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Despite the widely recognized prevalence of gastric, colonic, and anorectal dysfunction
after spinal cord injury (SCI), significant knowledge gaps persist regarding the mechanisms
leading to post-SCI gastrointestinal (GI) impairments. Briefly, the regulation of GI function
is governed by a mix of parasympathetic, sympathetic, and enteric neurocircuitry. Unlike
the intestines, the stomach is dominated by parasympathetic (vagal) control whereby
gastric sensory information is transmitted via the afferent vagus nerve to neurons of the
nucleus tractus solitarius (NTS). The NTS integrates this sensory information with signals
from throughout the central nervous system. Glutamatergic and GABAergic NTS neurons
project to other nuclei, including the preganglionic parasympathetic neurons of the dorsal
motor nucleus of the vagus (DMV). Finally, axons from the DMV project to gastric
myenteric neurons, again, through the efferent vagus nerve. SCI interrupts descending
input to the lumbosacral spinal cord neurons that modulate colonic motility and evacuation
reflexes. In contrast, vagal neurocircuitry remains anatomically intact after injury. This
review presents evidence that unlike the post-SCI loss of supraspinal control which
leads to colonic and anorectal dysfunction, gastric dysmotility occurs as an indirect or
secondary pathology following SCI. Specifically, emerging data points toward diminished
sensitivity of vagal afferents to GI neuroactive peptides, neurotransmitters and, possibly,
macronutrients. The neurophysiological properties of rat vagal afferent neurons are highly
plastic and can be altered by injury or energy balance. A reduction of vagal afferent
signaling to NTS neurons may ultimately bias NTS output toward unregulated GABAergic
transmission onto gastric-projecting DMV neurons. The resulting gastroinhibitory signal
may be one mechanism leading to upper GI dysmotility following SCI.
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INTRODUCTION
The association of gastrointestinal (GI) pathology with neurolog-
ical trauma dates back to the mid-nineteenth century observa-
tions of Rokitansky and subsequent descriptions by Schiff [both
cited by Cushing (1932)]. Gastric stasis and ulceration, com-
monly known as “Cushing’s ulcer,” associated with severe trauma
has been repeatedly described in the clinical literature in the 80
years since Harvey Cushing’s original report. Regardless of the
nature of the original traumatic insult, the absence of abnormal
GI motility is a strong predictor of patient outcome and length of
hospitalization.

Roughly 11,000 new spinal cord injury (SCI) cases occur each
year and the current United States SCI population has been esti-
mated as high as 1.2 million people (The Christopher and Dana
Reeve Paralysis Resource Center). In addition to the immediate
loss of sensation and motor function, SCI also profoundly affects
the autonomic nervous system (Weaver et al., 2006; Inskip et al.,
2009; Krassioukov, 2009). While attention to autonomic dysfunc-
tion has increased in recent years, studies targeting cardiovascular
and bladder dysfunction outnumber those of GI dysfunction.
While the former derangements present formidable challenges
to the SCI individual, GI complications are typically responsi-
ble for 11% of hospitalizations in the SCI population (Middleton

et al., 2004; Jaglal et al., 2009) and are consistently rated as serious
quality of life issues (Anderson, 2004).

Functional GI motility disorders present as a broad range of
symptoms which include delayed gastric emptying, early satiety
and the sensation of nausea, bloating, abdominal pain and dimin-
ished propulsive transit along the entire length of the GI tract.
Due to the segmental distribution of the spinal neurocircuitry
regulating both visceral preganglionic and somatic motor neu-
rons, the degree of disability, morbidity, and mortality following
injury tends to be associated with the spinal level at which injury
occurred.

