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ABSTRACT Life history traits such as fecundity are important to evolution because they make up
components of lifetime fitness. Due to their polygenic architectures, such traits are difficult to investigate
with genetic mapping. Therefore, little is known about their molecular basis. One possible way toward
finding the underlying genes is to map intermediary molecular phenotypes, such as gene expression traits.
We set out to map candidate quantitative trait genes for egg fecundity in the chicken by combining
quantitative trait locus mapping in an advanced intercross of wild by domestic chickens with expression
quantitative trait locus mapping in the same birds. We measured individual egg fecundity in 232 intercross
chickens in two consecutive trials, the second one aimed at measuring brooding. We found 12 loci for
different aspects of egg fecundity. We then combined the genomic confidence intervals of these loci with
expression quantitative trait loci from bone and hypothalamus in the same intercross. Overlaps between
egg loci and expression loci, and trait–gene expression correlations identify 29 candidates from bone and
five from hypothalamus. The candidate quantitative trait genes include fibroblast growth factor 1, and
mitochondrial ribosomal proteins L42 and L32. In summary, we found putative quantitative trait genes
for egg traits in the chicken that may have been affected by regulatory variants under chicken domestica-
tion. These represent, to the best of our knowledge, some of the first candidate genes identified by
genome-wide mapping for life history traits in an avian species.
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Life history traits that affect individual fecundity and mortality
during different life stages are intrinsically linked to evolution, since
they make up components of fitness such as rate of reproduction
and longevity. The heritability of life history traits within popula-
tions is expected, and found to be low (Mousseau and Roff 1987),

since variation is removed by selection. Due to the low heritability,
and the fact that fitness is influenced by many related traits, and is
hence polygenic, the identification of genes affecting fitness com-
ponents has proven to be problematic. However, knowledge of the
molecular genes and genetic variants involved would open the way
to population genetic analysis of selection signals, comparisons
between populations, and mechanistic analysis of the pathways be-
hind life history variation. Examples where alleles cause life history
and fitness effects that have been identified by genetic mapping
include horns in Soay sheep (Johnston et al. 2013), inversion poly-
morphism in Mimulus guttatus (Lowry and Willis 2010), and flow-
ering time in Arabidopsis thaliana (Werner et al. 2005; El-Assal
et al. 2001).

Fecundity, egg production and brooding behavior are vital compo-
nents offitness in the chicken.Domestication, particularly the late phase
of breed improvement, has involved massive selection for production
traits.Thus, the capacity toproduceeggsaffectsa componentoffitness in
both wild and domestic conditions. Domestic layer chickens produce
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both more and larger eggs (Kerje et al. 2003), and, crucially, modern
layer breeds lack brooding behavior, and will continually produce eggs
without incubating them. This is ideal when production is a key factor
and artificial incubation is available, but is obviously disastrous for
offspring production under natural conditions. This selection, and
hence exaggeration, of egg production in domestic chickens gives an
excellent comparison point in contrast to the wild progenitor of the
modern chicken—the Red Junglefowl. The wild by domestic paradigm
makes traits selected under domestication tractable for genetic analysis,
and the crossing of these different strains can maximize variation that
we can then use to map and identify genetic regions [quantitative trait
loci (QTL)], and genes affecting variability in these traits. We can use
the large divergence between Red Junglefowl and domestics to map
variants and study their function, interactions, and pleiotropic effects.
While population genetics is required to know the role of these variants
in natural populations, this approach allows one to isolate and study
naturally occurring variants at the molecular level.

