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Simple methods to assess both fat (FM) and fat-free mass (FFM) are required in paediatric populations. Several bioelectrical
impedance instruments (BIAs) and anthropometric equations have been developed using different criterion methods (multicom-
ponent models) for assessing FM and FFM. Through childhood, FFM density increases while FFM hydration decreases until
reaching adult values. Therefore, multicomponent models should be used as the gold standard method for developing simple
techniques because two-compartmentmodels (2Cmodel) rely on the assumed adult values of FFMdensity and hydration (1.1 g/cm3
and 73.2%, respectively). This study will review BIA and/or anthropometric-based equations for assessing body composition
in paediatric populations. We reviewed English language articles from MEDLINE (1985–2012) with the selection of predictive
equations developed for assessing FM and FFM using three-compartment (3C) and 4C models as criterion. Search terms included
children, adolescent, childhood, adolescence, 4C model, 3C model, multicomponent model, equation, prediction, DXA, BIA,
resistance, anthropometry, skinfold, FM, and FFM. A total of 14 studies (33 equations) were selected with the majority developed
using DXA as the criterion method with a limited number of studies providing cross-validation results. Overall, the selected
equations are useful for epidemiological studies, but some concerns still arise on an individual basis.

1. Introduction

The rise in the prevalence of childhood obesity [1] has pre-
cipitated the need for simple but accurate methods for deter-
mining adiposity in paediatric populations. The adolescent
years are a period of rapid growth in both the fat (FM) and
fat-free mass (FFM) compartments. Despite the recognized
importance of measuring body composition in paediatric
population, there are a limited number of valid methods
that can be used in both clinical and field settings. Most
of the simple methods used were developed using the two-
compartment (2C) model as the criterion method [2]. The
2C model divides body weight into FM and FFM, relying
on assumptions that ignore interindividual variability in the
FFM composition, which is the most heterogeneous of the

two depots (especially in growing children). Consequently,
measured values of FM and FFM are method dependent [3],
making accuracy difficult to assess while hindering compar-
isons across different methods and studies. Multicomponent
models, such as 3C and 4C approaches, are robust to inter-
individual variability in the composition of the FFM [4].
The model divides body weight into fat, water, mineral, and
protein and allows evaluation of several assumed constant
relations that are central to 2C models. Although reference
data exist for these constants in children from birth to 10 y
of age [5], most values were predicted by extrapolating data
between infants (6 months) [5] and the 9-year-old reference
child [5, 6].

The lack of accurate data on body composition further
hinders the evaluation of simple field-based techniques
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such as bioelectrical impedance analysis (BIA) and sim-
ple anthropometric measurements. Collectively, these body
composition tools are the most commonly used methods in
children and adolescents. Variables obtained from BIA and
anthropometry are often used as predictors during regres-
sion analysis aimed to developed FM and FFM equations
based on criterion methods. Given the vast number of BIA
and anthropometric-based equations for body composition
assessment in children and adolescents, it is difficult to
select themost appropriate solution.Therefore, clinicians and
health-related professionals need specific anddetailed criteria
for the appropriate model to select, paying close attention
to methodological-, biological- and statistical-related issues
that will impact the validity of the body composition value
obtained.

1.1. Methodological Considerations. In 1992, Wang et al. [7]
proposed an interesting system to organize the human body
composition, the five-level model. Based on this approach,
the human body was characterized in terms of five levels:
atomic, molecular, cellular, tissue, and whole body. Most of
the methodological research in human body composition
analysis has been conducted at the molecular level. Some of
the most widely used molecular level models divide body
mass into two, three, or four components. As suggested by
Wang et al. [8], methods of quantifying these components in
vivo can be organized using the following general formula:

𝐶 = 𝑓 (𝑄) , (1)

where𝐶 represents an unknown component,𝑄 a measurable
quantity, and 𝑓 a mathematical function relating 𝑄 to 𝐶
[8]. The mathematical function used in the aforementioned
formula can be classified into two types. The first is referred
Type I and was developed using a reference method and
regression analysis of data to derive the predictive equation
[8]. In these cases, a reference method is typically used to
measure the unknown component in a group of participants
with certain characteristics. The measurable quantity (𝑄,
i.e., property and/or the known component), as defined in
the general formula, is also estimated. Regression analysis
is then used to establish the mathematical function (𝑓)
and thus, develop the equation that predicts the unknown
component [8]. The second type of mathematical function,
known as Type II, is based on firmly founded models. These
models usually represent proportions or ratios of measurable
quantities to components that are assumed constant within
and between subjects [8]. Indeed Type II methods are based
on assumptions required for their development, and several
models have been published. Generally, these models were
developed from simultaneous equations, which may include
two or more unknown components and/or the measurable
property. The less complex Type II methods are based on
a 2C model where body mass is divided into FM and
FFM, either from hydrometric or densitometric techniques.
Type II methods can be described as any of the following
combinations.

(i) Two-compartment model:

Body Mass = fat + fat-free mass, (2)

see [2].
(ii)Three-compartment model:

Body Mass = fat + water + residual, (3)

that is, the sum of protein, minerals, and glycogen [9]:

Body Mass = fat + bone mineral + residual, (4)

that is, the sum of protein, water, and glycogen [10],

Body Mass = fat + bone mineral + lean soft tissue, (5)

see [11].
(iii) Four-component model:

Body Mass = fat + water + bone mineral + residual, (6)

that is, the sum of protein, soft tissue minerals and glycogen
[12, 13],

Body Mass = fat + water + bone mineral + protein (7)

[14, 15].
(iv) Five-component model:

Body Mass = fat + water + Bone mineral

+ Soft tissue mineral + residual,
(8)

that is, the sum of protein and glycogen [16].
(v) Six-component model:

Body Mass = fat + water + Bone mineral

+ Soft tissue mineral + protein + glycogen,
(9)

see [17].
The densitometric method requires the assessment of

body volume (BV), usually estimated by hydrostatic weighing
or air displacement plethysmography, serving as the basis
for 2C model of body composition analysis. The addition of
total-body water (TBW) is allowed for the development of
3C molecular models [9]. The derived 3C model accounted
for the variation in subject hydration by adding a TBW
estimation using dilution techniques to Behnke’s 2C model
[2]. On the basis of data available at the time from five
chemically analyzed human cadavers, Siri [9] assumed that
FFM consisted of two molecular level components, TBW
and a combined protein and total mineral [𝑀, that is, the
sum of soft tissue minerals and bone mineral (𝑀

𝑜
)] residual

component. To complete the model, Siri suggested a constant
ratio between mineral and protein of 0.35, as estimated from
the five cadavers, with a corresponding density of 1.565 kg/L.

Dual energy X-ray absorptiometry (DXA) has the advan-
tage of being a 3C model that quantifies total and regional
fat mass, lean soft tissue, and bone mineral content. This
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method assumes that nonosseous tissue consists of two
distinct components, fat and lean soft tissue [11]. The lean
soft tissue component is the difference between body weight
and the sum of fat and bone mineral ash. Fat and lean
components are quantified over regions devoid of bone.
Typically, the energy source produces photons at twodifferent
energy levels, 40 and 70 keV, which pass through tissues
and attenuate at rates related to its elemental composition.
Bone is rich in highly attenuating minerals, calcium, and
phosphorous and is readily distinguished from soft tissues
[11]. The measured attenuation of DXA’s two main energy
peaks is used to estimate each pixel’s fraction of fat and
lean according to series of physical models [11]. Overall,
the DXA method for estimating three components is first,
to separate pixels into those with soft tissue only (fat +
lean soft tissue) and those with soft tissue + bone mineral,
based on the two different photon energies (lower and higher
energies, resp.). DXA quantifies FM and FFM with precision
[18–21] and provides accurate measures when compared to
multicomponent models [22–26]. Indeed, scanning speed
andminimal-risk allowed its wide implementation and usage
in large multicenter studies, including the National Health
and Nutrition Examination Survey [27, 28].