Conventional division of the GI tract into designations of
upper and lower compartments remains open to debate. Based
upon embryological development, the GI tract can be classi-
fied along three divisions consisting of (1) the foregut, which
gives rise to the esophagus, stomach, and duodenum as far as
the major duodenal papilla; (2) the midgut, from where the bile
duct enters at the major duodenal papilla to the mid-transverse
colon; and (3) the hindgut, from the mid-transverse colon to
the anus. For the present purposes of this review, the upper GI
tract is defined as the esophagus, stomach and proximal duode-
num. The scope of this review precludes discussion of post-SCI
pathologies along the entire GI tract. This is especially true for
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the intestines and rectoanal junction, since the loss of descending
input to the sympathetic, parasympathetic, and pudendal nuclei
located throughout the thoracic, lumbar, and sacral spinal cord
presents a pattern of neural control that is fundamentally different
from upper GI innervation.

NEURAL CONTROL OF UPPER GASTROINTESTINAL FUNCTION
The principal nutritive functions of the GI tract, the digestion,
absorption and propulsion of nutrients, and the maintenance of
proper fluid balance, are critically dependent upon a hierarchy of
enteric, parasympathetic and sympathetic neural control.

The enteric nervous system (ENS) provides powerful control
over the smooth musculature, secretory glands and microvascu-
lature of the digestive tract [reviewed in Woods (2004)]. This
so-called “mini-brain” of the gut is comprised of primary affer-
ent neurons, interneurons, and efferent neurons that are capable
of complete reflex activities and quasi-autonomous control of
digestion. The ENS mediates digestion through localized control
over the individual reflex systems and by integrating the actions
of these effectors along the GI tract into organized patterns of
digestion. Without this localized autonomous control, proper
digestive processes do not occur (De Giorgio and Camilleri,
2004). However, while the intrinsic reflexes necessary for proper
intestinal function are mediated by the ENS, these digestive pro-
cesses must ultimately integrate with the homeostatic needs of the
entire organism through brain-gut connections.

Unlike the small and large intestines, the ENS of the stom-
ach lacks the capacity to independently control the moment-
to-moment changes necessary for appropriate ingestive, milling,
and emptying reflexes. While vago-vagal reflex circuits modulate
digestive processes from the oral cavity to the transverse colon,
the level of vagal control diminishes caudally. Gastric function is
dominated by extrinsic neural circuits residing within the brain-
stem that modulate the gastric ENS neurocircuitry. Specifically,
the extrinsic brainstem integration of gastric reflex function is
centered within circuits of the dorsal vagal complex (DVC), which
comprises the area postrema (AP), the nucleus tractus solitar-
ius (NTS) and the dorsal motor nucleus of the vagus (DMV;
Figure 1) (Travagli et al., 2006). The integrative activity that
occurs within the DVC nuclei is the result of inputs originat-
ing from higher central nervous system (CNS) areas (Blevins
et al., 2004; Morton et al., 2005; Blevins and Baskin, 2010); from
spinosolitary inputs (Menetrey and Basbaum, 1987; Menetrey
and de Pommery, 1991; Gamboa-Esteves et al., 2001) as well
as from neurohormonal signals from the periphery. This latter-
most signaling pathway occurs as a function of the fenestrated
capillaries within the DVC that permit diffusion of circulating
neuromodulators across a “leaky” blood brain barrier (Gross
et al., 1990). All of these signals finely tune the coordinated
emptying of nutrients from the stomach.

VAGAL AFFERENT SIGNALING
Details regarding the sensory innervation of the gut have been
reviewed previously (Beyak et al., 2006). Briefly, the cell bodies
of vagal afferent (sensory) fibers, including those that inner-
vate the proximal GI tract, are located within the nodose gan-
glion (Browning and Mendelowitz, 2003). Afferent information