Amajor stumbling block in QTL analysis is that, despite the relative
ease of identifying QTL, the identification of the actual genes and
mutations is extremely challenging. First of all, the genomic resolution
of linkage mapping is relatively poor, but can be improved by extended
breeding designs. In this work, we use an advanced intercross (Darvasi
and Soller 1995), where meiosis are accumulated over generations of
interbreeding to improve mapping resolution. Relatively recently, a
combination of QTL and expression QTL (eQTL) analysis has been
used with some success (Klein et al. 2004; Le Bihan-Duval et al. 2011).
A further refinement is to correlate actual gene expression with the

phenotypic trait using the same animals in the same cross, enabling a
rapid narrowing of potential candidate genes (Johnsson et al. 2012,
2014). The point here is to combine the evidence from trait–gene
expression associations with genetic evidence from eQTL mapping to
highlight candidate genes underlying the phenotypic QTL. The eQTL,
or genetical genomics, approach allows the detection of quantitative
trait genes for variants that affect the phenotype through changes in
gene expression, assuming that measurements are taken from the rel-
evant tissue and time point. It may also detect genes that are perturbed
by variants, but are responsive, rather than causal, to the phenotypic
effect, if they are also linked to the actual causal variant for the
phenotype.

Egg production and bone allocation are intrinsically linked in the
chicken, and in birds in general.When in lay, female birds forma special
form of spongy bone in themedullary cavity.Medullary bone serves as a
reservoir for calcium, and rapidly remodels during the laying cycle.
The mobilized calcium is used for eggshell production, and is a major
limiting factor in egg production. Also, structural cortical bone is lost
during lay. Medullary bone content, and, to a more limited extent,
cortical bone content, is therefore functionally connected with repro-
ductive potential and egg production (Dacke et al. 1993). Furthermore,
gene expression changes in medullary bone have been found to corre-
late with various egg production traits (Johnsson et al. 2012, 2014).

Here we report a large combined QTL and eQTL study using an
advanced intercross line of a wild · domestic intercross chickens.
We use two subsequent laying trials with and without egg removal to
measure adult female egg fecundity and an as indicator of brooding

Figure 1 Scatterplot of the association be-
tween residual diaphyseal cortical and med-
ullary content and total egg mass.
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behavior. By combining egg production QTL with local, putatively
cis-acting, bone eQTL, we first identified initial candidates, and by
then correlating the expression of each individual gene candidate
with the corresponding overlapping fecundity phenotype, we gen-
erated 26 strong candidates for fecundity-related traits.

MATERIALS AND METHODS

Cross design
The advanced intercross of Red Junglefowl andWhite Leghorn is based
on one Red Junglefowl rooster and three White Leghorn females from
the L13 line. The initial F2 intercross was expanded to an eighth gen-
eration advanced intercross. More detail about the intercross is given in
Johnsson et al. (2012). Chickens were housed on three levels, with free
access to food, perches and water; 572 individuals were genotyped at
652 single nucleotide polymorphism (SNP) markers using an Illumina
Golden Gate assay by the Uppsala Seq & SNP platform. A full list of the
markers is available in Johnsson et al. (2015). Chickens were reared in
five separate batches.

Phenotyping and QTL mapping
One month before slaughter at 212 days (around 26 weeks of age), a
total of 232 hens were tested individually in two fecundity trials (see
summary statistics in Supporting Information, Table S3, Table S4, and
Table S5). In the first 2-wk trial, eggs were collected daily. In the second
10-d trial, aimed at measuring brooding, hens were given two dummy
eggs, and were allowed to keep laid eggs. We calculated total and mean
egg mass, and the number of eggs produced. The difference in number
of eggs between the first and second trial is used as a measure of
brooding, since a brooding hen will stop laying once a full clutch size
is produced, when she is permitted to retain the eggs. Because the
brooding trial was 4 d shorter than the fecundity trial (except in one
batch), and to make the brooding score more interpretable, we extra-