The 3C molecular model of Siri [9] can then be extended
to a 4C molecular model by adding an estimate of bone
mineral by DXA. The 4C model provides the criterion
measurements for body composition assessment [29], but its
cost, time involvement, poor subject compliance in pediatric
populations, and sophisticated technological analysis are
impractical for most, if not all nonresearch-based settings.
In fact, the 4C model, which divides body mass into FM,
water, mineral and protein (and/or residual), is considered
the state-of-the art method for assessing body composition
as it can accurately account for the variability in the FFM
composition [30]. This model involves measurements from
different techniques thus allowing the evaluation of several
assumed constant relations that are central to 2C models.
However, one of the limitations of estimating body fatness
from multicomponent models is that combined technical
errors occur when each component is separately estimated.
While a higher validity is expected with the measurement
of more components, there is an associated propagation of
measurement errors with the determination of body density
(or volume), TBW, and bone mineral. Nevertheless, as long
as technical errors are relatively small in each of these
components, the cumulative error is also relatively small.
Still, when one or more of these components is not precisely
measured, the advantages of multicomponent analysis are
decreased [29]. Finally, the addition of in vivo neutron
activation analysis is required to assess soft-tissue minerals
and glycogen extending FM estimation from a 4C model to
5C and 6C molecular models.

1.2. Biological Considerations. There are many biological
conditions where the study of multiple components within
the FFM composition is important [30]. Measuring multiple
components often reduces the errors of the assumptions
in Type II methods specifically in pediatric populations

that can vary substantially the contribution of main FFM
components due to growth and maturation. As previously
stated, 2C models, use either hydrometric or densitometric
techniques and are based upon constants that came from
a few adult human cadaver dissections, animal data, and
indirect estimates of FFM in human subjects [9, 31, 32]. This
approach is less accurate in children because of potential
changes in the various assumptions of 2C models during
growth and maturation, such as changes in the density and
hydration of the FFM [10]. Therefore, the 4C model is robust
to interindividual variability in the FFM and is the “gold
standard” in pediatric populations [33]. However, multicom-
ponent models are costly, time consuming, and impractical
for most settings. For example, to assess FM, a typical 4C
model study requires many hours for completion, normally
starting with isotope dilution for TBW and measurement of
body mass. Then, underwater weighing or air displacement
plethysmography andDXA techniques, respectively, for body
volume and bone mineral assessment are needed. Two mea-
surable quantities, TBW and bone mineral along with two
properties, body volume and mass, are required to calculate
FM.

An alternative solution in overcoming the lack of accu-
racy using less complex techniques based upon 2C models
is the use of age- and sex-specific constants derived from
pediatric populations. Hydrometry and densitometry are two
techniques widely used to assess pediatric body composition
due to their ease of application, but their validity depends on
the accuracy of age- and sex-specific constant values for FFM
hydration or density. Since 1980, these constants have relied
upon empirical data from Fomon et al. [5] that published
body composition values for a reference child starting at
birth going to 10 y, with most of the values extrapolated
from other data [34]. Lohman [10] provided similar reference
data for pediatric ages based on simultaneous measurements
of TBW, body density, and forearm bone mineral density
[34, 35]. Simulations for adolescents were also reported by
Haschke [6]. Based on these studies and extrapolations,
Table 1 presents sex- and age-specific constants for conver-
sion of body density, water, and mineral to percent fat in
children and adolescents.

Recently, Wells et al. [33] reported reference data for the
hydration and density of the FFM and developed prediction
equations on the basis of age, sex, and body mass index
standard deviations using the 4C measures obtained in a
large, healthy sample of children and adolescents aged 4–23
years. Table 2 represents the median values proposed by the
authors for hydration, density, and constants using the LMS
(lambda-mu-sigma) method. Using these values it is possible
to substitute C1 and C2 constants in Siri’s [9] equation,
thus, improving the accuracy of densitometric techniques in
estimating FM of a healthy pediatric population.

