenib, it has also been reported to promote chemotherapy
resistance to sorafenib in HCC cells (34, 35). Previous studies
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have demonstrated that cancer stem cells (CSCs) are also
involved in development of chemoresistance in HCC. In
addition, there is crosstalk between EMT and CSCs, as
evidenced by the fact that acquired EMT cells exhibit CSCs-
like characteristics, while CSCs show mesenchymal phenotype
(36), EMT activation is usually associated with enrichment of
CSCs subsets in sorafenib resistance cells (37, 38). Thus CSCs
markers have been used as predictors of sorafenib reaction.
Notably, upregulation of CSC markers, CD90 and CD133, was
shown to be a predictor for sorafenib resistance in HCC cells.
Moreover, PTK2 activated CSC characteristics to promote tumor
progression by inducing b-catenin nuclear accumulation in HCC
cells thereby inducing sorafenib resistance (39). CD44 can be
used as a marker for evaluating efficacy of sorafenib in HCC cells,
as evidenced by its role in development of drug resistance (40).
Other markers, such as CD13, EpCAM, and CD24 are also
considered helpful for CSCs enrichment in HCC (41).

Autophagy, a self-degrading system that directs cells to
eliminate abnormal proteins and dysfunctional organelles,
plays an essential role in maintaining homeostasis in cells
under stress, such as nutritional deficiency or hypoxia (42). In
fact, autophagy plays a double-edged sword in different cancers
by suppressing initiation of tumors but also supporting their
progression. This mechanism further plays an important role in
drug resistance, enabling tumor cells to maintain cell activity
under metabolic and therapeutic stress. In fact, autophagy is
often activated in radiotherapy, chemotherapy, and targeted
therapy (43). In HCC, elevated autophagy reportedly regulated
sorafenib resistance (44). Patients treated with sorafenib were
found to overexpress Atg7 and had elevated autophagy activity,
indicative of poor prognosis (45). However, another study
demonstrated that sorafenib induced autophagy and further
enhanced the drug’s effect on HCC, contrary to previous
results (46). Furthermore, different HCC cell lines showed
varied sensitivities to sorafenib, possibly due autophagy (47).
The mechanism of autophagy has not been fully elucidated, and
further research in this field is worthy of further study.

Numerous studies have reported that non-coding genes can
also play an important role in development of chemotherapy
resistance in cancers. For example, some miRNAs associated
with sorafenib resistance have been identified, and can be used as
biomarkers for predicting sorafenib treatment in HCC (Table 1).

miRNAs play various functions like mediate proliferation,
invasion and metastasis, angiogenesis, induction of hypoxia, and
et al. For example, low expression of some miRNAs had been
found to promote sorafenib-resistance of HCC cells, miRNAs
although others may have an opposite effect. A previous study
reported that miR-486-3p inhibits cell proliferation and induces
apoptosis, however, it was downregulated in sorafenib-resistant
HCC cell lines by up-regulating FGFR4 and EGFR activity (67).
In contrast, miR-216a/217 cluster was significantly upregulated
in HCC compared to normal cells. although this upregulation
could activate the TGF-b and PI3K/AKT signaling pathways,
thereby contributing to acquired sorafenib resistance in HCC
cells (75). miRNAs functional mechanism is complicated and
still controversial. Different miRNAs have different effects on
July 2021 | Volume 11 | Article 641522
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HCC, moreover, the same miRNA could have different effects on
different cancers. There is still plenty of room for research in this
field. Apart from miRNAs, many lncRNAs have also been
implicated in sorafenib resistance (Table 2).
HYPOXIC AND SORAFENIB-RESISTANCE
IN HCC