polated the number of eggs in the brooding trial up to 14 d before
comparing it to the fecundity trial. Females that laid no eggs were
excluded from analyses (11 from the fecundity trial, and 55 from the
brooding trial). Chickens were tested in a total of five batches. In the
case of the first two batches, as these exceeded the number of individual
cages available, testing was staggered in two subbatches. This was then
included as a covariate in subsequent analyses. Subsets of the fecundity
data have previously been used to test for pleiotropic effects with rel-
ative comb mass (Johnsson et al. 2012, 2014). Brooding QTL are pub-
lished in Henriksen et al. (unpublished data 2015). The current paper
reports the full analysis including all hens and fecundity traits. We used
R/qtl for QTL mapping (Broman et al. 2003). QTL mapping included
body weight at slaughter (212 d) and batch as additive covariates. We
used a principal component analysis (PCA) approach to control for any
residual family structure (Wu et al. 2011). This was performed by
calculating the first 10 PCs of all the genotype data, which were then
tested for significance in each phenotypic QTL regression. Any signif-
icant PCs were then retained in the final model. This approach allowed
us to both control for population substructure, and also test for epistatic
interactions. We performed QTL mapping using both single-QTL
scans and two-dimensional for epistatic pairs, and summarized the
results for each trait withmultiple-QTLmodels. Significance thresholds
were calculated by permutation. A suggestive significance level was
calculated using a genome-wide 20% P-value cut-off (principally due
to being more conservative than the standard suggestive threshold
(Lander and Kruglyak 1995), which gave a LOD of�3.6 per trait, while
the genome-wide 5% significance threshold was a LOD of �4.4. Con-
fidence intervals were calculated using a 1.8 LOD drop technique
(Manichaikul et al. 2006). Epistatic interactions were also assessed
using similar permutation thresholds (20% suggestive, 5% significant),
as per the guidelines given in Broman and Sen (2009). The thresholds
were approximately as follows: full model �11, full vs. one �9, inter-
active �7, additive �7, additive vs. one �4.

Figure 2 Genomic regions harboring QTL for egg
traits, bone and comb. The x-axis displays physical
distance on the autosomal chicken genome, with chro-
mosomes in numeric order. The names of the micro-
chromosomes have been suppressed.
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Bone phenotypes and eQTL
Bone QTL and eQTL data were previously used to map and search for
quantitative trait genes for bone traits; see Johnsson et al. (2015) for
further details about bone phenotyping, QTL and eQTL mapping. After
culling at 212 d of age, femoral bones were dissected out. The right
femur was measured for bone density, area, content and thickness traits
with peripheral computerized tomography, while the left was used for
gene expression. Cortical and medullary bone was separated by setting
thresholds of above 1000 mg/cm3 for cortical bone, and between
150 mg/cm3 and 1000 mg/cm3 for medullary bone, measuring a di-
aphyseal (50% of femoral length), and metaphyseal (6% of femoral
length) cross-section. For the phenotypic QTL, the sexes were analyzed
separately, and only the female QTL were used in this study.We isolated
total RNA, made double-stranded cDNA from polyadenylated tran-
scripts, labeled the cDNA and hybridized to NimbleGen 12 · 135k
microarrays. Fluorescent intensities were preprocessed with the Robust
Multiarray Average (RMA) algorithm (Irizarry et al. 2003), which in-
cludes background correction and quantile normalization of probe-level
data followed by summarization to probesets. We performed eQTL
mapping with Haley-Knott regression in a 100-cM region around the
genomic location of each probeset, using R/qtl (Broman et al. 2003), and
set significance thresholds by permutation. This analysis detects local,
putatively cis-acting eQTL. The bone eQTL dataset consists of measure-
ments from 125 females. Probe positions are provided in Table S1.

Hypothalamus eQTL data
We also reanalyzed hypothalamus eQTL data from 129 individuals, also
from the eighth generation of the same cross (Johnsson et al. 2015). The
hypothalamus was dissected out after culling at 212 d of age, frozen and
stored as above. Again, total RNA was isolated and double-stranded
cDNA was synthesized in the same manner as for the bone samples.

In this case, hybridization to NimbleGen 12 · 135k microarrays was
performed at NimbleGen Services (Reykjavik, Iceland). eQTL mapping
is detailed in Johnsson et al. (2015). RMA preprocessing and eQTL map-
ping were performed as described above. As the hypothalamus dataset
includes bothmales and females, not all females were part of the fecundity
trials. Therefore, this dataset contains only 43 females with both fecundity
traits and gene expression data. Probe positions are provided in Table S2.