In addition, the age- and sex specific constants for FFM
hydration presented in Table 2 can be used to improve the
accuracy of hydrometric methods known to be based on the
following stable relationship:

FFM (kg) = FFMTBW ∗ TBW (kg) , (10)



4 Journal of Obesity

Table 1: Age- and sex-specific constants for conversion of body density, water, and mineral to %FM in children and youth.

Age (years) Females Males
𝐷FFM 𝐶1 𝐶2 𝐷FFM 𝐶1 𝐶2

7–9 1.079 5.451 5.052 1.081 5.400 4.996
9–11 1.082 5.376 4.968 1.084 5.327 4.914
11–13 1.086 5.279 4.861 1.087 5.255 4.835
13–15 1.092 5.141 4.708 1.094 5.098 4.660
15–17 1.094 5.098 4.660 1.096 5.055 4.612
17–20 1.095 5.076 4.636 1.099 5.002 4.554
20–25 1.096 5.055 4.612 1.100 4.971 4.519
%FM: percent fat mass; Db: body density;𝐷FFM: fat-free mass density; 𝐶1: constant 1; 𝐶2: constant 2.
∗Calculation of percent fat mass (%FM) using age- and sex-specific values for the density of the FFM: %FM = [(𝐶1/Db) − 𝐶2] ∗ 100, where Db represents
body density. Adapted from Lohman [10].

Table 2: Median values for hydration, density, and constants (𝐶1 and 𝐶2) for the paediatric version of Siri’s (11) equation, obtained by using
the LMS (lambda-mu-sigma) method∗.

Age Males Females
Hydration % Density kg/L 𝐶1 𝐶2 Hydration % Density kg/L 𝐶1 𝐶2

5 y 76.5 1.0827 5.36 4.95 76.7 1.0837 5.33 4.92
6 y 76.3 1.0844 5.32 4.90 76.1 1.0865 5.27 4.85
7 y 76.1 1.0861 5.28 4.86 75.5 1.0887 5.22 4.79
8 y 75.9 1.0877 5.24 4.82 75.2 1.0900 5.19 4.76
9 y 75.7 1.0889 5.21 4.79 75.1 1.0909 5.17 4.74
10 y 75.5 1.0900 5.19 4.76 75.0 1.0916 5.15 4.72
11 y 75.3 1.0911 5.16 4.73 75.0 1.0924 5.13 4.70
12 y 75.2 1.0917 5.15 4.72 74.9 1.0937 5.10 4.67
13 y 75.0 1.0920 5.14 4.71 74.6 1.0954 5.07 4.63
14 y 74.8 1.0927 5.13 4.69 74.4 1.0975 5.02 4.58
15 y 74.4 1.0942 5.09 4.66 74.1 1.0996 4.98 4.53
16 y 74.0 1.0960 5.05 4.61 73.8 1.1011 4.95 4.49
17 y 73.7 1.0978 5.02 4.57 73.7 1.1020 4.93 4.47
18 y 73.5 1.0991 4.99 4.54 73.6 1.1027 4.92 4.46
19 y 73.4 1.1000 4.97 4.52 73.6 1.1031 4.91 4.45
20 y 73.3 1.1006 4.96 4.51 73.6 1.1035 4.90 4.44
∗
𝐶1 is calculated as (𝐷FFM ∗𝐷FM)/(𝐷FFM −𝐷FM), and𝐶2 is calculated as DFFM /(𝐷FFM −𝐷FM);𝐷FFM and𝐷FM represent fat-free mass density and fat mass
density, respectively. % fat mass is calculated as [(𝐶1/Db) – 𝐶2] ∗ 100, where Db is measured body density. Adapted fromWells et al. [33].

where FFMTBW stands for fat-free mass hydration based on
the age- and sex-specific constants and TBW for total body
water. This equation can be rearranged to

%FM = (FM
BM
) ∗ 100, (11)

where FM is assessed from subtracting FFM from body mass
(BM). It is important to emphasize if adult values are used
rather than the proposed age- and sex-specific constants in
the estimation of FM from densitometric and hydromet-
ric methods, an over- and underestimation of adiposity is
expected, respectively. In fact, Siri’s 3C model by including
both TBW and density is a valid model for determining
FM during growth, overcoming the limitations of measuring
total body density alone. Hence, the combination of body
density and body water has become the most practical
multicomponent approach to body composition assessment

in growing children [10]. With the development of improved
body water procedures through deuterium dilution [34, 36,
37], this approach has offered better estimates of FMand FFM
in this population.