Hypoxia, which often occurs in many solid tumors, including
HCC, is caused by faulty vascularization and vigorous metabolic
activity, and has been associated with chemoresistance, increased
invasiveness, and poor prognosis (100). Thus, suppressing
Frontiers in Oncology | www.frontiersin.org 4
hypoxia is considered a feasible approach for overcoming drug
resistance. HIFs are transcription factors related to regulating
angiogenesis, proliferation, glucose metabolism, tumor invasion
and metastasis (100). Particularly, HIF-1a, -2a, -3a and -b are
key factors that play a role in regulating a range of genes to
control the hypoxia-induced signaling pathway. Since expression
of the a-subunit is sensitive to oxygen, while the b-subunit is
constitutively expressed, this review focuses on the a-subunit of
HIFs (101). Among known a-subunits, HIF-1a and HIF-2a
have been shown to regulate occurrence of hepatocellular
carcinoma, while HIF-3a has generally been associated with
inhibition of HIF-1a and HIF-2a activities (102, 103). Previous
studies have shown that multiple factors are involved in hypoxia
TABLE 1 | miRNA and sorafenib resistance in HCC cells.

Name Cell line/animal models Target Reference

miR-21↑ HepG2, Huh7/BALB/c nude mice subcutaneous HCC model AKT↑ (48)
miR-16↓ Huh7/BALB/c nude mice subcutaneous HCC model 14-3-3h↑,HIF-1a↑ (49)
miR-494↑ Huh7, SNU182, HepG2/DEN-treated rats AKT↑, mTOR↑, P27↓, PUMA↓ (50)
miR-221↑ HepG2, Hep3B, PLC/PRF/5, SNU398, SNU449, SNU182, SNU475, Huh7/DEN-treated rats, NOD/

SCID mice hydrodynamic tail vein injection
Caspase-3↓ (51)

miR-222↑ HepG2, HL-7702/– AKT↑ (52)
miR-223↑ Huh7, SNU387, SNU449/– FBW7↓ (53)
miR-622↓ PLC, Hep3B, HepG2, Huh7/male mice orthotopic tumor injected with HCC cells KRAS↑ (54)
miR-347b↓ Hep3B, HepG2, HCCLM3/male SCID mice subcutaneous HCC model PKM2↑ (55)
miR-181a↑ Hep3B, HepG2/– RASSF1↓ (56)
miR-122↓ Huh7, PLC, T1115/NOD/SCID mice subcutaneous HCC model IGF-1R↑ (57)
miR-122↓ HepG2, Hep3B, Huh7/DEN-HCC rat SerpinB3↑ (58)
miR-744↓ LO2, HepG2, MMC-7721/– PAX2↑ (59)
miR-137↓ Huh7/– ANT2↑ (60)
miR-7↓ Huh7, Hep3B/mice orthotopic liver cancer model and tail vein injection TYRO3↑ (61)
miR-142-
3p↓

HepG2, SMMC-7721/BALB/c nude mice subcutaneous HCC model PU.1↓ATG5↑ATG16L1↑ (62)

miR-3163↓ MHCC97-H, LM-3, HepG2, Hu7, BEL-7402, SMMC-7722, MHCC97-L/nude mice subcutaneous HCC
model and tail vein injection

ADAM-17↑ (63)

miR-140-
3p↓

MHCC97-H, HepG2/nude mice subcutaneous HCC model and hepatic portal vein injection PXR↑ (64)

miR-30e-
3p↓

HepG2, Hep3B, Huh7, SNU449, SNU475/DEN-HCC rat MDM2↓ TP53↑ (65)

miR-19a-
3p↑

PLC/PRF/5, BEL-7402, Hep3B and HepG2/– PTEN↓ (66)

miR-486-
3p↓

SK-HEP-1, HepG2, Huh7/BALB/C nude mice orthotopic HCC model and Subcutaneous HCC model FGFR4↑ EGFR↑ (67)

miR-591↓ HepG2, Hep3B, SK-HEP1, HUH7/BALB/c nude mice subcutaneous HCC model FBP2↑ AKT↑ (68)
miR-194↓ HUH7, HCCLM3/NOD-SCID mice subcutaneous HCC model RAC1↑ (69)
miR-613↓ Huh7, HCCLM3/NOD-SCID mice subcutaneous HCC model SOX9↑ (70)
miR-365↓ HCCLM3, SMMC7721/– RAC1↑ (71)
miR-29a↓ Huh7, HepG2/NOD-SCID mice subcutaneous HCC model BCL-2↑ (72)
miR-34a↓ Huh-7, MHCC97H/– BCL-2↑ (73)
miR-219↑ HCCLM3, HepG2/NOD-SCID mice subcutaneous HCC model E-cadherin↓ (74)
miR-216a/
217↑

