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Simple Summary: Oxidative stress and inflammation are common problems in livestock and poultry
production, and have a serious impact on animal welfare and profitability. Finding an effective way
to deal with oxidative stress and inflammation is an urgent problem for the modern pig industry.
Cysteamine has been shown to play a crucial role in the growth performance, digestive metabolism,
immune function, and fecundity of animals. In this study, we found that dietary supplementation
of coated cysteamine could enhance the level of immunoglobulin and the expression of intestinal
immune factors in the weaned pigs induced by diquat. It is proved that dietary supplementation
with coated cysteamine can improve the intestine barrier function and immune function.

Abstract: This study aimed to explore the effects of dietary coated cysteamine on oxidative stress
and inflammation in diquat-induced weaning pigs. Twenty-four pigs were randomly assigned to
three dietary groups with eight replicates: the control (fed base diet), diquat (fed base diet), and
coated cysteamine + diquat groups (fed 80 mg/kg cysteamine). The experiment was conducted
for 21 d, and consisted of a pre-starter period (14 d) and a starter period (7 d). Coated cysteamine
treatment significantly increased (p < 0.05) the final weight and average daily gain (ADG) in pigs. The
contents of alkaline phosphatase (ALP), immunoglobulin G (IgG), serine (Ser), and isoleucine (Ile)
were elevated (p < 0.05) while the contents of albumin (ALB) and aspartic acid (Asp) were reduced
(p < 0.05) in the serum after coated cysteamine supplementation. Coated cysteamine supplementation
resulted in greater (p < 0.05) serum superoxide dismutase (SOD) activity, the expression of interleukin-
10 (IL-10) mRNA in the colon, and the CuSOD mRNA expression in the jejunum (p < 0.05) and
colon (p = 0.073). Coated cysteamine supplementation showed an increasing trend in villus height
(p = 0.060), villus height/crypt depth (V/C) (p = 0.056), the expression levels of zonula occludens-1
(ZO-1) mRNA (p = 0.061), and Occludin mRNA (p = 0.074) in the jejunum. In summary, dietary
supplementation with coated cysteamine improves the intestinal barrier function of the jejunum
by increasing the immunoglobulin content and the relative expression of intestinal immune factor
mRNA in pigs while alleviating oxidative stress and inflammatory reactions caused by diquat.
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1. Introduction

Oxidative stress is a frequent phenomenon that occurs in living organisms. Under
normal circumstances, the oxidation and antioxidant systems in the body reach a balanced
state [1], whereas the body reacts to oxidative stress [2] and produces excessive amounts
of reactive oxygen species (ROS) when this balance is broken, which is likely to cause
cytotoxicity [3]. ROS results from mitochondrial metabolism in eukaryotic cells, and
plays an essential role in maintaining cell homeostasis and low-level regulation of signal
transduction, gene expression, and receptor activation [4]. Several chronic diseases are
associated with oxidative stress which can cause severe cell and tissue damage [5]. In the
practical production process, oxidative stress reduces growth performance and immunity
in pigs, which in turn causes various diseases and huge losses to the breeding industry [6].
Therefore, finding an effective method to alleviate or solve oxidative stress in pigs is a
problem requiring an urgent solution.

Diquat, 1,1′-ethylene-2,2′-bipyridinium dibromide, generally exists as a dibromide
salt. It is a non-selective, quick-acting bipyridine compound with biotical properties [7]. As
diquat affects the performance and alimentation efficiency of animals, it is used extensively
to induce oxidative stress [8]. Diquat has been proven to reduce the growth performance
of animals, induce apoptosis and autophagy, reduce cell viability, reduce dopamine and
antioxidant enzyme levels, generate a large amount of ROS, and destroy intestinal morphol-
ogy and intestinal barrier function by inhibiting mucosal cell proliferation, and reducing
intestinal permeability [9,10].

Cysteamine (Cys), also known as 2-mercaptoethylamine, is a new feed additive that is
produced as a factor of the Coenzyme A pathway and is biologically derived from cysteine
metabolism. Coenzyme A is synthesized from pantothenic acid and cysteine [11]; during
its degradation process, pantetheine is formed and then hydrolyzed to cysteamine and
pantothenic acid by pantetheinase [12]. Previous reports have confirmed that cysteamine
can improve animal growth performance and carcass quality [13,14], increase the contents
of glutathionase and superoxide dismutase (SOD) in cell tissues, reduce the content of mal-
ondialdehyde (MDA), and increase the production of gastrin and gastric acid. Thus, Cys
exerts effects on oxidative stress and animal intestinal ulcer models [15,16]. Cys is easily
degraded and rapidly oxidized in air, or generates disulfide cystamine in solution [17].
Therefore, enteric coating of cysteamine is an effective method to prevent it from dissolving
in the acidic environment of the stomach [18]. Coated cysteamine is a feed stable cys-
teamine hydrochloride produced by advanced microencapsulation technology, adopting
an advanced microcapsule coating technology and special coating wall materials with an
encapsulation rate of 100%. The coated cysteamine has better fluidity and stability, better
sustained-release performance, and better tolerance [19]. In addition, coating cysteamine
can effectively avoid the loss caused in the process of processing and utilization and at the
same time avoid causing animal gastrointestinal ulcers [12].