Though the use of age- and sex-specific constants
improves the accuracy of 2Cmodels in assessing FMandFFM
in children, simpler field-based methods are still needed.
Therefore, if the goal is to develop field-based techniques to
predict body composition, multicomponent models should
be used as the preferred criterion method. Therefore, the
accuracy of anthropometry and BIA-based equations are
dependent in part on the accuracy of the criterion variable for
measuring FM and FFMbut also on the statistical procedures
used to develop these Type I functions.

1.3. Statistical Approach for Developing Predictive Equations.
In this section, we will review the most common methods
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used to developed predictive models, that is, Type I functions
for assessing body composition with regression analysis, the
most widely used method for their development. Briefly,
predictor variables that show the highest correlation with
the response variable are chosen to yield the maximum 𝑅2
(representing the proportion of the total variance in the
response variable that is explained by the predictors in a given
equation) [38].Then, a second significant variable is added to
the model with the amount of shared variance increasing the
𝑅
2.The procedure is repeated to achieve the best combination

of predictor variables until the inclusion of any variable no
longer improves (i.e., significantly) the 𝑅2 [38].

Another concern when developing predictive equations
is multicollinearity, a condition where independent variables
are strongly correlatedwith each other.Therefore, if toomany
variables are included as predictors in a given equation, the
probability of multi-collinearity is increased. The variance
inflation factor, defined as 1/(1 − 𝑅2), can be calculated to
detect multi-collinearity. To reduce the number of equations
generated and the chance of multi-collinearity, the elimina-
tion of predictor variables with the lowest correlation with
the referencemethod should be performed [38]. Additionally,
to assure the appropriate number of predictors in a specific
equation, Mallows’ Cp statistic index [39] should be used.
According to Sun and Chumlea [38], the equation with the
minimum Cp will have the maximum 𝑅2 and minimum
root mean square error (RMSE) values, and as expected, a
reduced bias andmulti-collinearity. In the development of the
regression model, the larger the 𝑅2 the better the equation
fits the data, whereas the precision of the model is evaluated
by the RMSE. The RMSE is calculated as the square root of
the sum of squared differences between the predicted and the
observed values divided by the total number of observations
minus the number of parameters [38] as follows:

RMSE = √
∑ (observed − predicted)2

(𝑛 − 𝑝 − 1)
, (12)

where 𝑛 is the number of observations, and 𝑝 is the number
of predictor variables. The RMSE should be standardized for
the mean value of the criterion method. This procedure is
called the coefficient of variation (CV), a standardized value
that is useful in comparing predictive equationswith different
response variables and different units [38].

Generally, there are specific selection criteria that should
be used for testing the accuracy of new predictive Type I
functions. One of the first criteria is the validity of the ref-
erence method because of its inherent error of measurement,
which dose not allow for perfect criterion scores. According
to Sun and Chumlea [38], other performance indicators
include sample size, the ratio of sample size to the number of
predictor variables, size of the coefficient of correlation (𝑅),
𝑅
2, RMSE, and the CV for the equation [38]. To measure

the increase in sample size necessary to offset the loss of
precision, the ratio between the variance of prediction error
and the variance of criterion value should be calculated [40].
For example, a sample of 100 participants is required to
achieve a significant 1% increase in 𝑅2 precision or accuracy

of a predictive equation with a statistical power of 90%
[38]. An additional procedure to assess the generalizability
of predictive equations is the cross-validation of developed
models. To test the performance of a predictive equation
in cross-validation studies, the pure error (PE) is used. The
parameter is calculated as the square root of the sum of
squared differences between the observed and the predicted
values divided by the number of subjects in the cross-
validation sample [38] as follows:

PE = √
∑(�̈� − 𝑌)

