
sensors

Article

Software Architecture of a Fog Computing Node for Industrial
Internet of Things

Ioan Ungurean 1,2,* and Nicoleta Cristina Gaitan 1,2,*

����������
�������

Citation: Ungurean, I.; Gaitan, N.C.

Software Architecture of a Fog

Computing Node for Industrial

Internet of Things. Sensors 2021, 21,

3715. https://doi.org/10.3390/

s21113715

Academic Editors: Domenico

Balsamo and Rishad Shafik

Received: 10 April 2021

Accepted: 24 May 2021

Published: 26 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava,
720229 Suceava, Romania

2 MANSiD Integrated Center, Stefan cel Mare University, 720229 Suceava, Romania
* Correspondence: ioanu@eed.usv.ro (I.U.); cristinag@eed.usv.ro (N.C.G.)

Abstract: In the design and development process of fog computing solutions for the Industrial
Internet of Things (IIoT), we need to take into consideration the characteristics of the industrial
environment that must be met. These include low latency, predictability, response time, and operating
with hard real-time compiling. A starting point may be the reference fog architecture released
by the OpenFog Consortium (now part of the Industrial Internet Consortium), but it has a high
abstraction level and does not define how to integrate the fieldbuses and devices into the fog system.
Therefore, the biggest challenges in the design and implementation of fog solutions for IIoT is the
diversity of fieldbuses and devices used in the industrial field and ensuring compliance with all
constraints in terms of real-time compiling, low latency, and predictability. Thus, this paper proposes
a solution for a fog node that addresses these issues and integrates industrial fieldbuses. For practical
implementation, there are specialized systems on chips (SoCs) that provides support for real-time
communication with the fieldbuses through specialized coprocessors and peripherals. In this paper,
we describe the implementation of the fog node on a system based on Xilinx Zynq UltraScale+
MPSoC ZU3EG A484 SoC.

Keywords: industrial internet of things; fog computing; embedded system; fieldbus; system on chip

1. Introduction

The Internet of Things (IoT) [1] is an emerging concept that has begun to be used in
all areas of activity. The purpose of this concept is to bring the physical things into the
virtual environment where they can interact with each other. IoT devices acquire data from
the environment and they transmit data to the Internet with or without local processing
possibilities. Usually, these devices have a wireless connection to the Internet, and an
important aspect is energy saving. IoT enables applications for smart building [2], smart
transportation [3], smart city, smart healthcare [4], etc.

The Internet of Things (IoT) generates a large amount of data, with an estimated
79.4 zettabytes (ZB) being generated by 2025 [5]. Consequently, data transmission in the
cloud can consume a large amount of bandwidth. In order to solve this issue, and to achieve
a low bandwidth requirement, high security level, and low latency, Cisco Systems proposed
a new paradigm [6] called fog computing. This concept brings cloud services such as data
processing, storage, and aggregation to the edge of the network. With these services being
closer to the devices that generate the data, a much shorter response time is obtained when
offering these cloud services [6]. With the success of the IoT concept, it began to be used
in the industrial environment, where it is called the Industrial Internet of Things (IIoT).
The IIoT is a subset of the IoT, which consists of sensor networks (industrial fieldbuses),
actuators, robots, machines, appliances, business processes, and personnel [7,8] in order to
achieve an efficient and intelligent manufacturing process. With the development of the
fog-computing concept for IoT, it has also started to be used for IIoT [8].

Sensors 2021, 21, 3715. https://doi.org/10.3390/s21113715 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2840-5283
https://orcid.org/0000-0001-7204-3470
https://www.mdpi.com/article/10.3390/s21113715?type=check_update&version=1
https://doi.org/10.3390/s21113715
https://doi.org/10.3390/s21113715
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113715
https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 3715 2 of 15

The main challenges in the development of fog computing systems [9] are represented
by the software architecture of the fog computing systems, the integration of the network
capabilities, the diversity of the network and devices that can be integrated into the fog
systems, the security, the setup and control of the fog services by the end-users, the
connections to the cloud, and the maintenance and customizing of the network and fog
systems [10].

In this paper, we propose the software architecture and practical implementation
method for a fog node that can be used for IIoT systems. This node is based on asymmetric
processing to meet the real-time restrictions in the industrial environment and to decouple
this component from hard real-time requirements from the application component. Each of
these two components is executed on specialized co-processors. The proposed solution is
based on the Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 SoC that has Quad-core ARM®

Cortex™-A53 MPCore™, Dual-core ARM Cortex-R5 MPCore™. The practical implementa-
tion of the fog/edge node was performed on CANOpen fieldbus in two variants. In the
first variant, the driver for the CANOpen fieldbus is implemented on the ARM Cortex A53
core under a Linux operating system. In the second variant, the ARM Cortex R5 core is
used to deal with the communication on the CANOpen fieldbus.

The elements of originality and innovation are that it uses asymmetric multiprocessing
to achieve real-time requirements and to separate the application layer from the sensing
layer. In addition, the implementation involves the integration of several types of fieldbuses
through a uniform method for fieldbus description.

This research paper is structured as follows: Section 2 presents some solutions for fog
computing from the specialized literature and the middleware system used in the IoT and
IIoT; Section 3 proposes a software architecture for a fog/edge node that can be used to
build IIoT system by integrating the fieldbuses specific to the industrial field; Section 4
presents some discussions related the implementation of the fog/edge node using the
Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 SoC; The final conclusions are drawn in
Section 5.

2. Related Works

This section presents some solutions for fog computing from the specialized literature
and the middleware system [11,12] used in the IoT and IIoT.

We start with reference architectures for fog computing. A reference architecture is an
architecture with a high degree of abstraction used to identify the main component blocks
and the main challenges for the design, development, and implementation of a practical
solution, without providing implementation details.

To come to the aid of the developers of fog computing solutions, the OpenFog Consor-
tium (now part of the Industrial Internet Consortium) defined a reference architecture for
fog computing [13]. The architecture integrates open technologies and approaches issues
related to latency, bandwidth, and distributed coordination. The architecture uses intel-
ligent endpoints, reliable networks, and secure data flows between the cloud, endpoints,
and services. The pillars of the OpenFog architecture are security, scalability, openness, au-
tonomy, reliability, availability, serviceability, agility, hierarchy, and programmability [13].
This reference architecture has a high degree of abstraction and it does not define how the
things from the real environment are integrated into a practical solution, which is at the
discretion of the developers of solutions for IoT or IIoT based on fog computing.

There are many challenges involved in the open protocols and architectures of the fog
computing for the end-users, many of which are related to the security of resources and
the decrease in energy consumption. Thus, in [14], a reference architecture Ii presented
consisting of 5 layers:

1. The IoT application layer;
2. The management of resources defined by software layer;
3. The resources and cloud services layer (via a computing platform that manages IoT

resources and applications);

Sensors 2021, 21, 3715 3 of 15

4. The network and access to gateways (which are connected through the network layer
and which provide connectivity services to edge systems);

5. The sensors and edge devices layer.

A fog’s software architecture description is also presented in another reference [15]
that focuses on various technological components of fog computing (hierarchical and
distributed platforms for providing services). It also detailed how fog completes and
expands the cloud computer, key aspects of the fog computing, as well as various cases that
motivated the need for fog, and emphasizing the relevance of fog for several verticals in the
IoT and Big Data space. A hierarchically distributed architecture has also been proposed
that extends from the edge of the network to the fog core, including how to add a large
number of distributed sources.

In [16], the authors proposed a new reference architecture for fog computing based
on the extension of the SDN [17] and NFV [18] reference architecture by manipulating
network resources (e.g., overcoming a dramatic increase in user traffic), cloud, and fog.
They also designed a distributed SDN system for the implementation and management of
VNFCs over the network and to meet the stringent requirements of fog computing.