The purpose of our study was to explore the influence of coated cysteamine on oxida-
tive stress and the inflammatory response in diquat-induced pigs models. We hypothesized
that cysteamine coating has a moderating effect on oxidative stress and the inflammatory
response in diquat-induced pigs by enhancing the antioxidant capacity and intestinal
barrier function in pigs.

2. Materials and Methods
2.1. Animal Experiment Design

All animals used in this study were humanely managed according to the Chinese
Guidelines for Animal Welfare. The experimental scheme was approved by the Animal
Welfare Committee of the Institute of Subtropical Agriculture, Chinese Academy of Sciences
(2019-6A). Twenty-four weaned pigs, aged 35 d (Duroc × Yorkshire), with a body weight
of 9 ± 0.6 kg were enrolled in the trial. Pigs were fed a basal diet for seven days before the
beginning the trials. All pigs were divided into three treatment groups with eight replicates
at random: the control group, the diquat group, and the coated cysteamine + diquat group
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(Cys + diquat group), in which the control group and the diquat group were fed a basal
diet, whereas the Cys + diquat group was fed an 80 mg/kg cysteamine diet. The trial lasted
for 21 d. On the 14th day, the pigs were weighed and treated with diquat for 7d (85-00-7,
>95.00%, Sigma-Aldrich, St. Louis, MO, USA). The diquat and Cys + diquat groups were
intraperitoneally injected with diquat (10 mg/kg BW) to induce oxidative stress, while the
control group was injected with the same amount of normal saline for 7 d. The experimental
diet was designed to meet or exceed the nutrient requirements for weaned pigs (NRC
2012) (Table 1). Referring to Bai et al. [20], cysteamine was added to the feed in the form
of coated cysteamine, which contains 27% cysteamine hydrochloride (Hangzhou King
Techina Technology Co Ltd., Hangzhou, China). Before the test, the piggery was cleaned
and disinfected thoroughly according to the piggery management process. During the test,
the house was kept clean and dry, proper air circulation was ensured, and the house was
cleaned every day. All piglets are housed in an environmentally healthy nursery facility
with good heat preservation facilities and a mechanical ventilation system. The adjacent
fields are separated by steel tubes to ensure that the piglets are not completely isolated
from each other. The piggery is equipped with an automatic drinking water device, manual
feeding is adopted and the trough is cleaned in time. The animals were allowed water and
feed ad libitum and were fed in single pens throughout the study.

Table 1. Basic diet composition and nutritional level of pigs.

Ingredient, g/kg

Corn 300.00
Extrude corn 210.00
Soybean meal 160.00

Extrude soybean 120.00
Fish meal 30.00

Wheat middling and red dog 28.50
Broken rice 50.00
Soybean oil 20.00

Sugar 20.00
Glu 20.00

Organic acid calcium 6.00
Calcium phosphate 12.00

L-Lysine-HCl 6.40
DL-Met 0.80

Thr 1.20
Mineral premix 1 1.50
Vitamin premix 1 0.40

Acidifier 5.00
Zinc oxide 3.20
Limestone 5.00

Nutrient component, %

Digestible energy kcal/kg 3464.00
Crude protein 19.25

Lys 1.52
Met 0.40
Thr 0.86
Try 0.30

1 Providing the following amounts of vitamins and minerals per kilogram on an as-fed basis: Zn (ZnO) 50 mg;
Cu (CuSO4) 20 mg; Mn (MnO) 55 mg; Fe (FeSO4) 100 mg; I (KI) 1 mg; Co (CoSO4) 2 mg; Se (Na2SeO3) 0.3 mg;
vitamin A, 8255 IU; vitamin D3, 2000 IU; vitamin E, 40 IU; vitamin B1, 2 mg; vitamin B2, 4 mg; pantothenic acid,
15 mg; vitamin B6, 10 mg; vitamin B12, 0.05 mg; nicotinic acid, 30 mg; folic acid, 2 mg; vitamin K3, 1.5 mg; biotin,
0.2 mg; choline chloride, 800 mg; vitamin C, 100 mg.