FIGURE 1 | General visceral afferent signals are transmitted to the

brainstem by afferent fibers distributed throughout the proximal GI

tract that traverse within the vagus nerve. The dashed line arbitrarily
indicates the transition between the fundus (orally) and the corpus
(caudally). The cell bodies for these vagal afferents reside within the nodose
ganglion. Vagal afferents enter the brainstem by way of the tractus
solitarius (ts) and terminate principally as a glutamatergic (Glu) synapse
onto second order neurons within the nucleus tractus solitarius (NTS).
At the level of the NTS, converging projections from higher CNS centers
(not pictured) are integrated and relayed by NTS neurons to regions which
include the parasympathetic preganglionic neurons of the dorsal motor
nucleus of the vagus (DMV) using the neurotransmitters GABA, glutamate
or norepinephrine (NE). Together with the area postrema (AP) the NTS and
DMV form the region of the dorsal vagal complex. Preganglionic DMV
motor neurons innervate gastric enteric neurons by way of two competing
pathways. Activation of one pathway initiates the cholinergic (Ach)
mediated excitation of gastric smooth muscle which is necessary for
gastric tone and motility. Alternatively, activation of a non-adrenergic,
non-cholinergic (NANC) pathway exerts a profound gastric relaxation
through the release of nitric oxide (NO) or vasoactive intestinal
polypeptide (VIP). Reduction in gastric tone and motility, therefore, can be
produced by either the withdrawal of excitatory cholinergic drive, or
activation of NANC-mediated inhibition.

originating in the gut terminates directly upon second order NTS
neurons by way of a glutamatergic synapse (Hornby, 2001). These
GI afferents can be categorized based upon two essential receptor
qualities. Mechanosensitive receptors in the form of intragan-
glionic laminar endings (IGLEs; Powley and Phillips, 2002) and,
possibly, intramuscular arrays (IMAs) (Berthoud and Powley,
1992) innervate the muscle layers in a manner consistent for
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the transduction of contractile and shearing forces (Powley and
Phillips, 2002). Vagal IGLE innervation is densest in the esopha-
gus and proximal-most portions of the GI tract (Berthoud et al.,
1997; Neuhuber et al., 1998; Wang and Powley, 2000) and viseral
sensory afferents terminate topographically within the subnu-
clei of the NTS (Altschuler et al., 1992). Specifically, esophageal
sensory receptors that include IGLE’s project exclusively to the
subnucleus centralis (NTSc) (Cunningham and Sawchenko, 1990;
Sengupta, 2000). As will be seen later, these exclusive esophageal
projections to the NTSc provide a very unique model of a pure
vago-vagal gastric reflex.

The second principal receptor classes are chemosensitive vagal
afferents, particularly those within the lamina propria and dis-
tributed throughout the villi, which have been described through-
out the GI mucosa (Berthoud et al., 1995). The specific response
characteristics, ligands, and signal transduction pathways uti-
lized by these vagal afferents are too extensive to be reviewed
herein. However, two particular examples of luminal signaling
have received considerable attention. One of the best charac-
terized peptides controlling gastric and digestive functions is
cholecystokinin (CCK), which is released from so-called I-cells
within the proximal small intestine in response to fat or protein
content of a meal (Dockray, 2006). CCK release has profound
inhibitory effects on GI functions (Ritter et al., 1994; Moran and
Kinzig, 2004; Woods, 2004), and its vagal mechanisms of action
commonly ascribed to include a paracrine activation of vagal
afferent fibers along the gut wall [reviewed in Raybould (2007)].

The GI neurohormone ghrelin, secreted from oxyntic cells
within the gastric mucosa (Date et al., 2000; Grönberg et al.,
2008), is up-regulated during periods of negative energy bal-
ance, such as before meals, and is down-regulated after feeding
(Cummings et al., 2001). In animals and humans, ghrelin and
ghrelin agonists exert profound stimulatory effects upon gastric
motility and acid secretion as well as food intake and energy
metabolism (Masuda et al., 2000; Levin et al., 2006; Tack et al.,
2006; Ariga et al., 2007, 2008; Wang et al., 2008; Ejskjaer et al.,
2009; Kobashi et al., 2009) though an inhibitory effect has been
reported for fundic tone (Kobashi et al., 2009). Ghrelin has
received considerable clinical interest as an endogenous stim-
ulant of gastric motility (Nass et al., 2011; Stengel and Taché,
2012). Peripherally, ghrelin is considered to exert its gastroexcita-
tory effect on a vagally-mediated pathway which involves growth
hormone secretagogue receptors that originate in the nodose
ganglion and are transported to vagal afferent terminals (Date
et al., 2002). The role of afferent fibers of the gastric vagal circuit
was confirmed physiologically in that peripherally administered
(i.e., circulating) ghrelin diminishes vagal afferent activity while
vagotomy, midbrain transection, or perivagal capsaicin abolishes
ghrelin-mediated facilitation of feeding, GH secretion, as well
as activation of neuropeptide Y (NPY)- and growth hormone-
releasing hormone (GHRH)-producing neurons (Date et al.,
2002, 2006).