HepG2, Hep3B, Huh-7, PLC/PRF/5, HCCLM3, Bel-7404, HLE, SK-HEP-1, SNU-449/BALB/c nude
mice orthotopic tumor injected with HCC cells

PTEN↓ SMAD7↓ (75)

miR-378a-
3p↓

Huh7, HCCLM3, SK-HEP-1/BALB/C nude mice orthotopic HCC model, NOD/SCID mouse
subcutaneous HCC model

IGF-1R↑ (76)

miR-522↑ Huh7, HCCLM3/NOD-SCID mice subcutaneous HCC model PTEN↓ (77)
miR-494↑ Huh7, HepG2/– PTEN↓ (78)
miR-375↑ Hep3B, HepG2, Huh1, Huh7/BALB/C nude mice subcutaneous HCC model AEG-1↓PDGFC↓ (79)
miR-338-
3p↓

HepG2, SMMC-7721, BEK-7402, Hep3B, Huh-7/BALB/c nude mice subcutaneous HCC model HIF-1a↑ (80)

let-7↓ Huh7, HepG2/– Bcl-xL↑ (81)
miR-193b↓ HepG2 and HepG2.2.15 (derived from HepG2 cells and stably integrated with the entire HBV genome)/ Mcl-1↑ (HBV infection induce

sorafenib resistance)
(82)
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signal conversion from HIF-1a to HIF-2a (104). Moreover,
adaptability of tumor cells to hypoxia changes with regulation
of HIF-1a and HIF-2a. For example, hypoxia upregulates HIF-
1a expression, and can cause it to bind to the hypoxia response
element (HRE) of the target gene promoter, leading to
transcription of related genes involved in hypoxia effects (105).
HIF-1a is usually up-regulated in patients with liver cancer, with
its overexpression associated with poor prognosis (106). Zhao
et al. demonstrated that continuous sorafenib treatment could
induce hypoxia and protect HCC cells to against the resulting
apoptosis in HCC patients. During this process, HIF-1a was
upregulated in untreated patients. Furthermore, HCC samples
resistant to sorafenib exhibited HIF-1a levels above the sensitive
groups (107).

Hypoxia not only activates HIF-1a in HCC, but also
promotes production of VEGF and angiogenesis through HIF-
1a activation (15). However, sorafenib reportedly suppresses
HIF-1a synthesis, thereby causing a reduction in VEGF and
tumor angiogenesis in HCC (108). Apart from that, suppression
of sorafenib causes hypoxic response to be converted from HIF-
1a to HIF-2a-dependent pathways, thereby promoting sorafenib
resistance in hypoxic HCC cells. HIF-2a is also upregulated
through a compensation mechanism, resulting in corresponding
overexpression of VEGF and cyclin D1 (109).

The PI3K/AKT signaling pathway has also been widely
associated with hypoxia-induced sorafenib resistance in HCC.
Notably, several proteins have been shown to affect this pathway
by reversing sorafenib induced hypoxia. Bort et al. reported
downregulation of the AMPK/phosphorylated AMPK signaling
pathway in sorafenib-resistant cells, with inhibition of this
pathway via AMPK activation shown to affect sensitivities of
HCC cells to sorafenib (110). Interestingly, down-regulation of
AMPK also upregulates HIF-1a, and cooperates with c-myc to
Frontiers in Oncology | www.frontiersin.org 5
increase tumorigenesis, inducing and enhancing the CSCs of
HCC cells, while its upregulation AMPK restores the sensitivity
of HCC cells to sorafenib (111, 112). In addition, Yeh et al.
showed that galectin-1 is elevated in sorafenib-resistant HCC
cells, both in vitro and in vivo, promoting tumor metastasis and
increasing tumor invasion, suggesting that galectin-1 plays a role
in downstream regulation of the AKT/mTOR/HIF-1 signaling
pathway (113). Hypoxia induces overexpression of AQP3 in
hypoxic HCC cells, thereby altering sensitivity of these cells to
sorafenib by activating the PI3K/Akt signaling pathway (114).