Some solutions for IIoT fog computing found in the literature are presented as follows.
The paper [19] contains a study related to the security implications of fog computing on the
IoT. The authors conclude that although the integration of fog computing in IoT seems to
be non-trivial and complicated, the benefits outweigh the costs. In [20], the authors study
the Industrial IoT control applications that are virtualized as software tasks running on a
fog computing platform that brings computing and deterministic communication closer
to the edge of the network. They propose a simulated annealing-based metaheuristic to
determine the mapping of the tasks and a schedule table of their activation in order to
maximize the quality-of-control for the control tasks and meet the timing requirements for
all tasks.

A fog industrial big data integration and sharing (fog-IBDIS) platform is proposed
in [21] in order to protect raw data privacy and enable data integration and sharing. They
present a case study that illustrates the implementation of fog-IBDIS, which ensures raw
data security by deploying the analysis tasks executed by the data generators.

An optimal data scheduling policy with multiple communication channels to minimize
real-time processing delay and increase the stability of the system is proposed in [22]. A
series of experiments are presented in order to evaluate behaviors with three different
scheduling policies.

In the specialized literature, there are a lot of references, such as [23–26], related to the
use of fog computing related to the IoT or IIoT, but they do not deal with the integration of
objects connected to different sensor networks.

In [27], the author proposes a cognitive Cogni-IoT platform that is used for an indus-
trial fog computing application and requires distributed intelligence that the fog computing
paradigm promises to apply to the edge. By using a predictive maintenance (PdM) algo-
rithm based on PdM-as-a-service for IoT applications and considering multiple cognitive
agents (i.e., classifiers), he solved a common optimization problem and provided the best
prediction for machine maintenance that could still work efficiently. An interesting defi-
nition of and presentation on the Industrial Internet of Things (IIoT) is made in [28]. The
authors highlight the latest IIoT research efforts in three areas, including IIoT architectures
and frameworks, communication protocols and data management techniques, and various
IIoT-related enabling technologies. They identified major IIoT research challenges that
include efficient data management schemes, trust in IIoT systems, collaborations between
heterogeneous IIoT systems, specific operating systems and public safety in IIoT, robust
and flexible big data analytical technologies, coexistence of wireless technologies and IIoT
protocols, and allowing decentralization of the edge. Detailed research on the latest studies
on security, architecture, consumption, and latency that fog computing (FC) can present
at the industrial level was conducted by Caiza et al. in [29]. One of the observations
made by the authors was that most researches have focused on the development of fog

Sensors 2021, 21, 3715 4 of 15

computing for applications where latency and security are not an issue. They proposed
that a system have different methodologies to obtain better performance. The development
of a fog service orchestrator (Q-FSO) for large-scale IIoT application provisioning in a fog
computing environment was proposed by Jen-Sheng Tsai et al. in [30], addressing the issue
of scalability and ensuring a quality of service (QoS) guarantee. The authors proposed two
heuristic algorithms, incremental similarity matching (ISM) and greedy multiple matching
(GMM), for efficient allocation of IIoT services, concluding that both algorithms outperform
current QoS solutions, heterogeneity, scalability, dynamism, and interoperability.

In IoT and IIoT solutions, an important feature is represented by the security capa-
bilities. These capabilities are important for the protection of critical data, especially in
the industrial field. IIoT security has been analyzed in detail in the literature and several
solutions have been proposed. For example, in [31], the authors propose a solution based
on a physical unclonable function (PUF) for key-sharing in which shared keys are physi-
cally generated. This solution has the advantage that it uses few hardware and computing
resources and can be used on devices with resource constraints. In [32], the authors ana-
lyze lightweight security solutions based on a physical unclonable function and present
machine learning (ML)-based modeling attacks to break such authentication.

In the process of designing and developing fog-computing solutions for IIoT, we need
to take into account the characteristics of the industrial environment that must be met.
These include low latency, predictability, response time, and operation with hard real-time
compiling. We can take for our starting point the reference fog architecture released by the
OpenFog consortium. This, however, has a high abstraction level and does not define how
to integrate the fieldbuses and devices into the fog system.

We can conclude that the biggest challenges in the design and implementation of
fog solutions for IIoT are the diversity of fieldbuses and devices used in the industrial
field, as well as complying with all constraints in terms of real-time compiling, low latency,
and predictability.

Fog and edge computing are new concepts integrated into the Internet of Things in
order to process data closer to where they are generated before being transferred into
the cloud. Fog computing uses interconnection between nodes while edge computing is
performed on isolated nodes [33].

In [34], a comprehensive study is performed on the communication protocols used for
IoT. The main middleware protocols identified are message queuing telemetry transport
(MQTT) [35], advanced message queuing protocol (AMQP) [36], constrained application
protocol (CoAP) [37], extensible messaging and presence protocol (XMPP) [38], data dis-
tribution service (DDS) [39], and OPC UA [40]. From these middleware protocols, DDS
stands out because it can support real-time communication and data transmission with
the publisher-subscriber paradigm based on a decentralized data model. It also supports
23 QoS levels as opposed to AMQT and MQTT with 3 levels. The disadvantage is the
weak support for low power consumption. MQTT stands out because it is supported by
all cloud platforms for IoT while DDS is not supported by these cloud systems. We can
conclude that the DDS middleware system can be used to interconnect fog/edge nodes
and the MQTT middleware system can be used for secure connections to cloud servers.

3. The Software Architecture of the Proposed Fog/Edge Node

This paper proposes a software architecture and a method for the practical implemen-
tation of a fog/edge computing node that can monitor and control in real-time a set of
fieldbuses and locally process the data at the edge of the local network before transmitting
it to a cloud server. It also provides a software middleware interface for accessing data
acquired from fieldbuses in order to build and develop IIoT applications by interconnection
of the fog/edge nodes and others software modules. Furthermore, the fog node can use
secure connections to cloud servers for long-term data storage and analysis using the
computing power provided by the cloud. The interface of the data acquired from field-
buses is provided through a middleware system based on the DDS standard. Furthermore,

Sensors 2021, 21, 3715 5 of 15

the proposed architecture is compatible with the Node View of the reference architecture
proposed by OpenFog Consortium, this being argued in the current section.

The software architecture of the proposed fog/edge node is presented in Figure 1. It
is based on the model presented in [41], which has been extend in order to be implemented
in reality. From a software point of view, in [41] a fog node is proposed that is organized
into two layers. This organization is detailed and is extended to four layers as shown in
Figure 1. In this paper, the emphasis is on the driver layer where a CANOpen fieldbus is
integrated. Basically, this paper proposes an implementation of the IIoT concept presented
in [41].

Sensors 2021, 21, x FOR PEER REVIEW 5 of 15

of fieldbuses and locally process the data at the edge of the local network before transmit-
ting it to a cloud server. It also provides a software middleware interface for accessing
data acquired from fieldbuses in order to build and develop IIoT applications by inter-
connection of the fog/edge nodes and others software modules. Furthermore, the fog node
can use secure connections to cloud servers for long-term data storage and analysis using
the computing power provided by the cloud. The interface of the data acquired from
fieldbuses is provided through a middleware system based on the DDS standard. Further-
more, the proposed architecture is compatible with the Node View of the reference archi-
tecture proposed by OpenFog Consortium, this being argued in the current section.

The software architecture of the proposed fog/edge node is presented in Figure 1. It
is based on the model presented in [41], which has been extend in order to be implemented
in reality. From a software point of view, in [41] a fog node is proposed that is organized
into two layers. This organization is detailed and is extended to four layers as shown in
Figure 1. In this paper, the emphasis is on the driver layer where a CANOpen fieldbus is
integrated. Basically, this paper proposes an implementation of the IIoT concept presented
in [41].