2.2. Sample Collection

On the 21st day, following a fast for 12 h before slaughtered, 10 mL blood samples
were collected from the precaval vein with vacuum tubes and centrifuged at 3000 rpm
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for 5 min. The obtained upper serum was stored at −20 ◦C for future analysis. Moreover,
jejunum and colon samples were collected and stored at −80 ◦C.

2.3. Growth Performance

All pigs were weighed on the first and the 21st day of the experiment, and the feed
intake was calculated daily. The average daily gain (ADG), average daily feed intake
(ADFI), and feed-to-gain ratio (F/G) were subsequently calculated.

2.4. Serum Biochemical Index

The levels of glucose (GLU), triglycerides (TG), cholesterol (CHO), total protein (TP),
albumin (ALB), blood urea nitrogen (BUN), alkaline phosphatase (ALP), alanine amino-
transferase (ALT) and aspartate aminotransferase (AST) were determined using an auto-
matic biochemical analyzer (Cobas311, F. Hoffmann-La Roche Ltd., Basel, Switzerland). The
kits used for the determination of the above indicators were purchased from Roche, Switzer-
land. Serum levels of immunoglobulin M (IgM, ab190537, Pig, Abcam, Wuhan, China),
immunoglobulin G (IgG, KA2016, Pig, Abnova, Wuhan, China), and immunoglobulin
A (IgA, ab190536, Pig, Abcam, Wuhan, China) in serum were determined by enzyme-
linked immunosorbent assay. The operation steps strictly followed the manufacturer’s
instructions.

2.5. Serum Amino Acids

Approximately 2 mL of blood was centrifuged for 5 min at 3000 rpm to separate
the solids. The supernatant (1 mL) was added to 1 mL of 8% sulfosalicylic acid. The
mixture was incubated for 15 min and centrifuged at 3000 rpm for 20 min. Amino acid
concentrations were measured using an automatic amino acid analyzer (L-8800A; Hitachi,
Tokyo, Japan).

2.6. Jejunal Morphology

After dissection, 1–2 cm of intestinal tissue from the middle jejunum of pigs was ex-
cised, digested, fixed in 4% paraformaldehyde solution and gradually dehydrated with an
ethanol gradient of 75%→ 85%→ 95%→ 100%→ 100%. Samples were then cleaned with
xylene, embedded in paraffin, processed into sections and stained with hematoxylin and
eosin (HE). A positive fluorescence microscope (DM4000B, Leica Microsystems, Germany)
was used to measure the villus height and crypt depth to subsequently calculate the villus
height/crypt depth ratio.

2.7. Serum Antioxidant Indicators

One milliliter of serum was centrifuged at 3000 rpm for 15 min and the supernatant
was drawn for the determination of antioxidant indices. The kits from Nanjing Jiancheng
Bioengineering Institute (A001-3-2; A007-1-1; A015-1-2; A003-1-1; A044-1-1; Nanjing, China)
were used for the detection of SOD, MDA, catalase (CAT), total antioxidant capacity (T-
AOC) and myeloperoxidase (MPO).

2.8. Fluorescence Quantitative Detection of the Jejunum and Colon

RNA was extracted from jejunum and colon tissues using the Trizol kit (Invitrogen,
Carlsbad, ON, Canada). RNA concentrations (ng/UL) and the A260/A280 ratio were
recorded using a NanoDrop Spectrophotometer (NanoDrop, Wilmington, NC, USA). Ac-
cording to the study by Roy et al. [21], RNA was reverse transcribed into cDNA after
passing the integrity test, and was used as a template for real-time quantitative polymerase
chain reaction (PCR) detection with the Takara reverse transcription kit. The PCR was
performed under the following conditions: 95 ◦C for 30 s, denaturation at 95 ◦C for 5 s,
annealing at 51–60 ◦C for 30 s, and a total of 40 cycles. Finally, a 20 µL reaction system was
used for fluorescence quantification. Quantitative gene and primer sequences are shown in
Table 2.
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Table 2. The sequences of the primers used for quantitative real-time polymerase chain reac-
tion (PCR).