Other proteins have also been reported to alter resistance of
HCC cells to sorafenib by acting on HIFs. For example, sorafenib
was found to inhibit TIP30, thereby promoting EMT, which
caused resistance to the drug (115, 116). Overexpression of HIF-
2a was shown to downregulate TIP30 and promote EMT,
although its down-regulation could reverse these effects (117).
BNIP3 is also a hypoxic-regulated protein. Blanco et al. showed
that HIFs stability and overexpression not only silenced the
BNIP3 promoter, but also inhibited sorafenib-mediated
apoptosis, thereby contributing to acquired drug resistance in
HCC cells (118). On the other hand, RIT1, which belongs to the
Ras superfamily, was shown to induce overexpression of RIT1 in
HCC cells under HIF-1a-mediated hypoxia. Notably, sorafenib
treatment could upregulate RIT1, while downregulating RIT1 in
HCC cells could restore sensitivity of the cells to sorafenib (119).
In addition, Long et al. found that PFKFB3 was upregulated in
sorafenib-treated HCC cells. Notably, overexpressing PFKFB3
significantly enhanced sorafenib resistance in these cells by
downregulating expression of apoptosis-related molecules,
while blocking HIF-1a inhibited the enhancement of PFKFB3
(120). Apart from proteins, miRNAs have also been shown to
play an important role in hypoxia. For example, 14-3-3h could
stabilize HIF-1a and maintain resistance to sorafenib in HCC by
TABLE 2 | lncRNA and sorafenib resistance in HCC cells.

Name Cell line/animal models Target Reference

SNHG1↑ HepG2, Huh7/BALB/c nude mice subcutaneous HCC model AKT↑ (83)
SHNG3↑ PLC/PRF/5, Hep3B, HepG2, MHCC97L, Huh7, SMMC-7721, HCCLM3/– EMT↑ (84)
SHNG16↑ HepG2, SK-hep1, Huh7, HCCLM3, LO2/nude mice subcutaneous HCC model – (85)
FOXD2-AS1↓ HepG2, Huh7/– TMEM9↓ (86)
NEAT1↑ HepG2, Huh7/– ATG3↑ (87)
DANCR↑ HEK-293T, Huh7, Hep3B/BALB/c nude mice subcutaneous HCC model STAT3↑ (88)
HOTAIR↑ Huh7, Hep3B, SNU-387, SNU-449/– EMT↑ (89)
HEIH↑ Huh7, HCCLM3/– AKT↑ (90)
MALAT1↑ HepG2, SMMC-7721/nude mice subcutaneous HCC model and tail veins injection Aurora-A↑ (91)
ROR↑ LO2, HepG2, SMMC-7721, Huh7, MHCC97H, Hep3B, HCCLM3/BALB/c nude mice subcutaneous HCC model FOXM1↑ (92)
Thor↑ HCCLM3, SMMC7721/ b-catenin↑ (93)
Ad5-A↓ HepG2, Huh7/BALB/c nude mice subcutaneous HCC model AKT↑ (94)
HOXA13↑ SNU-449, HepG2/– – (95)
TUC338↑ HepG2, SMMC-7721, bEK-7402, Hep3B, Huh7, LO2/nude mice subcutaneous HCC model RASAL1↓ (96)
HANR↑ HepG2, Huh7, 293T/BALB/c nude mice subcutaneous HCC model ATG9A↑ (97)
H19↑ Huh7, Hep3B, SNU-449, SNU-387/– EMT↑ (98)
H19↓ HepG2, Huh7, Plc/DEN-treat HCC mice model – (99)
July 2021 |
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inhibiting degradation of ubiquitin-proteasome-dependent
protein, thereby maintaining CSCs. In addition, miR-16 was
shown to reverse sorafenib resistance by inhibiting the 14-3-3h/
HIF-1a/CSCs axis (49).