2

𝑛
,

(13)

where �̈� are the predicted values, 𝑌 are the observed values,
and 𝑛 is the number of subjects. While smaller RSME
values indicate a greater precision in the development of a
predictive equation, a reduced PE points to a better accuracy
of the equation when applied to an independent sample.
The cross-validation procedure involves the application of
the developed model in another sample from the population.
Usually 2/3 of the sample is used for developing a prediction
equation, and 1/3 is used to cross-validate the model though
other procedures can be used, such as the Jackknife method
and the prediction of the sum of squares (PRESS) [41, 42].
To test the accuracy of an equation when applied to the
cross-validation sample, the following parameters should be
analyzed: size of the 𝑅2, PE, and the potential for bias (mean
difference between methods). Further, though less used, the
concordance correlation coefficient (CCC) proposed by Lin
[43], should be examined as it represents a measure of
accuracy by indicating a bias correction factor that quantifies
how far the best fit line deviates from the 45∘ line through
the origin, and a measure of precision that specifies how
far each observation deviates from the best-fit line. Also, for
testing the performance of the newly developed equation in
the cross-validation group, the agreement between methods
should also be examine by analyzing the 95% limits of
agreement, as proposed by Bland and Altman [44], which
tests the potential for bias across the range of fatness or
leanness. This is calculated by the differences of the methods
(y-axis) and the mean of the methods (x-axis) (as proposed
by Bland and Altman [44]). Instead, the residuals of the
regression between methods with the criterion (in abscissas)
have also been reported [45]. The presence of a trend
between the differences and the mean of the methods is
determined by using the coefficient of correlation (or instead
by observing the homoscedasticity of the residuals); this is
to say a significant correlation between the x- and 𝑦-axis
indicates bias across the range of fatness.

1.4. Objectives. The present study aims to review all the avail-
able BIA and/or anthropometric-based equations published
between 1985 and 2012 for body composition assessment
developed using 3C and 4C models in the paediatric popu-
lation.
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MEDLINE database and
web of knowledge

platform

Search results combined
𝑁 = 410

Articles screened based
on title and abstract

Included𝑁 = 39

Manuscript review and
application of inclusion

criteria

Included𝑁 = 14

3C criterion model:
𝑁 = 13

4C criterion model:

Excluded𝑁 = 25
Criterion method and population: 25

Excluded𝑁 = 371
Unrelated: 160

Criterion method and population: 170
Non-English language literature: 41

𝑁 = 1

Figure 1: Flow diagram of study selection [46].

2. Methods

An extensive literature review was conducted, according to
the guidelines proposed at the PRISMA statement [46], to
select predictive equations for body composition estimation
in a paediatric population. MEDLINE database (OVID,
PubMed) andThomson Reuters Web of Knowledge platform
were searched for English language articles published in peer-
reviewed journals since 1985 with the last search run on
December 11, 2012. The keyword search terms included: chil-
dren, adolescent, childhood, adolescence, four-compartment
model, three-compartment model, multicomponent model,
equation, prediction, dual-energy X-ray absorptiometry, bio-
electrical impedance analysis, resistance, anthropometry,
skinfold, fat, and fat-free mass. The following characteristics
and criteria were used: (1) participants were healthy children
and adolescents; (2) the predictor variables were based on
BIA and/or anthropometry; (3) the 3C and 4C models were
used as the criterionmethods; (4) relative or absolute FM and
FFM were assessed; (5) detailed description of the statistical
methods used to formulate the equations was provided.
For the identification of studies, the process included the
following steps: screen of the identified records; examination
of the full text of potentially relevant studies; and application
of the eligibility criteria to select the included studies. For
assessing eligibility, studies were screened independently in
an unblinded standardized manner by the primary author,
whereas the secondary author examined a small sample of
them.