Candidate quantitative trait genes
We searched for candidate quantitative trait genes affecting egg pro-
duction bymeans of changes in gene expression detectable in bone. First,
we extracted genes that have local cis-eQTL confidence interval over-
lapping the confidence interval for an egg QTL. Then, we tested for an
association between the fecundity trait and the expression level of the
probeset in question using a linearmodel that also included bodymass at
212 d and a batch covariate. We used a significance level of 0.05, ad-
justed by Bonferroni correction for the number of uncorrelated eQTL
overlapping that particular QTL.

QTL overlaps
We tested for cis-eQTL within 100 cM around the genomic location of
the probeset. Genomic confidence intervals were 1.8-LOD drop inter-
vals, expanded to the closest marker. We used the R package Genomi-
cRanges (Lawrence et al. 2013) to compare and overlap confidence
intervals based on physical coordinates in the chicken genome (version
2.1/galGal3). Plots were created with ggplot2 (Wickham 2009). We
tested the significance of QTL–sweep overlaps by randomly placing
nonoverlapping intervals of the same number and size on an interval
the size of the sequenced chicken genome and counting the overlaps.
The P-value was estimated from the empirical cumulative distribution
function based on 1000 iterations.

n Table 2 Candidate genes from bone

Trait Probeset Chr Location (Mb) LOD P-Value R2

Number of eggs fecundity ENSGALT00000018422_ENSGALG00000011293 1 46.8 2.8 0.00056 0.14
Mean egg weight fecundity ENSGALT00000030673_ENSGALG00000019356 1 37.2 4.6 0.00144 0.48
Number of eggs brooding X603222429F1 2 57.1 3.5 0.00070 0.16
Number of eggs brooding X603953984F1 2 57.1 3.1 0.00035 0.18
Number of eggs brooding X603157909F1 2 57.0 3.2 0.00104 0.16
Number of eggs brooding X603469332F1 2 57.0 3.0 0.00011 0.20
Number of eggs brooding X603371979F1 2 61.3 4.5 0.00071 0.16
Number of eggs brooding X603234519F1 3 13.5 11.5 0.00012 0.20
Number of eggs brooding ENSGALT00000014550_ENSGALG00000008947 3 14.8 9.9 0.00010 0.20
Number of eggs brooding ENSGALT00000014548_ENSGALG00000008947 3 14.8 8.2 0.00046 0.17
Number of eggs brooding NM_001199409_PAK7 3 14.8 10.6 0.00076 0.16
Number of eggs brooding X603470949F1 3 9.9 7.1 0.00055 0.17
Number of eggs brooding X603468747F1 3 15.6 4.7 0.00025 0.18
Number of eggs brooding ENSGALT00000015469_ENSGALG00000009503 3 19.9 2.8 0.00018 0.19
Number of eggs brooding X603841358F1 3 19.8 2.5 0.00111 0.15
Total egg weight brooding X603220651F1 3 68.9 3.5 0.00017 0.15
Total egg weight brooding X603848593F1 3 68.9 3.6 0.00005 0.17
Total egg weight brooding ENSGALT00000025568_ENSGALG00000015858 3 80.7 2.6 0.00022 0.15
Total egg weight brooding ENSGALT00000031669_ENSGALG00000015860 3 80.8 5.4 0.00096 0.12
Total egg weight brooding X603371690F1 3 84.3 3.8 0.00087 0.13
Brood fecundity difference X603841867F1 4 23.1 8.0 0.00191 0.10
Mean egg weight fecundity NM_205180_FGF1 13 17.9 3.4 0.00083 0.48
Mean egg weight fecundity ENSGALT00000011880_ENSGALG00000007343 13 17.9 3.0 0.00043 0.49
Total egg weight brooding X603219553F1 24 2.6 7.8 0.00336 0.11
Total egg weight brooding X603844217F1 24 2.6 3.2 0.00137 0.12
Total egg weight brooding X603230423F1 24 5.2 4.8 0.00321 0.11

LOD scores refer to local cis-eQTL in the bone dataset. The P-values for trait-gene expression association and coefficients of determination refer to a linear model
including body mass at 212 d and batch as covariates.
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Data availability
The gene expression data supporting the results of this article are
available in ArrayExpress under accession numbers E-MTAB-3141
and E-MTAB-3154 (http://www.ebi.ac.uk/arrayexpress/). Fecundity
phenotypes and genotypes underlying QTL mapping are available in
Figshare at http://figshare.com/s/487302c8951611e5a80d06ec4b8d1f61.