Taken together, the findings of these studies affirm the
relationship between HIF expression disorder and sorafenib
resistance, suggesting that hypoxia may significantly affect the
therapeutic effect of sorafenib. Therefore, targeting these factors
holds promise to future development of effective therapies to
overcome drug resistance (Table 3).
STRATEGIES TO OVERCOME SORAFENIB
RESISTANCE IN HCC BY TARGET HIFs

Considering that HIFs participate in a variety of cancer-
promoting pathways and regulate the biological behavior of
HCC cells, targeting HIFs may be an effective treatment
strategy. For example, since HIFs play a key role in
development of HCC resistance to chemotherapy drugs,
inhibiting them could be a feasible strategy to manage drug
resistance in HCC cells. Sustained sorafenib treatment leads to
increased hypoxia in the tumor, thus targeting HIFs can enhance
efficacy of sorafenib. Previous studies have shown that several
drugs can reverse sorafenib-resistance in HCC by targeting
HIF (Figure 2).

For example, sodium orthovanadate is a phosphate analogue
that inhibits the cell cycle of sorafenib-resistant HCC cells by
regulating cyclin B1 and CDK1 (arrest is in the G2/M phase). It
also mediates a reduction in the mitochondrial membrane
potential to induce apoptosis. A previous study demonstrated
that sodium orthovanadate could down-regulate HIF-1a and
Frontiers in Oncology | www.frontiersin.org 6
HIF-2a, thereby causing a corresponding down-regulation of
downstream molecules, such as VEGF, lactate dehydrogenase A
and glucose transporter 1 (127). Similarly, melatonin was found
to down-regulate HIF-1a protein synthesis by inhibiting the
pathway of rapamycin complex-1/ribosomal protein S6 kinase b-
1/ribosomal protein S6. In addition, co-administration of
sorafenib and melatonin downregulated HIF-1a mitotic
targets, NIX and BNIP3, thereby enhancing sensitivity of HCC
cells to sorafenib (123). Notably, a combination of melatonin and
sorafenib was shown to regulate the JNK/c-Jun signaling
pathway, to synergistically suppress proliferation of HCC cells
and induce apoptosis (130). Moreover, You et al. reported that a
combination of metformin and sorafenib could synergistically
inhibit HIF-2a expression, thereby increasing sensitivity of
hypoxic HCC cells to sorafenib, and hindering EMT. This
combination was also associated with inhibition of the growth
of recurrent tumors and could significantly reduce the number
of metastases in vivo (117). Feng et al. demonstrated that
Simvastatin could suppress the HIF-1a/PPAR-g/PKM2
signaling pathway by inhibiting PKM2-mediated glycolysis,
thereby promoting and lowering apoptosis and proliferation of
HCC cells, respectively. In addition, the drug also enhanced the
effect of sorafenib in HCC cells (124). Another drug, 2-
Methoxyestradiol, was shown to significantly downregulate
HIF-1a and HIF-2a expression as well as that of downstream
molecules such as VEGF, cyclin D1, and LDHA. Notably, its
synergistic interaction with sorafenib reportedly inhibited
proliferation of HCC cells and induced apoptosis both in vivo
and in vitro, thereby inhibiting tumor angiogenesis (109).

Certain natural compounds have also shown efficacy in
improving sorafenib-mediated treatment in drug-resistant liver
cancer cells. For example, flavonoid procyanidin B2 was shown
TABLE 3 | Hypoxia and sorafenib resistance in HCC cells.