Many of the effects of endogenous gut peptides are medi-
ated via a paracrine activation of the peripheral endings of vagal
afferent fibers as described above. However, based upon a large
body of work with CCK, mounting evidence has shown that
GI peptides exert physiologically relevant actions when applied

to central GI neurocircuitry (Talman et al., 1991; Branchereau
et al., 1992, 1993; Blevins et al., 2000, 2004; Lin et al., 2004;
Appleyard et al., 2005; Baptista et al., 2005b, 2006; Wan et al.,
2007; Kobashi et al., 2009) including direct actions upon nodose
ganglion (Blackshaw and Grundy, 1990; Simasko and Ritter,
2003), and DVC neurons (Baptista et al., 2005b; Zheng et al.,
2005; Holmes et al., 2009a,b). Similarly, ghrelin receptor expres-
sion has been reported within the medullary brainstem and
brainstem application of ghrelin exerts behavioral (Faulconbridge
et al., 2003), gastric (Kobashi et al., 2009) and cardiovascular
(Lin et al., 2004) responses. These studies suggest that func-
tional CCK and ghrelin receptors are present on the vagal afferent
terminals, the neuronal membrane and nerve terminals of sub-
groups of the NTS as well as on gastric-projecting DMV neurons.
The source of feeding-related peptides acting centrally upon
DVC neurocircuitry may be through local neuronal release or
through the circulation, since the DVC has a leaky blood-brain
barrier (Gross et al., 1990; Cottrell and Ferguson, 2004). The
exact mechanism of gut peptides activating these neural cir-
cuits within the DVC remains to be elucidated. However, the GI
effects of peptides such as CCK-8s (the sulfhated, octapeptide
variant of CCK) may not be limited to a paracrine activation
of the peripheral terminal of vagal afferent fibers but through
direct effects on brainstem circuits which must be considered
in physiological studies of neurally intact as well as injured
preparations.

VAGAL EFFERENT SIGNALING
With regard to the stomach, motor output originating in the
DMV regulates a complex interplay between two separate post-
ganglionic circuits. While a small percentage of visceral afferent
inputs modulate gastric reflex function by directly synapsing
onto DMV neurons (Renehan et al., 1995), the majority of
afferent signaling is directed to second order neurons within
the NTS through a glutamatergic synapse (see Browning and
Travagli, 2010). In turn, three distinct neurochemical phenotypes
(glutamatergic, GABAergic and noradrenergic) of NTS neurons
synapse onto DMV neurons. Emerging evidence following appli-
cation of GABAergic antagonists to the DVC, strongly suggests
that NTS GABAergic inputs onto DMV neurons tonically reg-
ulate the basal motor outflow to the stomach (Sivarao et al.,
1998; Browning and Travagli, 2001; Herman et al., 2009, 2010;
Babic et al., 2011), whereas glutamatergic and noradrenergic
antagonism has little effect (Saltzstein et al., 1995; Soret et al.,
2010).