From the software point of view, the fog node is organized into four layers: fieldbus
drivers, data provider, fog computing & services, and middleware (Cloud Computing &
DDS middleware). Between these layers, there are defined standard software interfaces
that allow the independent design and execution of the software modules associated with
each layer.

IoT Cloud

FIELDBUS

n FIELD DEVICES / SENSORS / ACTUATORS

FOG NODE (The system may contain more fog nodes)

Cloud Computing DDS Midlleware

Fog Computing & Services

FIELDBUS
DRIVER n

FIELDBUS
DRIVER 1

Data Provider

Figure 1. The general architecture of the proposed fog node.

3.1. The Fieldbus Drivers Layer
From the software point of view, the specific driver for each fieldbus integrated into

the fog node is designed and implemented (see Figure 1). The drivers implement fieldbus-
specific communication operations using an interface, an adapter, or a port/peripheral
provided by the SoC system on which it is running. Basically, it implements the complete
stack for a fieldbus-specific master device (depending on the specifications of the
fieldbus). At this level, the address space for the fieldbus is built at a minimum level as it
is described in [41], and each object from the address space will have associated the oper-
ations that must be performed when reading the object-associated values from the
fieldbus or for transmitting the associated value to the fieldbus. The fieldbus driver has

Figure 1. The general architecture of the proposed fog node.

From the software point of view, the fog node is organized into four layers: fieldbus
drivers, data provider, fog computing & services, and middleware (Cloud Computing &
DDS middleware). Between these layers, there are defined standard software interfaces
that allow the independent design and execution of the software modules associated with
each layer.

3.1. The Fieldbus Drivers Layer

From the software point of view, the specific driver for each fieldbus integrated into
the fog node is designed and implemented (see Figure 1). The drivers implement fieldbus-
specific communication operations using an interface, an adapter, or a port/peripheral
provided by the SoC system on which it is running. Basically, it implements the complete
stack for a fieldbus-specific master device (depending on the specifications of the fieldbus).
At this level, the address space for the fieldbus is built at a minimum level as it is described
in [41], and each object from the address space will have associated the operations that
must be performed when reading the object-associated values from the fieldbus or for
transmitting the associated value to the fieldbus. The fieldbus driver has access to the buffer
memory allocated at the top layer in order to store the acquired data from the fieldbus and
to retrieve data that is transmitted to the network. More details on implementing a driver
are presented in Section 5.

3.2. The Data Provider Layer

The data provider layer builds the address space of the fog node (see Figure 1). This
layer defines the objects that have correspondents in the devices connected to the fieldbuses.

Sensors 2021, 21, 3715 6 of 15

The build and definition of the address space are performed in the same way as the one
presented in [41]. The address space consists of a list of fieldbuses, where each fieldbus
has a list of devices and each device has a list of objects. Each object can have several
sub-objects, each sub-object being characterized by several attributes such as: value, data
type, timestamp, quality, and type of access. The data provider allocates a buffer memory
that is used to store data associated with objects. The fieldbus drivers layer updates the
buffer memory with the data acquired from the fieldbuses, and all requests from the fog
computing & services layer are processed through this buffer.

3.3. The Fog Computing & Services Layer

The Fog Computing & Services layer contains the fog services provided by the fog
node (see Figure 1). These services include storage, data aggregation, and other specific
services, as well as various services that allow the design and development of different
applications specific to the industrial field such as supervisory control and data acquisition
(SCADA) systems. At this layer, the user establishes the rules used for data aggregation
and processing and can setup the data acquired from the fieldbuses (data from sensors
or transducers), data that are transmitted on the fieldbuses (e.g., commands to actuators),
data that are published through the DDS middleware [42], and data to which it subscribes
in the available DDS topics.

As described in [41], in order to enable data processing and storage services at this
layer, different objects can be instantiated that interact with each other through a virtual
environment by exchanging data. Moreover, this layer can create virtual objects that
connect to other objects in the virtual environment. These virtual objects perform vari-
ous mathematical operations with the acquired values and publish the new data in the
virtual environment.

3.4. The Middleware Layer

The Middleware layer (see Figure 1) is the software part that publishes data in DDS
topics and that subscribes to various data published in DDS topics (see Figure 2). This layer
can also provide secure connections to cloud servers in order to access specific centralized
cloud services.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 15

DDS Domain

Topic 1
QoS

Topic 2
QoS

Topic 3
QoS

Topic 4
QoS

Fog Node
QoS

Fog Node
QoS

Fog Node
QoS

Figure 2. An example of interconnections between fog nodes via data distribution service (DDS)
middleware.

Through the fog node, we can set deadlines that are very important in the hard real-
time systems used in the industrial field, data from which are processed by the fog node.
The aim of the fog node is to support IIoT by meeting the requirements that are specific
to the industrial field. So far, the general architecture of the fog node has been presented,
but the hardware platform is also very important. The design and development of the fog
node are performed from the software and hardware perspective by using development
kits based on modern SoCs that allow data acquisition from these fieldbuses. The focus is
on the preservation of the characteristics specific to the industrial environment.

3.5. Selecting an SoC Based System for Practical Implementation
The most important layer is the fieldbus drivers, because in this layer the specific

requirements of the industrial environment must be met. For this reason, it is very im-
portant which hardware platform is selected. A solution can be the use of modern SoCs
or multicore microprocessors that have specialized cores for real-time tasks.

Currently, the main microcontroller manufactures developed SoC solutions that
have one or more ARM Cortex Ax cores and one or more specialized cores based on ARM
Cortex Mx or other architecture for developing real-time applications. Thus, it is possible
to perform a decoupling of the real-time part of the application, which involves the pro-
cessing of data at the edge of the network and the cloud services provided by a fog node.
Examples of these types of SoCs are i.MX 7 series (Cortex A7 & Cortex M4) and i.MX 8M
(Cortex A53 & Cortex M4F) from NXP, STM32MP1 microprocessor series from ST Micro-
electronics (Cortex A7 & Cortex M4), Sitara™ AM4x (Cortex A9 & PRU-ICSS for industrial
communication) and Sitara™ AM6x (Cortex-A53 & Cortex-R5F) from Texas Instruments,
and Zynq UltraScale+ MPSoC (Cortex-A53 & Cortex-R5F) from Xilinx. These SoC solu-
tions provide application cores that can be used with a complex operating system (such
as Linux Embedded, Windows 10, and Android) to execute the tasks/processes for the
application layer that don’t have hard real-time requirements and cores for hard real-time
tasks, which can use real-time operating systems (RTOS). These solutions can be used to
design and develop a fog node for the devices from industrial environments with specific
characteristics such as hard real-time compiling and low latency. These requirements can
be achieved by using specialized cores that handle the communication throughout
fieldbuses and imply the use of asymmetric and heterogeneous multiprocessing.

In this paper, we propose the development of an edge/fog node based on the Xilinx
Zynq UltraScale+ MPSoC ZU3EG A484 SoC that has Quad-core ARM® Cortex-A53

Figure 2. An example of interconnections between fog nodes via data distribution service (DDS)
middleware.

The fog node is compliant with the reference architecture for fog computing released
by OpenFog Consortium, and it uses the DDS protocol to interconnect the fog nodes. The

Sensors 2021, 21, 3715 7 of 15

fog nodes exchange data with each other via the DDS protocol [42]. The retrieved data can
be used to process data locally. This mechanism allows things from the industrial environ-
ments to be interconnected via fog nodes to activate the IIoT concept. The interconnection
of fog nodes is shown in Figure 2. Each node can define DDS topics with different QoS
properties where it publishes data. Other nodes can be subscribed to these topics to retrieve
data and use them locally to aggregate data. Various mathematical functions can be applied
over local and retrieve data to obtain other new data. This new data can be published
in DDS topics or transmitted on through cloud servers. Regarding the security of fog
nodes, it is ensured by implementing DDS security specifications that allow the activation
of different security levels. In addition, all configurations of fog nodes are permitted only
after authentication with credentials that ensure these rights.