HIFs after sorafenib treat
in HCC

Cell line/animal models Target Reference

HIF-1a↑ HepG2, Huh7/– AKT↑ (114)
HIF-1a↑ HepG2, SMMC-7721, BEK-7402, Hep3B, Huh-7/BALB/c nude mice subcutaneous HCC

model
– (80)

HIF-2a↑HIF-1a↓ HepG2, Huh7/BALB/c mice subcutaneous HCC model VEGF↑cyclinD1↑LDHA↓ (109)
HIF-1a↑ –/Kunming mice subcutaneous HCC model AKT↑ (121)
HIF-2a↑HIF-1a↓ HepG2, Bel-7402, Huh-7, SMMC-7402/BALB/c mice subcutaneous HCC model PCNA↑b-catenin↑ C-Myc↑ (122)
HIF-1a↑ HepG2, Huh7/Athymic nude‐Foxn1 subcutaneous HCC model AMPK↓AKT↑ (112)
HIF-1a↑ Huh7/BALB/c mice subcutaneous HCC model and tail vein inoculation model Galectin↑mTOR↑ (113)
HIF-1a↑ Hep3B/– mTOR↑ (123)
HIF-1a↑ LM3, SMMC-7721, Bel-7402, HepG2/nude mice subcutaneous HCC model PPAR-g↑PKM2↑ (124)
HIF-2a↑ MHCC97H/BALB/c mice subcutaneous HCC model and orthotopic model TIP30↓EMT↑ (117)
HIF-1a↑ LM3, SMMC-7721, Hep3B, Bel-7402, Huh-7, LO2/BALB/c mice subcutaneous HCC model GULT1↑HK2↑ (125)
HIF-1a↑ LM3, SMMC-7721, Bel-7402, Huh-7, HepG2, LO2/BALB/c mice subcutaneous HCC model PKM2↑ (126)
HIF-2a↑HIF-1a↑ HepG2/– BNIP3↓ (118)
HIF-1a↑ Huh7/BALB/c nude mice subcutaneous HCC model 14-3-3h↑ (49)
HIF-2a↑HIF-1a↑ HepG2, Hep3B, SK-Hep-1/BALB/c mice subcutaneous HCC model ATPasea3↑ (127)
HIF-2a↑ HepG2, SKhep1/BALB/c mice subcutaneous HCC model and tail vein inoculation model androgen receptor↓ (128)
HIF-1a↑ HepG2, Hep3B, PLC/5, SK-Hep-1/BALB/c mice subcutaneous HCC model, tail vein

inoculation model and orthotopic model
VEGF↑MDR1↑P-gp↑
GULT1↑NF-kB↑

(129)

HIF-2a↑HIF-1a↓ HepG2/BALB/c mice subcutaneous HCC model TGF-a↑EGFR↑ (107)
HIF-1a↑ Hep3B, HepG2, PLC/PRF/5, HEK 293T/BALB/c mice orthotopic model RIT1↑ (119)
HIF-1a↑ SK-Hep-1, SMMC-7721, HepG2, Huh7, MHCC-97H, LM3/– PFKFB3↑ (120)
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to downregulate PKM2 expression, thereby affecting the PKM2/
HSP90/HIF-1a axis, inhibiting aerobic glycolysis, as well as
proliferation and induction of apoptosis in HCC cells. Notably,
co-treatment of procyanidin B2 and sorafenib could effectively
improve the latter’s sensitivity in HCC cells (126). Genistein, a
natural isoflavone that inhibits glycolysis, was shown to induce
apoptosis and down-regulate GLUT-1 and HK2 by suppressing
HIF-1a, thereby enhancing the effect of sorafenib on drug-
resistant HCC cells both in vitro and in vivo (125). In addition,
saponins derived from Rhizoma Paridis significantly
downregulated mRNA expression and protein levels of HIF-
1a, and further exhibited their anti-tumor activity by regulating
glycolysis and lipid metabolism. Notably, a combination of these
saponins with sorafenib could improve the anti-tumor effect in
vivo. Previous studies have further shown that g sorafenib
resistance in liver cancer cells can be overcome by preventing
mitochondrial damage, inhibiting anaerobic glycolysis and
suppressing lipid synthesis by targeting the PI3K/Akt/mTOR
Frontiers in Oncology | www.frontiersin.org 7
signaling pathway (121). For example, EF24 effectively reversed
sorafenib resistance by degrading HIF-1a and inactivating NF-
kB via a VHL tumor suppressor. A combination of EF24 with
sorafenib was also found to generate a synergistic effect that
enhanced the associated anti-tumor effect (129).