Gene Accession No. Primer 5′–3′ Size (bp) Tm ◦C

CuSOD NM_001190422.1
F:CAGGTCCTCACTTCAATCC

255 54.89R:CCAAACGACTTCCACCAT

MnSOD NM_214127.2
F:GGACAAATCTGAGCCCTAACG

159 58.72R:CCTTGTTGAAACCGAGCC

GPX1 NM_214201.1
F:TGGGGAGATCCTGAATTG

184 53.05R:GATAAACTTGGGGTCGGT

GPX4 NM_214407.1
F:GATTCTGGCCTTCCCTTGC

173 58.5R:TCCCCTTGGGCTGGACTTT

ZO-1 XM_021098827.1
F:CCTGCTTCTCCAAAAACTCTT

252 56.35R:TTCTATGGAGCTCAACACCC

Claudin1 NM_001244539.1
F:AAGGACAAAACCGTGTGGGA

247 59.74R:CTCTCCCCACATTCGAGATGATT

Occludin NM_001163647.2
F:ACGAGCTGGAGGAAGACTGGATC

238 63.63R:CCCTTAACTTGCTTCAGTCTATTG

IL-2 NM_213861.1
F:TGCACTAACCCTTGCACTCA

100 59.53R:CAACTGTAAATCCAGCAGCAA

IL-4 NM_214123.1
F:CCCAACTGATCCCAACCCTG

139 60.32R:AGCTCCATGCACGAGTTCTT

IL-8 NM_213867.1
F:TGAGAAGCAACAACAACAGCA

129 58.91R:CAGCACAGGAATGAGGCATA

IL-10 NM_214041.1
F:GGGCTATTTGTCCTGACTGC

105 58.62R:GGGCTCCCTAGTTTCTCTTCC
Abbreviations used: CuSOD: Cu-SOD; MnSOD: Mn-SOD; GPX1: glutathione peroxidase 1; GPX4: glutathione
peroxidase 4; ZO-1: zonula occludens-1; IL-2: interleukin-2; IL-4: interleukin-4; IL-8: interleukin-8; IL-10:
interleukin-10.

2.9. Western Blotting Analysis

Relative protein levels of CuSOD, MnSOD, GPX1, GPX4, ZO-1, Claudin-1, Occludin,
IL-2, IL-8, and IL-10 in the jejunum were determined using western blotting. Colon samples
were collected and the protein expression of CuSOD, MnSOD, GPX1, GPX4, IL-2, IL-8
and IL-10 was determined [22]. The resultant signals were obtained using Quantity One
software (Bio-Rad, Hercules, CA, USA). Primary antibodies were used as follows: CuSOD
(1:50000; ab51254, Rabbit, Abcam, UK), MnSOD (1:1000; ab68155, Rabbit, Abcam, UK),
GPX1 (1:1000; bs-3882R, Rabbit, Bioss, Beijing, China), GPX4 (1:1000; 14432-1-AP, Rabbit,
Proteintech, Rosemont, IL, USA), ZO-1 (1:3000; 21773-1-AP, Rabbit, Proteintech, USA),
Occludin (1:1000; ab167161, Rabbit, Abcam, UK), Claudin1 (1:500; ab15098, Rabbit, Abcam,
UK), IL-2 (1:2000; ab92381, Rabbit, Abcam, UK), IL-8 (1:2000; ab110727, Rabbit, Abcam,
UK), IL-10 (1:1000; 20850-1-AP, Rabbit, Proteintech, USA) and Actin (1:5000; 66009-1-Ig,
Mouse, Proteintech, USA).

2.10. Statistical Analysis

The pigs were treated with the independent variables cysteamine and diquat, and
explored their effects on various indicators. All data are shown as the mean ± standard
error of mean (SEM) and were analyzed using one-way ANOVA (SPSS 21.0, SPSS Inc.,
Chicago, IL, USA). Duncan’s method was used for multiple comparisons. A value of
p < 0.05 indicates statistical significance, and 0.05 < p < 0.1 indicates a decreasing or
increasing trend.

3. Results
3.1. Growth Performance

Pigs’ weight increased during the test period (p < 0.05), and the control group had
the highest final weight, followed by the Cys + diquat group and the lowest in the diquat
group (Table 3). We found that there were no significant differences in ADG, ADFI and
F/G among the three groups on 1–7 days and 8–14 days (p > 0.05). The ADG and ADFI in
the diquat group were significantly lower than those in the control group on 15–21 days
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(p < 0.05), but there was no difference between the diquat group and the Cys + diquat
group (p > 0.05).

Table 3. Effects of dietary supplementation of coated cysteamine on growth performance of pigs
induced by diquat.