Through the fog node, we can set deadlines that are very important in the hard real-
time systems used in the industrial field, data from which are processed by the fog node.
The aim of the fog node is to support IIoT by meeting the requirements that are specific
to the industrial field. So far, the general architecture of the fog node has been presented,
but the hardware platform is also very important. The design and development of the fog
node are performed from the software and hardware perspective by using development
kits based on modern SoCs that allow data acquisition from these fieldbuses. The focus is
on the preservation of the characteristics specific to the industrial environment.

3.5. Selecting an SoC Based System for Practical Implementation

The most important layer is the fieldbus drivers, because in this layer the specific
requirements of the industrial environment must be met. For this reason, it is very impor-
tant which hardware platform is selected. A solution can be the use of modern SoCs or
multicore microprocessors that have specialized cores for real-time tasks.

Currently, the main microcontroller manufactures developed SoC solutions that have
one or more ARM Cortex Ax cores and one or more specialized cores based on ARM
Cortex Mx or other architecture for developing real-time applications. Thus, it is possible to
perform a decoupling of the real-time part of the application, which involves the processing
of data at the edge of the network and the cloud services provided by a fog node. Examples
of these types of SoCs are i.MX 7 series (Cortex A7 & Cortex M4) and i.MX 8M (Cortex
A53 & Cortex M4F) from NXP, STM32MP1 microprocessor series from ST Microelectronics
(Cortex A7 & Cortex M4), Sitara™ AM4x (Cortex A9 & PRU-ICSS for industrial communi-
cation) and Sitara™ AM6x (Cortex-A53 & Cortex-R5F) from Texas Instruments, and Zynq
UltraScale+ MPSoC (Cortex-A53 & Cortex-R5F) from Xilinx. These SoC solutions provide
application cores that can be used with a complex operating system (such as Linux Embed-
ded, Windows 10, and Android) to execute the tasks/processes for the application layer
that don’t have hard real-time requirements and cores for hard real-time tasks, which can
use real-time operating systems (RTOS). These solutions can be used to design and develop
a fog node for the devices from industrial environments with specific characteristics such
as hard real-time compiling and low latency. These requirements can be achieved by using
specialized cores that handle the communication throughout fieldbuses and imply the use
of asymmetric and heterogeneous multiprocessing.

In this paper, we propose the development of an edge/fog node based on the Xil-
inx Zynq UltraScale+ MPSoC ZU3EG A484 SoC that has Quad-core ARM® Cortex-A53
MPCore™, Dual-core ARM Cortex-R5 MPCore™, and communication peripherals such
as CAN, UART, SPI, I2C, and Tri-mode Gigabit Ethernet. These characteristics make it a
candidate for the decoupling of edge/fog computing nodes for the industrial environment.
Thus, the architecture proposed is focused on this SoC.

4. Implementation of the Proposed Architecture & Discussions

The proposed solution suggests a new approach because it allows the decoupling of
the application component from the real-time component specific to the industrial field. The
fog nodes interact and exchange data between them via DDS middleware. This middleware

Sensors 2021, 21, 3715 8 of 15

allows the definition of QoS parameters to obtain low latency and real-time performance
for communication. To achieve the proposed objectives, we used a modern SoC (Zynq
UltraScale+ MPSoC ZU3EG A484) that have specialized cores for real-time tasks.

For the fieldbus drivers layer, we defined a standard software interface used by the
fog computing & services layer to instantiate these drivers and to exchange data with the
devices connected to the fieldbuses. In addition, the fog computing & services layer has a
standard interface that it is used by the cloud and middleware layer. After defining these
specifications, we proceed to the software design of the fog node.

For this implementation, we used the Ultra96-V2 Zynq UltraScale+ ZU3EG Single
Board Computer using a Linux operating system. Except for the drivers for fieldbuses, the
other software components can be designed and developed independently of the hardware
platform. In contrast, fieldbus drivers are specific to the SoC chosen, depending on the
specialized cores, the way of communication between the application cores and specialized
cores, and the peripherals used for connection to the fieldbuses.

The biggest challenge is the design and development of these fieldbus drivers. The
Zynq UltraScale+ MPSoC provides several communication peripherals such as SPI, I2C,
UART, CAN, Ethernet, and USB. These peripherals can be used to connect directly to the
fieldbuses or by using adapters (e.g., UART to fieldbus or I2C to fieldbus).

In this paper, we proposed an implementation of a driver for the CANOpen network
based on a CAN port provided by Zynq UltraScale+ MPSoC. The CAN ports can be
accessed both from the ARM Cortex A53 cores that use a Linux distribution as the operating
system and from the ARM Cortex R5 that can use a real-time operating system.

In the first instance, we describe the implementation of the CANOpen driver on the
ARM Cortex A53 cores, after which some of the functionalities are transferred to the ARM
Cortex R5 cores. Within the driver, an acquisition cycle is divided into several time slots
of equal size. One or more slots may be associated with an object that is periodically
updated on the CANOpen fieldbus using service data object (SDO) requests. In addition,
the CANOpen fieldbus has defined process data object (PDO) objects that are periodically
transmitted on the fieldbus. For this reason, the driver needs access to the CANOpen
configuration file to be able to interpret this data and to connect to the objects defined for
the CANOpen fieldbus.

The CANOpen objects can associate one or more slots from the acquisition cycle
depending on the size of the related data. These slots can be used to update the objects using
read or write requests sent to the CANOpen fieldbus. The dimensions of the acquisition
cycle and the slots are set in the setup part of the fog node depending on the communication
speed of the CAN network. One or more slots may remain un-associated / free to be used
to handle requests for CANOpen objects that are not included in the acquisition cycle.

Figure 3 presents an operation diagram for a fieldbus driver when general-purpose
CPUs (such as the ARM Cortex A53 cores) are used and specialized coprocessors are not.
In this case, all modules of the fog node are executed on the Linux operating system that
runs on the ARM Cortex A53 cores. The data provider receives read and write requests for
the defined objects (see (1) in Figure 3). If data provider receives a write request then the
data is updated in the buffer memory and a write request is sent to the fieldbus driver (see
(2) in Figure 3).

The fieldbus driver checks if the object is in the acquisition cycle (cyclic queue), and if
it is not it will be inserted into the queue with the asynchronous request (acyclic queue).
If data provider receives a read request for an object, the request is served immediately
from the buffer memory, and a request is sent to the driver (see (2) in Figure 3). The driver
checks if the object is in the acquisition cycle, then the object will be inserted in the queue
with the asynchronous request (acyclic queue). It should be noted that the memory buffer
from data provider is periodically updated for the objects from the acquisition cycle. For
the objects that are not in the acquisition cycle, the memory buffer is updated when a read
operation has been performed. When a new read request is performed for the object, the
buffer memory will contain updated data.

Sensors 2021, 21, 3715 9 of 15Sensors 2021, 21, x FOR PEER REVIEW 9 of 15

Data Provider

request (get/set)

cyclic queue

FIELDBUS DRIVER

Thread for fieldbus
communication

acyclic queue

buffer memory (shared)

FIELDBUS

Fieldbus
request

1

2

5

4

3

8

7

6

Linux operating system
(ARM Cortex A53 cores)

Figure 3. The operation diagram for a CANOpen fieldbus driver.