3. Results

Our search provided a total of 410 citations. Of these, 371
studies were discarded because after reviewing the title and

abstract, it appeared that these papers clearly did not meet
the criteria. The full text of the remaining 39 citations was
examined in more details. A total of 25 studies did not
meet the inclusion criteria described in Section 2; therefore,
a total of 14 studies involving 33 equations were identified for
paper. A flow diagram is illustrated in Figure 1 to describe
the number of studies screened, assessed for eligibility, and
included in the paper, along with reasons for exclusions at
each stage.

A detailed description of the selected equations is pre-
sented in Tables 3 and 4, including the characteristics of the
study sample, the response and the predictor variables, the
criterion models, and the statistical methods used to validate
and formulate the equations.

The studies summarized in Table 3 presented 𝑅2 values
for relative and absolute FM ranging from 0.85 to 0.93 and
from0.55 to 0.96, respectively, with RMSEs ranging from2.60
to 3.40% for %FM and from 0.94 to 4.29 kg for absolute FM.
Values of𝑅2 > 0.94 and RMSE ranging from 1.0 to 2.1 kg were
found for FFM estimation. In Table 4, equations developed
using a 4C model as the reference method [47] yielded 𝑅2
that ranged from 0.76 to 0.82 with RMSE ranging from 3.6
to 3.8%. The CVs were not available for the majority of the
equations. Overall, DXAwas used as the reference method to
estimate FM [48–53], %FM [54, 55], and FFM [56–58].

Among the 33 equations presented in Tables 3 and 4,
only 7 were cross-validated [48, 52, 53, 56, 58, 59]. Only 2
studies examined the PEs [56, 58] in estimating FFM, ranging
from 1.2 to 1.5 kg. During the cross-validation analysis, 𝑅2
values ranged from0.80 to 0.92 for absolute FMwith no avail-
able information for relative FM. Cross-validation of FFM
reported in one study [56] showed an𝑅2 value of 0.95whereas
another study provided values for the CV [58] that ranged
from 5 to 6%. None of the above studies examined the CCC,
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whereas agreement between methods was only included in
3 studies [48, 53, 56]. The smaller 95% confidence intervals
for absolute FMwere found for Dezenberg equations (−0.3 to
0.1 kg), while Huang equation ranged from −5.7 to 6.4 kg. For
Clasey equation, FFM limits of agreement ranged from −2.4
to 2.5 kg. For all the cross-validation equations, the difference
between the predictive and the reference methods showed
values closed to 0, indicating a reduced bias in the cross-
validation sample of the aforementioned studies.

4. Discussion

A total of 33 BIA and anthropometric-based equations for
assessing body composition using multicomponent models
as the reference method met the criteria and were selected
and reviewed. Overall, these models provided an acceptable
accuracy to be used in epidemiological studies. Generally,
BIA-based equations were developed for FFM estimates,
whereas anthropometric-based models were developed for
FM estimates.

Several equations were developed for ages below 14 years
while few published equations covered a larger broad of ages,
respectively, 3 to 18 years [49, 50] and 6 to 17 y [55, 58]. The
studies of Ellis et al. [49, 50] likewise presented the largest and
ethnically diverse sample, including Caucasian, Hispanics,
and Blacks, though the male equations only explained ∼60%
of the variance in the reference method.

Also, of note is the absence of including a multi-
collinearity analysis in the majority of the selected equations
with the exception of the predictive model proposed by
Morrison et al. [58]. A limited number of studies included
a standardized value (CV) for the RMSEs [49, 50, 58, 59],
a useful parameter for comparing predictive equations with
different response variables and units.

Another important finding is the small number of studies
that actually reported the cross-validation of newly proposed
models [48, 52, 53, 56, 58, 59].This is amajor flaw in the ability
to generalize the predictive model as it establishes whether
the equation was accurate to sample-specific variations.
In this regard, it is important to highlight the equation
developed by Clasey et al. [56] for FFM estimation using BIA
in a large sample of Caucasian children aged 5–11.9 year. The
cross-validation sample used by the authors [56] comprising
∼80 children explained FFM variability from the criterion
method by 95%. The few studies that reported agreement
between the proposed equation and the criterion method
when applied to a cross-validation sample indicated that
limits of agreement are relatively larger which may limit the
accuracy of themodels at an individual level, even though the
mean bias was small. Additionally, none of the studies that
included a cross-validation sample analysed the concordance
correlation coefficient (CCC) proposed by Lin [43], as it
represents in the same calculation a measure of accuracy and
precision of the proposed methodology in relation to the
reference technique.