Items Control Diquat Cys + Diquat p Value

Initial weight kg 9.04 ± 0.50 9.04 ± 0.43 9.16 ± 0.23 0.819
Final weight kg 16.64 ± 0.78 a 14.54 ± 1.18 b 15.83 ± 1.38 a 0.010

1–7 days
ADG kg/d 0.42 ± 0.11 0.37 ± 0.05 0.40 ± 0.06 0.420
ADFI kg/d 0.70 ± 0.08 0.74 ± 0.07 0.72 ± 0.06 0.842

F/G 1.71 ± 0.26 1.92 ± 0.29 1.88 ± 0.16 0.164
8–14 days

ADG kg/d 0.36 ± 0.04 0.37 ± 0.05 0.33 ± 0.05 0.822
ADFI kg/d 0.71 ± 0.06 0.73 ± 0.06 0.70 ± 0.09 0.411

F/G 1.93 ± 0.20 2.00 ± 0.24 2.08 ± 0.65 0.113
15–21 days

ADG kg/d 0.36 ± 0.05 a 0.16 ± 0.15 b 0.24 ± 0.04 b 0.040
ADFI kg/d 0.59 ± 0.04 a 0.45 ± 0.16 b 0.52 ± 0.06 ab 0.022

F/G 1.49 ± 0.52 2.16 ± 0.64 1.76 ± 1.36 0.371
Note: ADG: average daily gain; ADFI: average daily feed intake; F/G: feed-to-gain ratio. Results are expressed as
means ± SEM (n = 8). Means in the same row with different letters were significantly different (p < 0.05).

3.2. Serum Biochemical Index

The control and Cys + diquat groups showed marked decreased (p < 0.05) in the
content of ALB and GLU but increased (p < 0.05) levels of ALT and ALP compared to the
diquat group (Table 4). The TP content in the Cys + diquat group was the lowest among
the three group (p < 0.01). Serum IgA levels (p < 0.05) were lower in the diquat and Cys +
diquat groups. Compared to the diquat group, the control and the Cys + diquat groups
had higher (p < 0.05) serum IgG levels.

Table 4. Effects of dietary supplementation of coated cysteamine on serum biochemical indexes of
pigs induced by diquat.

Items Control Diquat Cys + Diquat p Value

TP g/L 61.92 ± 1.91 a 62.14 ± 1.45 a 55.47 ± 2.98 b <0.001
ALB g/L 32.00 ± 2.00 b 36.98 ± 4.89 a 28.68 ± 1.85 b 0.002
ALT U/L 61.15 ± 15.21 a 35.86 ± 6.44 b 61.97 ± 2.48 a 0.001
AST U/L 67.67 ± 13.65 63.20 ± 32.71 57.83 ± 9.41 0.704
ALP U/L 495.83 ± 40.45 a 319.20 ± 65.98 b 470.33 ± 163.18 a 0.036

CHOL mmol/L 2.91 ± 0.22 2.94 ± 0.40 2.49 ± 0.49 0.118
TG mmol/L 0.64 ± 0.12 0.62 ± 0.22 0.57 ± 0.12 0.711

GLU mmol/L 3.90 ± 1.38 b 5.62 ± 0.40 a 3.63 ± 1.03 b 0.016
BUN mmol/L 3.13 ± 0.96 3.26 ± 0.50 3.23 ± 0.48 0.949

IgA µg/mL 796.84 ± 22.31 a 514.42 ± 161.75 b 583.16 ± 118.98 b 0.033
IgG µg/mL 8437.97 ± 943.92 a 6158.59 ± 907.82 b 7697.12 ± 738.59 a 0.001
IgM µg/mL 489.73 ± 107.78 396.12 ± 104.85 449.36 ± 90.26 0.304

Note: TP: total protein; ALB: albumin; ALT: alanine aminotransferase; AST: aspartate aminotransferase; ALP:
alkaline phosphatase; CHOL: cholesterol; TG: triglycerides; GLU: glucose; BUN: blood urea nitrogen; IgA:
immunoglobulin A; IgG: immunoglobulin G; IgM: immunoglobulin M. Results are expressed as means ± SEM
(n = 8). Means in the same row with different letters were significantly different (p < 0.05).

3.3. Serum Amino Acids

The results for the serum amino acids are shown in Table 5. The Cys + diquat group
and the control group markedly increased (p < 0.05) the contents of Ser and Ile, and
decreased (p < 0.05) the Asp content compared with the diquat group. The content of
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glycine (Gly) decreased (p < 0.05) in the Cys + diquat group compared to that in the
control group.

Table 5. Effect of dietary supplementation of coated cysteamine on serum amino acids in pigs
induced by diquat.