The fieldbus driver checks if the object is in the acquisition cycle (cyclic queue), and
if it is not it will be inserted into the queue with the asynchronous request (acyclic queue).
If data provider receives a read request for an object, the request is served immediately
from the buffer memory, and a request is sent to the driver (see (2) in Figure 3). The driver
checks if the object is in the acquisition cycle, then the object will be inserted in the queue
with the asynchronous request (acyclic queue). It should be noted that the memory buffer
from data provider is periodically updated for the objects from the acquisition cycle. For
the objects that are not in the acquisition cycle, the memory buffer is updated when a read
operation has been performed. When a new read request is performed for the object, the
buffer memory will contain updated data.

As can be seen in Figure 3, within the fieldbus driver there are two queues. A queue
is associated with the acquisition cycle, with one item for each slot (cyclic queue). The
second queue contains requests for objects that are not included in the acquisition cycle
(acyclic queue). The driver has a thread that runs periodically at the beginning of each
slot. This thread extracts an item from the queue associated with the acquisition cycle. If
this slot is associated with an object, then the request for that object will be processed (see
(4) and (5) in Figure 3). If the slot is not associated with an object then an item is removed
from the queue with asynchronous requests and the request for that object is processed
(see (3) in Figure 3). This operation requires communication on the CANOpen fieldbus
(see (8) in Figure 3). The result of the communication operations on the CANOpen fieldbus
is sent to the buffer memory (see (6) from Figure 3). Data that is transmitted on the fieldbus
can be retrieved from the buffer memory (see (7) from Figure 3). The buffer memory is
protected by a semaphore to achieve mutual exclusion when it is accessed. Figure 4 pre-
sents the activity diagram of the thread that is executed at the beginning of each slot. Al-
gorithm 1 presents the pseudocode for the activity diagram from Figure 4. If the object has
associated two or more slots then the time-out and the next activation of the thread are
adjusted accordingly.

Figure 3. The operation diagram for a CANOpen fieldbus driver.

As can be seen in Figure 3, within the fieldbus driver there are two queues. A queue
is associated with the acquisition cycle, with one item for each slot (cyclic queue). The
second queue contains requests for objects that are not included in the acquisition cycle
(acyclic queue). The driver has a thread that runs periodically at the beginning of each
slot. This thread extracts an item from the queue associated with the acquisition cycle.
If this slot is associated with an object, then the request for that object will be processed
(see (4) and (5) in Figure 3). If the slot is not associated with an object then an item is
removed from the queue with asynchronous requests and the request for that object is
processed (see (3) in Figure 3). This operation requires communication on the CANOpen
fieldbus (see (8) in Figure 3). The result of the communication operations on the CANOpen
fieldbus is sent to the buffer memory (see (6) from Figure 3). Data that is transmitted on
the fieldbus can be retrieved from the buffer memory (see (7) from Figure 3). The buffer
memory is protected by a semaphore to achieve mutual exclusion when it is accessed.
Figure 4 presents the activity diagram of the thread that is executed at the beginning of
each slot. Algorithm 1 presents the pseudocode for the activity diagram from Figure 4. If
the object has associated two or more slots then the time-out and the next activation of the
thread are adjusted accordingly.

One disadvantage of the proposed solution is that the communication with the CAN
network is handled by a Linux thread that is not executed in real-time. The Linux operating
system is not a hard real-time operating system but a soft real-time operating system
(best effort). To handle the communication in hard real-time, the communication part
with the CANOpen fieldbus can be executed on an ARM Cortex R5 core provided by
Zynq UltraScale+ MPSoC. In this case, the fieldbus driver has a module that is executed
on the application core under Linux and a module that is executed on specialized cores,
encapsulating the communication between the heterogeneous cores and the asymmetric
multiprocessing part.

Sensors 2021, 21, 3715 10 of 15

Algorithm 1: SlotTime.

1:if there is an object associated with the timeslot (cyclic queue) then
2: Retrieves the ID of the associated object
3:else
4: if there is at least one object in the acyclic queue? then
5: Retrieves the ID of the associated object
6: if the object fits in the free slots then
7: do noting
8: else Set the timer for the next slot time
9: return
10: endif
11: else Set the timer for the next slot time
12: return
13: end if
14:end if
15:Set the timer for the next slot time
16:Builds the message and send it to CAN
17:Wait for a time-out response
18:Interpret the response and update the buffer memory in the Data Provider
19:return

Sensors 2021, 21, x FOR PEER REVIEW 10 of 15

START
slot time

STOP

Is there an object
associated

with the time slot
(cyclic queue)

?

Is there at least one object
in the acyclic queue

?

Does the object fit
in the free slots?Set the timer for the next

slot time?

YES

NO

NO

YES

NO YES

Retrieves the ID of the
associated object

Set the timer for the
next slot time

Form the message and
send it to CAN

Wait for a time-out
response

Interpret the response and update the
buffer memory in the Data Provider

Retrieves the ID of the
associated object

Figure 4. The activity diagram for the CANOpen fieldbus driver.

Algorithm 1: SlotTime.

1:if there is an object associated with the timeslot (cyclic queue) then

2: Retrieves the ID of the associated object

3:else

4: if there is at least one object in the acyclic queue? then

5: Retrieves the ID of the associated object

6: if the object fits in the free slots then

7: do noting

8: else Set the timer for the next slot time

9: return

10: endif

11: else Set the timer for the next slot time

12: return

13: end if

14:end if

15:Set the timer for the next slot time

16:Builds the message and send it to CAN

17:Wait for a time-out response

18:Interpret the response and update the buffer memory in the Data Provider

19:return

Figure 4. The activity diagram for the CANOpen fieldbus driver.

The software module from the driver that is executed by the ARM Cortex A53 cores
under Linux hides the specific characteristics of the fieldbus and the way of connecting to
the fieldbus. It also encapsulates the communication part with the ARM Cortex R5 core,
which executes the software that implements the specific protocol stack in compliance with
real-time requirements.

These two components communicate with each other through messages, a mechanism
provided by Linux to be able to communicate with specialized cores. The software on the
specialized core uses an RTOS and implements the CANOpen stack. This software module
can respect the specific real-time requirements. The module from the ARM Cortex A53 core

Sensors 2021, 21, 3715 11 of 15

works like a master that sends requests to the module from the ARM Cortex R5 core. The
requests can be of two types: configuration requests and process requests through which
the data are read or send to the fieldbus. Besides, the module from ARM Cortex R5 core
can send notifications in case of detecting different events on the CANOpen fieldbus.

The shared memory communication is used to transmit data between two modules of
the CANOpen driver that are executed on ARM Cortex A53 and ARM Cortex R5. In this
case, it needs to invalidate the cache before reading (or the shared DRAM memory region
can be configured as non-cacheable).

Figure 5 presents the software architecture of the driver for CANOpen fieldbus. It
has a software component on the ARM Cortex A53 core that is executed under the Linux
environment and a software component that is executed by the ARM Cortex R5 core. On
the specialized core, the software component that implements the CANOpen stack is based
on the CAN peripheral provided by the SoC system.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 15

One disadvantage of the proposed solution is that the communication with the CAN
network is handled by a Linux thread that is not executed in real-time. The Linux operat-
ing system is not a hard real-time operating system but a soft real-time operating system
(best effort). To handle the communication in hard real-time, the communication part with
the CANOpen fieldbus can be executed on an ARM Cortex R5 core provided by Zynq
UltraScale+ MPSoC. In this case, the fieldbus driver has a module that is executed on the
application core under Linux and a module that is executed on specialized cores, encap-
sulating the communication between the heterogeneous cores and the asymmetric multi-
processing part.

The software module from the driver that is executed by the ARM Cortex A53 cores
under Linux hides the specific characteristics of the fieldbus and the way of connecting to
the fieldbus. It also encapsulates the communication part with the ARM Cortex R5 core,
which executes the software that implements the specific protocol stack in compliance
with real-time requirements.