RESULTS

Medullary bone content predicts total egg mass
Total mass of eggs produced in the fecundity trial showed a negative
correlationwithmedullarycontent (linearmodelwithbodymassat212 d
as covariate, t = –4.1, P = 5 · 1025, N = 227) and cortical content
(t = –3.7, P = 7 · 1024), with this being inline with expectation given

the relationship between fecundity and bone allocation, and also vindi-
cating the choice of tissue for expression analysis (Figure 1). The differ-
ence between fecundity and brooding trial, our measure of broodiness, is
not associated with these bone traits. This could be expected if this trait is
driven by a behavioral change rather than direct correlation with bone
characteristics.

Fecundity QTL overlap QTL for bone and comb loci in
the same cross
We found a total of 12 QTL for different aspects of the fecundity trials,
five for traits from the first fecundity trial, and seven for traits from the
brooding trial (Table S5). There were also fourQTL (already reported in
R. Henriksen et al., unpublished data for the difference between the
fecundity and the brooding trial. When combined based on their

Figure 3 Scatterplots of gene expression and trait
values of selected candidates: FGF1, MRPL42, and
603841867F1 expression vs. mean egg weight, egg
number in the fecundity trial, and brood fecundity
difference.
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genomic confidence intervals, they form12 loci for egg traits (Figure 2). A
comparison with previously published QTL for bone traits and relative
combmass showed that four fecundity QTL overlap loci for female bone
traits, and four overlapwith previously published relative combmass loci.

Candidate genes for fecundity QTL
Given that fecundity QTL are mediated by genetic effects on bone, we
were able touse the expressionQTLwe identified in bone tissue to assess
the genes present within QTL confidence intervals. This was performed
in a two-step process: first, we overlapped the egg QTLwith eQTL from
bone and kept those genes with overlapping eQTL as positional can-
didates. Second, we tested for an association between trait value and the
expression level of each candidate gene. We found that a total of 1367
local eQTL overlapped with fecundity QTL (excluding the three QTL
regions broader than 10Mb reduces this number to 1035). Out of these,
26 eQTL genes both had a QTL–eQTL overlap and also significantly
correlated with the overlapped fecundity trait. Formany of the QTL, we
found no such candidates in the bone eQTL data, and, for a few QTL,
we found multiple associated genes (see Table 2 and Figure 3).

In particular, there are four QTL that have one such candidate gene
each. These are QTL for egg number on chromosome 1 withmitochon-
drial ribosomal protein L42 (MRPL42; ENSGALG00000011293), mean
egg mass with an uncharacterized protein from the Ensembl gene
database (ENSGALG00000019356) also on chromosome 1, a probeset
based on an unknown EST (603841867F1) on chromosome 4, and
fibroblast growth factor 1 (FGF1; NM_205180) on chromosome 13.

Candidate genes from hypothalamic gene expression
The hypothalamus links the endocrine and nervous systems, and is
therefore a plausible site of nervous system-dependent effects on fecun-
dity traits.We therefore investigated a hypothalamus eQTL data set from
the same advanced intercross in search of candidate quantitative trait
genes (Johnsson et al. 2015). Out of a total of 79 hypothalamic eQTL
overlapping fecundity QTL, five had a correlation between the trait value
and gene expression value (Table 3). The most significant association
was number of eggs in the brooding trial with mitochondrial ribosomal
protein L32 (MRPL32; ENSGALG00000012337) on chromosome 2.