Items (µg/mL) Control Diquat Cys + Diquat p Value

Essential Amino
Lys 12.61 ± 2.34 10.78 ± 1.69 11.04 ± 0.97 0.225
Phe 4.14 ± 0.51 3.69 ± 0.42 3.43 ± 0.65 0.115
Thr 5.72 ± 1.00 5.00 ± 1.66 5.14 ± 0.96 0.591
Val 9.10 ± 1.72 8.24 ± 1.29 7.14 ± 1.49 0.145
Met 1.29 ± 0.32 1.04 ± 0.19 1.03 ± 0.33 0.274
His 1.00 ± 0.25 1.27 ± 0.37 0.80 ± 0.23 0.065
Ile 6.01 ± 1.27 a 4.39 ± 0.65 b 5.83 ± 0.99 a 0.046

Leu 8.50 ± 1.71 7.83 ± 0.87 7.62 ± 1.71 0.607
Tyr 4.58 ± 0.65 4.19 ± 0.88 4.39 ± 0.87 0.730

Non-essential Amino
Glu 12.82 ± 4.02 14.91 ± 2.38 11.78 ± 1.54 0.272
Arg 8.70 ± 2.18 9.43 ± 2.31 8.28 ± 1.68 0.684
Ser 7.35 ± 0.97 a 5.61 ± 0.49 b 7.47 ± 0.48 a 0.002
Asp 0.70 ± 0.17 a 1.03 ± 0.38 b 0.62 ± 0.14 a 0.045
Ala 17.97 ± 3.48 21.30 ± 2.61 18.27 ± 2.89 0.191
Gly 41.26 ± 5.51 a 37.09 ± 4.90 ab 32.37 ± 4.93 b 0.043
Cys 3.84 ± 0.55 3.46 ± 0.56 3.25 ± 0.77 0.314
Pro 8.29 ± 0.89 8.26 ± 0.39 7.76 ± 0.25 0.320

Note: Lys: lysine; Phe: phenylalanine; Thr: threonine; Val: valine; Met: methionine; His: histidine; Ile: isoleucine;
Leu: leucine; Tyr: tyrosine; Glu: glutamic acid; Arg: arginine; Ser: serine; Asp: aspartic acid; Ala: alanine; Gly:
glycine; Cys: cysteine; Pro: proline. Results are expressed as means ± SEM (n = 8). Means in the same row with
different letters were significantly different (p < 0.05).

3.4. Jejunal Morphology

As shown in Figure 1, the distribution of villus in the Cys + diquat group is tighter
than that of the other two groups, and the shape of villus is more complete. As shown in
Table 6, the diquat group showed a decline (p < 0.05) in villus height and V/C in the pigs
jejunum compared with the control group. There were no significant changes among the
Cys + diquat group and the other two groups.
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Figure 1. Effects of dietary supplementation of coated cysteamine on jejunal morphology (HE × 40) in pigs induced by
diquat. (a) Control group; (b) Diquat group; (c) Cys + diquat group. Scale bar: 200 µm.
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Table 6. Effects of dietary supplementation of coated cysteamine on jejunal morphology of pigs
induced by diquat.

Items Control Diquat Cys + Diquat p-Value

Villous height, µm 458.99 ± 32.02 a 362.99 ± 66.59 b 424.23 ± 66.36 ab 0.060
Crypt depth, µm 202.09 ± 17.79 206.93 ± 32.97 200.66 ± 13.77 0.904

Villous height/Crypt depth 2.43 ± 0.27 a 2.02 ± 0.25 b 2.12 ± 0.23 ab 0.056
Note: Results are expressed as means ± SEM (n = 8). Means in the same row with different letters were
significantly different (p < 0.05).

3.5. Serum Antioxidant Index

As presented in Table 7, the Cys + diquat group showed increased SOD activity com-
pared to the control and diquat group (p < 0.05). However, no significant difference in the
serum antioxidant indices (p > 0.05) was observed between the diquat and control groups.

Table 7. Effect of dietary supplementation of coated cysteamine on the serum antioxidant indexes of
pigs induced by diquat.

Items Control Diquat Cys + Diquat p-Value

MPO ng/g 1573.89 ± 799.26 1773.90 ± 566.79 1044.81 ± 112.82 0.168
CAT U/mg prot 0.13 ± 0.11 0.11 ± 0.09 0.18 ± 0.02 0.503
SOD U/g prot 12.46 ± 7.69 b 11.17 ± 7.47 b 37.35 ± 22.28 a 0.016

MDA nmol/g port 3.14 ± 3.22 5.95 ± 4.33 2.82 ± 2.01 0.287
T-AOC U/g 0.63 ± 0.16 0.88 ± 0.25 0.75 ± 0.09 0.112

Note: MPO: myeloperoxidase; CAT: catalase; SOD: superoxide dismutase; MDA: malondialdehyde; T-AOC: total
antioxidant capacity. Results are expressed as means ± SEM (n = 8). Means in the same row with different letters
were significantly different (p < 0.05).