These two components communicate with each other through messages, a mecha-
nism provided by Linux to be able to communicate with specialized cores. The software
on the specialized core uses an RTOS and implements the CANOpen stack. This software
module can respect the specific real-time requirements. The module from the ARM Cortex
A53 core works like a master that sends requests to the module from the ARM Cortex R5
core. The requests can be of two types: configuration requests and process requests
through which the data are read or send to the fieldbus. Besides, the module from ARM
Cortex R5 core can send notifications in case of detecting different events on the CANO-
pen fieldbus.

The shared memory communication is used to transmit data between two modules
of the CANOpen driver that are executed on ARM Cortex A53 and ARM Cortex R5. In
this case, it needs to invalidate the cache before reading (or the shared DRAM memory
region can be configured as non-cacheable).

Figure 5 presents the software architecture of the driver for CANOpen fieldbus. It
has a software component on the ARM Cortex A53 core that is executed under the Linux
environment and a software component that is executed by the ARM Cortex R5 core. On
the specialized core, the software component that implements the CANOpen stack is
based on the CAN peripheral provided by the SoC system.

CANOpen Stack

ARM Cortex R5 core
 (Free RTOS)

ARM Cortex A53 core
(Linux operating system)

Fog Computing & Services

CANOpen
Driver

CANOpen Driver Wrapper

CAN Peripheral

Data Provider

DRAM

Figure 5. The software architecture of the CANOpen fieldbus driver. Figure 5. The software architecture of the CANOpen fieldbus driver.

In Figure 6, we present an operation diagram for the CANOpen driver when the
communication is handled in real-time on the ARM Cortex R5 core. In the figure, we can
see the wrapper that receives the requests from the data provider (see (2) from Figure 6)
that are received from de upper layer (see (1) from Figure 6). These requests are transmitted
to the ARM Cortex R5 core through shared memory and a signal send to the A5 core (see
(3) in Figure 6). The ARM Cortex R5 core executes a task at the beginning of each slot,
and it implements the activity diagram from Figure 4. It handles the implementation of
the acquisition cycle (see (6) and (7) in Figure 6), the requests for the objects that are not
in the acquisition cycle (see (5) in Figure 6), and the communication on the CANOpen
fieldbus (see (8) in Figure 6), and it updates the buffer memory from data provider (see
(4) in Figure 6). By now, we have presented the implementation of a fieldbus driver for
CANOpen. Furthermore, the SoC system provides communication interfaces for Ethernet,
UART, SPI, I2C, USB that can be used to develop drivers for fieldbuses such as MODBUS,
Ethercat, Profibus, Profinet, and so on. The software module from the ARM Cortex R5 core
must implement all the functionality of the fieldbus. It receives, via messages, requests for
data from the fieldbus or data that must be sent on the fieldbus. It must be specified that
PLCs or devices that read data from sensors or transducers or various specific execution
elements can be connected to the fieldbuses.

Sensors 2021, 21, 3715 12 of 15

Sensors 2021, 21, x FOR PEER REVIEW 12 of 15

In Figure 6, we present an operation diagram for the CANOpen driver when the
communication is handled in real-time on the ARM Cortex R5 core. In the figure, we can
see the wrapper that receives the requests from the data provider (see (2) from Figure 6)
that are received from de upper layer (see (1) from Figure 6). These requests are transmit-
ted to the ARM Cortex R5 core through shared memory and a signal send to the A5 core
(see (3) in Figure 6). The ARM Cortex R5 core executes a task at the beginning of each slot,
and it implements the activity diagram from Figure 4. It handles the implementation of
the acquisition cycle (see (6) and (7) in Figure 6), the requests for the objects that are not
in the acquisition cycle (see (5) in Figure 6), and the communication on the CANOpen
fieldbus (see (8) in Figure 6), and it updates the buffer memory from data provider (see
(4) in Figure 6). By now, we have presented the implementation of a fieldbus driver for
CANOpen. Furthermore, the SoC system provides communication interfaces for Ethernet,
UART, SPI, I2C, USB that can be used to develop drivers for fieldbuses such as MODBUS,
Ethercat, Profibus, Profinet, and so on. The software module from the ARM Cortex R5
core must implement all the functionality of the fieldbus. It receives, via messages, re-
quests for data from the fieldbus or data that must be sent on the fieldbus. It must be
specified that PLCs or devices that read data from sensors or transducers or various spe-
cific execution elements can be connected to the fieldbuses.

Figure 6. The operation diagram for a CANOpen fieldbus driver when a specialized core is used.

The fieldbus driver for CANOpen operates as a master device within a CanOpen
fieldbus, implementing the CANOpen Master Protocol Stack. One of the services you
need to provide is to generate the Sync signal. It generates the sync message depending
on the communication cycle period. For real time systems, it is important that this jitter is
as small as possible. As can be seen in Figure 7, for the implementation of a cycle period
of 400 ms on ARM Cortex A53 cores with Linux as the operating system, the SYNC is
generated with a jitter of about 83 ns, and for the implementation on an ARM Cortex R5
core with FreeRTOS as the operating system, a jitter is obtained of approx. 1.233 ns. In
order to obtain on the oscilloscope the graphics from Figure 7, the SYNC signal was con-
figured to be generated every 100 ms, and before generating the SYNC signal, the line port
that is connected to the oscilloscope probe is switched from 0 logic to 1 logic (which is
switched back to 0 logic at the middle of the 100 ms period so that it can be prepared for
the next generation of the SYNC signal). By setting the oscilloscope trigger on the rising
edge, the images shown in Figure 7 are generated.

Figure 6. The operation diagram for a CANOpen fieldbus driver when a specialized core is used.

The fieldbus driver for CANOpen operates as a master device within a CanOpen
fieldbus, implementing the CANOpen Master Protocol Stack. One of the services you need
to provide is to generate the Sync signal. It generates the sync message depending on the
communication cycle period. For real time systems, it is important that this jitter is as small
as possible. As can be seen in Figure 7, for the implementation of a cycle period of 400 ms
on ARM Cortex A53 cores with Linux as the operating system, the SYNC is generated
with a jitter of about 83 ns, and for the implementation on an ARM Cortex R5 core with
FreeRTOS as the operating system, a jitter is obtained of approx. 1.233 ns. In order to
obtain on the oscilloscope the graphics from Figure 7, the SYNC signal was configured to
be generated every 100 ms, and before generating the SYNC signal, the line port that is
connected to the oscilloscope probe is switched from 0 logic to 1 logic (which is switched
back to 0 logic at the middle of the 100 ms period so that it can be prepared for the next
generation of the SYNC signal). By setting the oscilloscope trigger on the rising edge, the
images shown in Figure 7 are generated.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 15

(a) (b)

Figure 7. The jitter for the SYNC signal obtained for implementation on the ARM Cortex A53 core (a) and on an ARM
Cortex R5 core (b).

5. Conclusions
In this paper, we propose a design and a method of development for a fog node that

is performed in terms of both software and hardware using development kits based on
modern microcontrollers that allow data acquisitions through the fieldbuses. The fog
node is designed for the Xilinx Zynq UltraScale+ MPSoC ZU3EG SoC, and uses the ARM
Cortex R4 core for the execution of the driver to comply with the real-time requirements
specific to the industrial field. From the functional and software perspective, the fog node
is organized on four layers: fieldbus drivers, data provider, fog computing & services, and
middleware. The biggest challenge is the design and development of the drivers for
fieldbuses because this implies the use of asymmetric processing. The practical implemen-
tation of the fog/edge node was performed for CANOpen fieldbus in two variants. In the
first variant, the driver for the CANOpen fieldbus is implemented on the ARM Cortex
A53 core under a Linux operating system. In the second variant, the ARM Cortex R5 core
is used to deal with the communication on the CANOpen fieldbus. By using the special-
ized processor, the jitter for the SYNC signal (specific to the CANOpen fieldbus) de-
creased from 83 ns to 1.233 ns.