Previous studies have also reported that application of PT-
2385 could specifically inhibit HIF-2a, to increase androgen
receptors, suppress downstream factors such as STAT3, and
activate the Akt and ERK signaling pathways, thereby improve
sorafenib efficacy in HCC cells both in vivo and in vitro (128). In
summary, inhibiting HIFs can effectively enhance the sensitivity
of HCC cells to sorafenib and improve drug resistance.
CONCLUSION AND DISCUSSION

Although sorafenib is a safe and effective therapy for treating
advanced HCC, development of drug resistance has been shown
FIGURE 2 | The mechanism of anti-HIFs overcoming sorafenib resistance in hepatocellular carcinoma. Continuous sorafenib treatment induce the dysregulation of
HIF-1a and HIF-2a expression in hepatocellular carcinoma, promoting the transcription of multiple genes involved in proliferation, CSCs, metastasis, glycolysis,
mitophagy, and angiogenesis. Causes hepatocellular carcinoma to develop resistance to sorafenib. Anti-HIFs could overcome this drug resistance. BNIP3,
adenovirus E1B 19kDa-interacting protein 3; NIX, BNIP3-like protein X; MDR, multidrug resistance protein; AMPK, AMP-activated protein kinase; GULT-1, glucose
transporter 1; HK2, hexokinase 2; LDHA, lactate dehydrogenase A; PDK1, pyruvate dehydrogenase kinase isoform 1; c-Myc, Myc proto-oncogene protein; TGF-a,
transforming growth factor a; RIT1, Ras like without CAAX 1.
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to reduce its benefits. The underlying mechanism of this
resistance is complex and currently remains unclear. Primary
drug resistance can be explained by the genetic heterogeneity of
HCC. Elucidating the underlying mechanism of acquired drug
resistance is important in guiding development of approaches to
overcome or delay its development. Previous studies have
demonstrated that sorafenib-acquired resistance involves
multiple mechanisms, including crosstalk in the PI3K/Akt,
MAPK, JAK-STAT, ERK and HIF signaling pathways,
abnormal expression of proteins, such as PDGFR-b, c-KIT,
FLT-3, VEGFR, EGFR, as well as EMT, cancer stem cells, and
autophagy, among others. Abnormal regulation of miRNAs and
lncRNAs, as well as development of hypoxia in HCC also play an
important role in inducing acquired resistance to sorafenib.

For patients with advanced liver cancer, who have been
exposed to sorafenib for a long time, the drug’s anti-angiogenic
effect is expected to cause a decrease in microvessel density and
enhance tumor hypoxia. Consequently, this induces the HIF-
mediated cell adaptation mechanism to the hypoxic
microenvironment. In other tumors, extensive researches have
been done using gene therapy to target HIFs or adding HIFs
inhibitors to current therapies, with a view to improve its
effectiveness. Particularly, overexpression of HIFs in liver cancer
has been reported, with sorafenib found to promote HIF activity.
Notably, a combination of sorafenib with other drugs, to lower the
level of or directly target HIFs, has been proven to improve efficacy
of sorafenib, suppress the proliferation and promote apoptosis of
HCC cells, as well as reduce the number of metastases and tumor
volume both in vitro and in vivo. For patients with advanced HCC,
Frontiers in Oncology | www.frontiersin.org 8
who have failed sorafenib treatment, several drugs, such as
lenvatinib, regorafenib, cabozantinib, and ramucirumab, have
been approved for second-line treatment. However, sorafenib
remains the mainstay for treating advanced HCC (131). The
importance of overcoming sorafenib resistance in HCC cells
cannot be overemphasized. For this, targeting HIFs and
improving the tumor hypoxic microenvironment hold promise
for future development of therapies to manage sorafenib resistance
and improve prognosis of patients with advanced HCC.
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