3.6. Relative Cytokine mRNA Levels in the Jejunum and Colon

The expression levels of related genes in the jejunum and colon are shown in Figure 2.
Compared with the diquat group, coated cysteamine supplementation remarkably up-
regulated CuSOD mRNA expression (p < 0.05) and tended to increase (0.05 < p < 0.1) the
relative expression of ZO-1 and Occludin mRNA in the pigs jejunum (Figure 2a). The
mRNA levels of IL-4 in the Cys + diquat and diquat groups were lower (p < 0.05) than
those in the control group, but did not differ between the Cys + diquat and diquat groups
(p > 0.01). The expression level of IL-8 was higher (p < 0.05) in the diquat group than in the
control group.

In the colon, the Cys + diquat group showed a remarkable increase (p < 0.05) in the
expression of IL-10 mRNA and tended towards an increase (0.05 < p < 0.1) in the expression
of CuSOD mRNA in comparison to that in the diquat group (Figure 2b). Decreased
Claudin1 mRNA levels (p < 0.05) in the colon were observed in the Cys + diquat, and
diquat groups. The mRNA expression of GPX1 and IL-2 were significantly decreased
(p < 0.05) in the diquat group compared with the control group.
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3.7. Expression Levels of Cytokines in the Jejunum and Colon

To evaluate the effect of coated cysteamine, the protein expression levels of these
cytokines in the jejunum and colon are described in Figure 3. Compared with the diquat
group, the protein expression of CuSOD, MnSOD, GPX1, GPX4, ZO-1, Occludin, Claudin1,
IL-2, and IL-10 was remarkably reduced (p < 0.05) in the Cys + diquat group, whereas
the expression of these cytokines was markedly increased in comparison with the control
group (Figure 3a). IL-8 protein expression in the jejunum of the control group was higher
than that in the diquat group.

The expression levels of the CuSOD, MnSOD, GPX1, GPX4, IL-2, and IL-10 proteins in
the Cys + diquat group were lower than those in the diquat group (p < 0.05) and higher
than those in the control group (p < 0.05) (Figure 3b). The corresponding protein levels of
IL-8 in the control and Cys + diquat groups were upregulated (p < 0.05) compared to the
diquat groups.
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4. Discussion

Cysteamine has activated sulfhydryl and amino groups, which can specifically bind
to the disulfide bond of somatostatin (SS), thereby destroying the biological activity of SS,
depleting SS in the body, and releasing the inhibitory effect of SS in regulating the body’s
anabolism, thus promoting animal growth [23]. A promoting effect on the growth of pigs,
finishing pigs and fish has been reported in previous studies [24,25]. Experiments by Du
et al. [24] proved that dietary cysteamine supplementation significantly enhanced the feed
intake and weight of pigs. Zhu et al. [26] indicated that dietary supplementation with
cysteamine-chelated zinc remarkably increased the ADG of pigs and reduced the F/G
ratio. When the pigs were added with diquat, we observed negative consequences such as
malaise, diarrhea, loss of appetite and decreased activity. In this study, diquat challenge
significantly reduced the ADG and ADFI of pigs, and reduced pigs final weight, while the
Cys + diquat group showed a significant improvement in this trend, indicating that coated
cysteamine addition could alleviate the decline in growth performance caused by diquat.

We speculate that coated cysteamine can alleviate the impairment in growth per-
formance of diquat-induced pigs by improving their antioxidant and anti-inflammatory
abilities. Immunoglobulin is an important factor in building the body immunity [27]; IgA
eliminates antigen-induced inflammation through specific binding with antigens [28], IgG
plays an immune role through antigen-antibody binding [29], and IgM plays an immune
response by activating complement proteins in the body [30]. Zhou et al. [31] found that
cysteamine supplementation greatly increased IgA, IgG, and IgM in the jejunal mucosa of
finishing pigs. Different levels of cysteamine-chelated zinc increased the levels of serum
IgA, IgG, and TP in nutrition-restricted pigs but had no significant effect on the level
of serum IgM [32]. In the present study, the contents of IgA and IgG were significantly
reduced in the diquat group, while the Cys + diquat group exhibited increased levels of
IgA, IgG, and IgM, indicating that supplementation with coated cysteamine could promote
the synthesis of immunoglobulin, improve the body’s immunity and alleviate the damage
caused by diquat.
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Liu et al. [33] reported that cysteamine improved pigs growth performance and protein
deposition as a feed additive. Growth hormone (GH) can strengthen the intussusception
of amino acids (AA), increase the mRNA abundance of AA transporters in the small in-
testine, and enhance the AA transporter system in the small intestine or cultured primary
human trophoblast cells under the interaction of insulin-like growth factor-1 (IGF-1) [34,35].
Dietary supplementation with cysteamine increased the levels of GH and IGF-1 in the
body [36]; thus, it could be assumed that the beneficial effect of cysteamine on the AA
transporter was achieved by increasing the body’s GH and IGF-1 concentrations. Cys-
teamine supplementation significantly enhanced the concentrations of cysteine, cystine,
and ornithine, and tended to increase the concentrations of essential amino acids (EAA),
and Gly [37]. The results of the present study showed that coated cysteamine supplementa-
tion resulted in an increase in the contents of Ser and Ile, and reduced the contents of Asp,
but the underlying mechanism is still unclear. Therefore, in-depth verification of amino
acid transporters should be carried out in the future.