Author Contributions: Conceptualization, I.U. and N.C.G.; methodology, I.U. and N.C.G.; writ-
ing—original draft preparation, I.U. and N.C.G.; writing—review and editing, I.U. and N.C.G.; vis-
ualization, I.U. and N.C.G. All authors have read and agreed to the published version of the manu-
script.

Funding: This research was funded by the project “119722/Centru pentru transferul de cunostinte
către întreprinderi din domeniul ICT—CENTRIC—Contract subsidiar 15567/01.09.2020/DI-
WPADCU/Fragar Trading”, contract no. 5/AXA 1/1.2.3/G/13.06.2018, cod SMIS 2014+ 119722 (ID
P_40_305), using infrastructure from the project “Integrated Center for research, development and
innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for fabrication and
control”, contract no. 671/09.04.2015, Sectoral Operational Program for Increase of the Economic
Competitiveness, co-funded by the European Regional Development Fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 7. The jitter for the SYNC signal obtained for implementation on the ARM Cortex A53 core (a) and on an ARM
Cortex R5 core (b).

Sensors 2021, 21, 3715 13 of 15

5. Conclusions

In this paper, we propose a design and a method of development for a fog node
that is performed in terms of both software and hardware using development kits based
on modern microcontrollers that allow data acquisitions through the fieldbuses. The
fog node is designed for the Xilinx Zynq UltraScale+ MPSoC ZU3EG SoC, and uses
the ARM Cortex R4 core for the execution of the driver to comply with the real-time
requirements specific to the industrial field. From the functional and software perspective,
the fog node is organized on four layers: fieldbus drivers, data provider, fog computing
& services, and middleware. The biggest challenge is the design and development of
the drivers for fieldbuses because this implies the use of asymmetric processing. The
practical implementation of the fog/edge node was performed for CANOpen fieldbus in
two variants. In the first variant, the driver for the CANOpen fieldbus is implemented
on the ARM Cortex A53 core under a Linux operating system. In the second variant, the
ARM Cortex R5 core is used to deal with the communication on the CANOpen fieldbus.
By using the specialized processor, the jitter for the SYNC signal (specific to the CANOpen
fieldbus) decreased from 83 ns to 1.233 ns.

Author Contributions: Conceptualization, I.U. and N.C.G.; methodology, I.U. and N.C.G.; writing—
original draft preparation, I.U. and N.C.G.; writing—review and editing, I.U. and N.C.G.; visualiza-
tion, I.U. and N.C.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the project “119722/Centru pentru transferul de cunos-
tinte către întreprinderi din domeniul ICT—CENTRIC—Contract subsidiar 15567/01.09.2020/DIW-
PADCU/Fragar Trading”, contract no. 5/AXA 1/1.2.3/G/13.06.2018, cod SMIS 2014+ 119722 (ID
P_40_305), using infrastructure from the project “Integrated Center for research, development and
innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for fabrication and
control”, contract no. 671/09.04.2015, Sectoral Operational Program for Increase of the Economic
Competitiveness, co-funded by the European Regional Development Fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ungurean, I.; Gaitan, N.C.; Gaitan, V.G. “A middleware based architecture for the Industrial Internet of Things”, KSII transactions

on internet & information systems. Korean Soc. Internet Inf. 2016, 10, 2874–2891. [CrossRef]
2. Elsisi, M.; Tran, M.-Q.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Deep Learning-Based Industry 4.0 and Internet of Things

towards Effective Energy Management for Smart Buildings. Sensors 2021, 21, 1038. [CrossRef] [PubMed]
3. Humayun, M.; Jhanjhi, N.; Hamid, B.; Ahmed, G. Emerging smart logistics and transportation using IoT and blockchain. IEEE

Internet Things Mag. 2020, 3, 58–62. [CrossRef]
4. Ungurean, I.; Gaitan, N.C. Speech analysis for medical predictions based on Cell Broadband Engine. In Proceedings of the 20th

European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27 August 2012; pp. 1733–1736.
5. Billions of IoT Devices to Produce 79.4 Zettabytes of Data in 2025, Says IDC|Analytics Insight. Available online: https:

//www.analyticsinsight.net/billions-iot-devices-produce-79-4-zettabytes-data-2025-says-idc/ (accessed on 25 March 2021).
6. Buyya, R.; Srirama, S.N. (Eds.) Fog and Edge Computing: Principles and Paradigms; John Wiley & Sons: Hoboken, NJ, USA, 2019.

[CrossRef]
7. Madakam, S.; Uchiya, T. Industrial Internet of Things (IIoT): Principles, Processes and Protocols. In The Internet of Things in the

Industrial Sector; Mahmood, Z., Ed.; Computer Communications and Networks; Springer: Cham, Switzerland, 2019. [CrossRef]
8. Maazam, M.; Zeadally, S.; Harras, K.A. Deploying Fog Computing in Industrial Internet of Things and Industry 4.0. IEEE Trans.

Ind. Inform. 2018, 14, 4674–4682. [CrossRef]
9. Sadri, A.A.; Rahmani, A.M.; Saberikamarposhti, M.; Hosseinzadeh, M. Fog data management: A vision, challenges, and future

directions. J. Netw. Comput. Appl. 2021, 174, 102882. [CrossRef]
10. Freeman, H.; Zhang, T. The emerging era of fog computing and networking [The President’s Page]. IEEE Commun. Mag. 2016, 54,

4–5. [CrossRef]

http://doi.org/10.3837/tiis.2016.07.001
http://doi.org/10.3390/s21041038
http://www.ncbi.nlm.nih.gov/pubmed/33546436
http://doi.org/10.1109/IOTM.0001.1900097
https://www.analyticsinsight.net/billions-iot-devices-produce-79-4-zettabytes-data-2025-says-idc/
https://www.analyticsinsight.net/billions-iot-devices-produce-79-4-zettabytes-data-2025-says-idc/
http://doi.org/10.1002/9781119525080
http://doi.org/10.1007/978-3-030-24892-5_2
http://doi.org/10.1109/TII.2018.2855198
http://doi.org/10.1016/j.jnca.2020.102882
http://doi.org/10.1109/MCOM.2016.7497757

Sensors 2021, 21, 3715 14 of 15

11. da Cruz, M.A.A.; Rodrigues, J.J.P.C.; Sangaiah, A.K.; Al-Muhtadi, J.; Korotaev, V. Performance evaluation of IoT middleware.
J. Netw. Comput. Appl. 2018, 109, 53–65. [CrossRef]

12. Yugha, R.; Chithra, S. A survey on technologies and security protocols: Reference for future generation IoT. J. Netw. Comput. Appl.
2020, 169, 102763. [CrossRef]

13. OpenFog Reference Architecture for Fog Computing. Available online: https://www.iiconsortium.org/pdf/OpenFog_Reference_
Architecture_2_09_17.pdf (accessed on 25 March 2021).

14. Vahid, A.; Dastjerdi, H.; Gupta, R.N.; Calheiros, S.; Ghosh, K.; Buyya, R. Fog computing: Principles, architectures, and applications.
arXiv 2016, arXiv:1601.02752.

15. Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J. Fog computing: A platform for Internet of Things and analytics. In Big Data Internet
Things: A Roadmap for Smart Environments; Springer: Cham, Switzerland, 2014; pp. 169–186.

16. Habibi, P.; Baharlooei, S.; Farhoudi, M.; Kazemian, S.; Khorsandi, S. Virtualized SDN-based end-to-end reference architecture for
fog networking. In Proceedings of the 32nd International Conference on Advanced Information Networking and Applications
Workshops, AINA 2018 Workshops, Krakow, Poland, 16–18 May 2018; pp. 61–66.