Overlaps with selective sweeps
A total of 12 selective sweeps, as identified by Rubin et al. (2010), were
located within the fecundity QTL, meaning that seven out of 16 QTL
overlapped at least one sweep. All of these sweeps were detected solely
in layer birds, rather than being general to all domestics; however, this
overlap appeared to be nonsignificant (P = 0.54 by simulation).

DISCUSSION
In this study, we identified a number ofQTL affecting fecundity—a vital
aspect of life history. A total of 12 QTL were detected, explaining on
average 9% of the variation in each trait. A measurement of brooding,
potentially relating to clutch size, also yielded four QTL. Combining

these QTL with gene expression analysis, and eQTL previously identi-
fied in this cross, yielded a number of candidate genes for fecundity in
this cross. These represent, to the best of our knowledge, some of the
first candidate genes identified by genome-wide mapping for life his-
tory traits in an avian species. The use of gene expression evidence
provides far greater weight than a linkage or association study alone,
where the resolution is often insufficient to identify causal genes un-
derlying the QTL. Our approach can identify candidate quantitative
trait genes that act through changes in gene expression in bone or
hypothalamus. It could also detect genes that work in other tissues,
but where a similar eQTL effect is also present in bone. Bone, and the
eggshell gland of the chicken display similarities on the transcriptome
level (Jonchère et al. 2010). It therefore seems likely that our analysis
may capture such epiphenomenal correlations as well.

Life history traits are among some of the hardest to analyze. They
havebeenshowntohavesomeof the lowestheritabilityvaluesofanytrait
type (Mousseau and Roff 1987), making the identification of genes
responsible for variation in such traits proportionally scarcer in the
genome. It is striking that relatively few QTL were identified for these
traits, though, given the low heritability, it is possible that many of the
loci are in fact identified in this cross. Given the sample sizes of the QTL
(232 females) and eQTL (125 for bone) studies, effect size overestima-
tion is to be expected (Beavis 1998). A striking feature is the different
architectures for the two types of fecundity traits, when eggs were re-
moved daily or allowed to remain with the birds for the duration of the
trial. This may be construed as a gene by environment interaction. It
also reflects the connection between behavior and egg production. It
can also indicate some of the reasons why the heritabilities for life
history traits are so low, and the identification of causal genes is so
complex, with such G · E interactions complicating the repeatability
of such phenotypes. Despite this, two QTL for number of eggs in the
fecundity trail, and one for number of eggs in the brooding trial, overlap
QTL for egg mass located on chromosome 1 and chromosome 3 iden-
tified in the F2 generation of the same intercross (Wright et al. 2006,
2010). The chromosome 3 QTL also colocalizes with comb1, the major
locus for relative comb mass in this cross, where linked and pleiotropic
effects on egg production were previously detected.

Aclassic issue inchickenbreedingaswell as in life history evolution is
trade-offs between genetically correlated traits. Genetically correlated
fitness components, in the natural setting, or components of perfor-
mance traits, can constrain the selection response. For instance, a
negative genetic correlation between egg weight and egg number could
be expected simplydue to resource limitations. InourQTLresults,wedo
not observe an overlap of eggweight and eggnumberQTL,whichwould
indicate antagonistic (or positive) genetic effects. Instead, the architec-
tures appear independent. It is possible that there are smaller effect
antagonistic variants not detected in our QTL analysis. Also, the
selection used to develop the founder White Leghorn line was aimed
at counteracting antagonism by selection and crossing (Liljedahl et al.
1979). The separate architecture we observe may be partly due to
successful breed improvement.

n Table 3 Candidate genes from hypothalamus

Trait Probeset Chr Position (Mb) LOD P-value R2

Number of eggs fecundity X603599019F1 1 42.1 4.5 0.0050 0.17
Number of eggs brooding ENSGALT00000020160_MRPL32 2 51.3 7.8 0.0003 0.35
Number of eggs brooding X603864309F1 3 7.6 12.4 0.0114 0.19
Brood fecundity difference X603568189F1 13 0.9 4.1 0.0163 0.14
Mean egg weight fecundity X603868338F1 13 13.2 4.1 0.0278 0.54