Most of the studies presented in Table 3 were developed
using DXA as the criterion method either to estimate FM
[48–53], %FM [54, 55], or FFM [56–58] using different

instruments, models, and scan modes. The validity of the
response variable, that is, the criterion method, is deter-
minant for developing appropriate equations based on BIA
and/or anthropometry. Therefore, the usefulness of DXA
as the reference method for the development of several
proposed equations needs to be addressed, in particular some
advantages and shortcomings of this technique to assess body
composition in pediatric populations. Recently, Toombs et al.
[60] pointed out that DXA technological advances demon-
strated a good precision, large availability, and low radiation
dose, highlightingDXA as a convenient and useful diagnostic
tool for body composition assessment. These authors also
concluded that DXA technology can be improved if the
uncertainties associated with the trueness of DXA body
composition measurements are addressed by conducting
more validation studies for testing different DXA systems
against in vivo methods such as neutron activation analysis
and the 4Cmodel [60]. Systematic variations between devices
and software versions have been reported previously [61,
62]. Therefore, DXA systems are not interchangeable and
generalizability of predictive equations generated by different
densitometers, software, and/or scan mode is still unknown.
Further research is required for addressing methodological
issues related to the validity of this technique, especially if
it is used as a criterion method for developing alternative
solutions for body composition assessment.

It is recognized that 4C models are the best approach
in pediatric populations for developing and cross-validating
new body composition methods. Though other studies [63,
64] included children and adolescents in the prediction of
bedside techniques using a 4Cmodel as the criterionmethod,
only Slaughter et al. [47] proposed solutions specifically
developed for a healthy pediatric population ranging in
age, maturation status, gender, ethnicity, and adiposity level.
This model included bone mineral assessment from a single
photon absorptiometry, and the impact of this estimation on
the accuracy of those models is still unknown. Sun et al. [63]
and Horlick et al. [64] also developed BIA-based equations
for assessing FFM using a 4C model as the criterion method.
However, we did not include these equations since a wide
range of age was found for Sun et al.’s proposed models (12–
94 years) [63], whereas Horlick et al. [64] included HIV-
infected children along with healthy children during model
development. It is important to address that multicomponent
molecular models do not rely upon major assumptions
regarding proportions of the FFMdensity or hydrationwhich
are the cornerstone of 2C models. However the use of 3C
and 4C models is highly expensive, and laborious which
disables its implementation in most laboratories. Though the
precision of multicomponent models may be affected by the
propagation of measurement error related to the need of
assessing several techniques, reliability of 3C and 4C models
is not compromised if technical errors are relatively small [4].

5. Conclusion

In this paper, BIA and anthropometric-based equations
developed against multicomponent models for estimating
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FM and FFM in children and adolescents were examined.
Very few equations included a cross-validation sample, and
future research efforts should include this procedure for
newly proposed models to eliminate the least accurate and
precise rather than to continue developing new equations.

We identified 33 prediction equations that are acceptable
alternatives for epidemiological/clinical settings. The predic-
tive equations of Slaughter, developed against a 4C model,
used a wide and diverse sample ranging in age, maturation
status, ethnicity, gender, and adiposity levels and should,
therefore, be recommended as a feasible and valid alternative
for assessing body composition in paediatric populations.

Multicomponent models, specifically the 4C model, can
account for potential effects of age, sex, and ethnicity differ-
ences in the FFM density and composition when used as the
criterion method nevertheless residual differences can occur.
Therefore, specific BIA and/or anthropometric models for
clearly defined ages, gender, and ethnic groups of children
and adolescents are required using a 4Cmodel as the criterion
method.

Finally, future research studies should employ multicom-
ponent models to accurately address the dynamic changes in
paediatric body composition using, as predictors, whole body
measures.
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