17. Haleplidis, E.E.; Pentikousis, E.K.; Denazis, S.; Salim, J.H.; Meyer, D.; Koufopavlou, O. Software-Defined Networking (SDN): Lay-
ers and Architecture Terminology. Available online: https://datatracker.ietf.org/doc/html/rfc7426 (accessed on 25 March 2021).

18. Network Functions Virtualization (NFV) Architectural Framework; ETSI: Sophia Antipolis, France, 2013.
19. Butun, I.; Sari, A.; Österberg, P. Security Implications of Fog Computing on the Internet of Things. In Proceedings of the 2019

IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 7–9 January 2019; pp. 1–6. [CrossRef]
20. Barzegaran, M.; Cervin, A.; Pop, P. Towards quality-of-control-aware scheduling of industrial applications on fog computing

platforms. In Proceedings of the Workshop on Fog Computing and the IoT (IoT-Fog ’19), ACM, New York, NY, USA, 15–18 April
2019; pp. 1–5. [CrossRef]

21. Wang, J.; Zheng, P.; Lv, Y.; Bao, J.; Zhang, J. Fog-IBDIS: Industrial Big Data Integration and Sharing with Fog Computing for
Manufacturing Systems. Engineering 2019, 5, 662–670. [CrossRef]

22. Wang, W.; Wu, G.; Guo, Z.; Qian, L.; Ding, L.; Yang, F. Data Scheduling and Resource Optimization for Fog Computing
Architecture in Industrial IoT. In Distributed Computing and Internet Technology. ICDCIT 2019. Lecture Notes in Computer Science;
Fahrnberger, G., Gopinathan, S., Parida, L., Eds.; Springer: Cham, Switzerland, 2019; Volume 11319. [CrossRef]

23. Yoon, G.; Choi, D.; Lee, J.; Choi, H. Management of IoT Sensor Data Using a Fog Computing Node. J. Sens. 2019, 9. [CrossRef]
24. Karatas, F.; Korpeoglu, I. Fog-Based Data Distribution Service (F-DAD) for Internet of Things (IoT) applications. Future Gener.

Comput. Syst. 2019, 93, 156–169. [CrossRef]
25. Ning, Z.; Huang, J.; Wang, X. Vehicular Fog Computing: Enabling Real-Time Traffic Management for Smart Cities. IEEE Wirel.

Commun. 2019, 26, 87–93. [CrossRef]
26. Kiani, A.; Ansari, N.; Khreishah, A. Hierarchical Capacity Provisioning for Fog Computing. IEEE/ACM Trans. Netw. 2019, 27,

962–971. [CrossRef]
27. Foukalas, F. Cognitive IoT platform for fog computing industrial applications. Comput. Electr. Eng. 2020, 87, 106770. [CrossRef]
28. Khan, W.Z.; Rehman, M.H.; Zangoti, H.M.; Afzal, M.K.; Armi, N.; Salah, K. Industrial internet of things: Recent advances,

enabling technologies and open challenges. Comput. Electr. Eng. 2020, 81, 106522. [CrossRef]
29. Caiza, G.; Saeteros, M.; Oñate, W.; Garcia, M.V. Fog computing at industrial level, architecture, latency, energy, and security:

A review. Heliyon 2020, 6. [CrossRef]
30. Tsai, J.; Chuang, I.; Liu, J.; Kuo, Y.; Liao, W. QoS-Aware Fog Service Orchestration for Industrial Internet of Things. IEEE Trans.

Serv. Comput. 2020. [CrossRef]
31. Zhang, J.; Qu, G. Physical unclonable function-based key-sharing via machine learning for IOT security. IEEE Trans. Ind. Electron.

2020, 67. [CrossRef]
32. Zhang, J.; Shen, C.; Su, H.; Arafin, T.; Qu, G. Voltage Over-scaling-based Lightweight Authentication for IoT Security. IEEE Trans.

Comput. 2021, 1. [CrossRef]
33. Qi, Q.; Tao, F. A Smart Manufacturing Service System Based on Edge Computing, Fog Computing, and Cloud Computing. IEEE

Access 2019, 7, 86769–86777. [CrossRef]
34. Al-Masri, E.; Kalyanam, K.R.; Batts, J.; Kim, J.; Singh, S.; Vo, T.; Yan, C. Investigating messaging protocols for the Internet of

Things (IoT). IEEE Access 2020, 8, 5455–5470. [CrossRef]
35. Message Queue Telemetry Transport (MQTT). Available online: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqttv5.0.html

(accessed on 25 March 2021).
36. Advanced Message Queuing Protocol (AMQP). Available online: https://www.amqp.org (accessed on 31 January 2021).
37. Constrained Application Protocol (CoAP) Standard. Available online: https://tools.ietf.org/html/rfc7252 (accessed on

25 March 2021).
38. Extensible Messaging and Presence Protocol (XMPP). Available online: https://xmpp.org (accessed on 25 March 2021).
39. Data Distribution Service (DDS) Version 1.4. Available online: https://www.omg.org/spec/DDS/1.4/PDF (accessed on

25 March 2021).

http://doi.org/10.1016/j.jnca.2018.02.013
http://doi.org/10.1016/j.jnca.2020.102763
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://datatracker.ietf.org/doc/html/rfc7426
http://doi.org/10.1109/ICCE.2019.8661909
http://doi.org/10.1145/3313150.3313217
http://doi.org/10.1016/j.eng.2018.12.013
http://doi.org/10.1007/978-3-030-05366-6_11
http://doi.org/10.1155/2019/5107457
http://doi.org/10.1016/j.future.2018.10.039
http://doi.org/10.1109/MWC.2019.1700441
http://doi.org/10.1109/TNET.2019.2906638
http://doi.org/10.1016/j.compeleceng.2020.106770
http://doi.org/10.1016/j.compeleceng.2019.106522
http://doi.org/10.1016/j.heliyon.2020.e03706
http://doi.org/10.1109/TSC.2020.2978472
http://doi.org/10.1109/TIE.2019.2938462
http://doi.org/10.1109/TC.2021.3049543
http://doi.org/10.1109/ACCESS.2019.2923610
http://doi.org/10.1109/ACCESS.2020.2993363
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqttv5.0.html
https://www.amqp.org
https://tools.ietf.org/html/rfc7252
https://xmpp.org
https://www.omg.org/spec/DDS/1.4/PDF

Sensors 2021, 21, 3715 15 of 15

40. Ungurean, I.; Gaitan, N.C. Monitoring and control system for smart buildings based on OPC UA specifications. In Proceedings of
the International Conference on Development and Application Systems (DAS), Suceava, Romania, 19–21 May 2016. [CrossRef]

41. Ungurean, I.; Gaitan, N.C. A Software Architecture for the Industrial Internet of Things—A Conceptual Model. Sensors 2020, 20,
5603. [CrossRef] [PubMed]

42. Friesen, M.; Karthikeyan, G.; Heiss, S.; Wisniewski, L.; Trsek, H. A comparative evaluation of security mechanisms in DDS, TLS
and DTLS. In Kommunikation und Bildverarbeitung in der Automation; Springer: Berlin/Heidelberg, Germany, 2020; pp. 201–216.
[CrossRef]

http://doi.org/10.1109/DAAS.2016.7492552
http://doi.org/10.3390/s20195603
http://www.ncbi.nlm.nih.gov/pubmed/33007860
http://doi.org/10.1007/978-3-662-59895-5_15

	Introduction
	Related Works
	The Software Architecture of the Proposed Fog/Edge Node
	The Fieldbus Drivers Layer
	The Data Provider Layer
	The Fog Computing & Services Layer
	The Middleware Layer
	Selecting an SoC Based System for Practical Implementation

	Implementation of the Proposed Architecture & Discussions
	Conclusions
	References