LOD scores refer to local cis-eQTL in the hypothalamus dataset. The P-values for trait-gene expression association and coefficients of determination refer to a linear
model including body mass at 212 d and batch as covariates.
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Brooding behavior can be considered a form of parental investment,
and, in this context, is also related to clutch size in birds. Chickens in
natural conditions will typically lay between five and eight eggs prior to
ceasing laying and commencing incubation behavior (Meijer 1995).
By allowing chickens to retain their eggs, and providing them with
stimulus dummy eggs, we can map loci that curtail egg production in
comparison to the previous trial. This is an indirect measure of brood-
ing. Any other factor that causes hens to lay fewer eggs during the
second trial that took place 2 wk later risk being confounded with
brooding. However, at this time hens were well past sexual matura-
tion, and genetic effects on development time seem unlikely to con-
found the measurement. Clutch size is extensively studied in the
context of natural populations, having, as it does, a large effect on
fitness. To date, a study using a 50k chip design using a wild popu-
lation of collared flycatchers has identified that a single significant
QTL for clutch size represents the sole genetic evidence for putative
gene regions or genes affecting this trait (Husby et al. 2015). In a
similar vein, a genome-wide association study of clutch size and egg
mass in wild great tits found no significant associations, but chro-
mosome partitioning results were consistent with a polygenic archi-
tecture (Santure et al. 2013). When it comes to domestic chickens,
genome-wide association studies have implicated loci for egg weight
(Wolc et al. 2012) and egg number, age at first egg, and egg shell traits
(Liu et al. 2011).

We identify a number of candidate genes for fecundity and brooding
behavior in the cross. FGF1 is the sole candidate for a mean egg weight
QTL on chromosome 13 from the brooding test. Fibroblast growth
factors are heparin-binding proteins that are involved in signaling in
various stages of embryonic development, regulation of cell division,
angiogenesis, and other processes. They interact with heparin sulfate,
which is abundant in bone, and involved in the regulation of develop-
mental processes.We therefore hypothesize that FGF1may act through
either a bone-dependent or ovary-dependent mechanism to promote
increased egg production. In addition, we find two mitochondrial ri-
bosomal proteins,MRPL42 (egg number in fecundity trial on chromo-
some 1), and MRPL32 (egg number in brooding trial on chromosome
2), as candidates acting by means of expression in bone and hypothal-
amus, respectively. Our eQTL analysis of bone traits suggests another
mitochondrial ribosomal protein (MRPS18A) as a candidate for a QTL
for diaphyseal cortical thickness. Mitochondrial ribosomal proteins
contribute to translation of the proteins encoded in the mitochondrial
genome. These associations with bone and fecundity traits in multiple
tissues raise new questions as to the function of mitochondrial trans-
lation in the chicken. Finally, a bone-dependent locus should probably
not be expected for the brood fecundity difference. However, we did
find one candidate quantitative trait gene in the analysis (603841867F1,
an unknown EST), which is worthy of further investigation. Further
mapping and sequencing efforts are needed to find causative variants.

Experimental intercrossesofwildanddomestic animals arepowerful
study systems to map variants and mechanisms behind domestication
traits. Most importantly, they maximize the phenotypic variation pre-
sent in the experimental cross, therefore maximizing the potential to
identify functional variants. However, selection pressures as well as
environmental conditions differ between domestic andwild conditions.
Therefore, the genes most important in a trait in the wild and in the
laboratorymaybedifferent.Wecan still use experimental intercrosses to
uncover variants and mechanisms involved in a trait. However, it
remains to be seen whether the genes identified as being of relevance
for interpopulation variation also affect intrapopulation variation. To
determine this, it would require population genetic studies in natural
populations. By identifying such putative loci, it will now be possible to

use candidate genes studies of both association and gene expression in
selected tissues to help ascertain such effects.
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