Oxidative stress and inflammation constitute the body’s main defense network, which
helps cells survive the stress caused by biochemical, physiological, and pathological stim-
uli [38,39]. Oxidative stress regulates mitogen-activated protein kinase, extracellular regula-
tory protein kinase, nuclear factor κ-B (NF-κB), and other signaling pathways by acting on
different products, and acts as a “secondary messenger” in the inflammatory response [40].
The main antioxidant enzymes in biological systems such as SOD, glutathione peroxidase
(GSH-Px) and CAT can eliminate ROS [41]. The superoxide free radical is converted to
H2O2 by SOD, which is considered to be the first line of defense against cell damage caused
by oxygen-free radicals [42]. Diquat treatment reduced the concentrations of serum SOD,
CAT, and T-AOC and significantly enhanced the content of MDA [43]. Zhou et al. [31]
stated that cysteamine increased the levels of glutathione (GSH) and GSH-Px in pigs,
while decreasing the content of MDA. Cysteamine supplementation increased the activ-
ity of antioxidant enzymes and the level of GSH to improve the antioxidant status and
delay the discoloration of pork [13]. Therefore, it can be demonstrated that cysteamine
relieves the oxidative stress state of cells by increasing SOD and GSH in cell tissues and
its free sulfhydryl group [44]. Liu et al. [45] found that cysteamine reduced the increase
in serum TNF-α, IL-1β, and IL-6 levels caused by Clostridium perfringens. The results of
the present study showed that coated cysteamine remarkably ameliorated the increase in
ALB content and decrease in SOD activity, ALP content, and expression of IL-10 mRNA in
the colon caused by diquat. The results indicated that coated cysteamine could enhance
immunity and mitigate oxidative stress and inflammation by enhancing the activity of
antioxidant enzymes.

The intestinal barrier is a physical barrier composed of a variety of intestinal epithelial
cells and cell tight junction complexes, which protect the intestine from damage [46]. The
transmembrane proteins Occludin, claudin family, and connexins such as ZO-1, which are
important components of tight junctions, are crucial in maintaining intestinal health and
integrity [47,48]. In addition, abnormal expression or structural failure of these important
proteins damages the intestinal barrier function, resulting in increased intestinal wall per-
meability [49]. Zhou et al. [31] studied the effect of cysteamine on tight junctions for the
first time and showed that cysteamine remarkably increased the expression of Occludin,
claudin, and ZO-1 mRNA in the jejunal mucosa, indicating that dietary cysteamine sup-
plementation is conducive to the integrity of the intestinal barrier. Yang et al. [50] showed
that cysteamine exacerbated the proliferation of immune cells to boost intestinal mucosal
immune functions. When diquat was challenged, it significantly reduced the villus height
and the V/C [51], in accordance with the conclusion of this study. At the same time, we
found that Occludin, claudin, and ZO-1 mRNA expression in the jejunum of the Cys +
diquat group were improved compared to those in the diquat group. This indicates that
dietary supplementation with coated cysteamine could improve the intestinal morphology
and intestinal barrier function, which reflects the alleviation of inflammation [52].
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5. Conclusions

This study reported that dietary supplementation with coated cysteamine increased
immunoglobulin levels, regulated the mRNA expression of intestinal immune factors to
improve jejunal barrier function, and alleviate oxidative stress and inflammation induced
by diquat. The above findings provide a theoretical basis for the application of coated
cysteamine as a new type of antioxidant feed additive in pigs diets. The effect of coated
cysteamine on intestinal microbes and its mechanism needs to be further studied.
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