As with all parasympathetic preganglionic neurons, DMV
neurons are cholinergic and activate postganglionic neurons via
actions at a nicotinic receptor. Gastric projecting neurons within
the DMV exhibit a basal rate of spontaneous action potentials
(1–2 Hz); (Travagli et al., 1991; Marks et al., 1993; Browning
et al., 1999) which is modulated, though not generated, by synap-
tic inputs beyond those described for the NTS. Modulation of
this spontaneous, low frequency DMV firing regulates an exci-
tatory (cholinergic) circuit that is ultimately important to the
antral milling of ingested solids and the delivery of reduced
particles to the duodenum (Malagelada and Azpiroz, 1989).
Gastric relaxation can occur as a consequence of inhibiting this
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tonically firing excitatory pathway (Abrahamsson and Jansson,
1969; Abrahamsson, 1973; Gillis et al., 1989; McCann and Rogers,
1992, 1994). However, activation of vagal afferents produces
a potent gastroinhibition by also activating a non-adrenergic
non-cholinergic (NANC) inhibitory vagal projection to the stom-
ach mainly by the release of nitric oxide (NO) (Jansson, 1969;
Abrahamsson, 1973; Takahashi and Owyang, 1997; Krowicki
et al., 1999) though purinergic, and vasoactive intestinal polypep-
tide mechanisms have also been identified [reviewed in Chang
et al. (2003)].

UPPER GI DYSFUNCTION AFTER HUMAN SCI
ESOPHAGEAL FUNCTION
The principal functions of the esophagus are centered on (1)
the propulsion of ingesta to the stomach; and (2) prevention of
gastroesophageal reflux of stomach contents. Esophageal motor
control is a complex interplay of proximal striated musculature
which is a combination of voluntary and reflexive control prox-
imally that progressively yields to involuntary smooth muscle
contractions distally.

Despite the clinical implications regarding the risk of aspira-
tion that accompanies esophagogastric reflux, such that intensive
management of the airway is also required (Kirshblum et al.,
2002), there are relatively few reports addressing esophageal func-
tion following SCI. Based upon barium contrast imaging, early
reports noted that the incidence of gastroesophageal reflux and
hiatal hernia were limited to persons with SCI greater than 5 years
duration (Gore et al., 1981). Later evidence, based upon sub-
ject questionnaire and endoscopic follow-up, reported a higher
incidence of heartburn and esophageal chest pain in SCI sub-
jects which was accompanied by endoscopic and histological
evidence of esophagitis as well as diminished esophageal con-
tractility (Stinneford et al., 1993). Diagnoses of dysphagia in
cervical SCI population confirmed these earlier reports, but
also identified the potential causal relationship between dys-
phagia and both artificial ventilation techniques (including tra-
cheotomy) as well as anterior versus posterior approaches during
spinal stabilization (Wolf and Meiners, 2003). Finally, to test the
role of diaphragmatic crura upon gastroesophageal reflux con-
tainment, comparisons have been made between quadriplegic
and paraplegic subjects. While cervical injury did significantly
increase subjective reflux ratings, high-level injury did not pre-
dispose subjects to differences in endoscopic, manometric, or
histological indications of esophagogastric abnormalities (Silva
et al., 2008). Thus, the prevalence and potential mechanism
of esophageal dysfunction after human SCI remains largely
unresolved.

GASTRIC FUNCTION
The principal functions of the stomach are centered on (1) a
reservoir component for ingested solids and liquids; (2) reduc-
tion of the size of food particles through both digestive secretions
and the mechanical milling evoked by gastric contraction and
relaxation; and (3) the feed-back mediated propulsion of ingesta
into the duodenum. The gastric compartment can be subdivided
into the fundus, which serves as reservoir and regulates intra-
gastric pressure, and the more muscular corpus where food is

churned until reduced in size in order for contraction of the
antrum to facilitate passage through the pylorus leading to the
duodenum.

Peptic ulceration has been reported following SCI (Tanaka
et al., 1979) and in other traumatic injuries requiring intensive
care. The prophylactic administration of proton pump inhibitors
or histamine-2 receptor antagonists is widely employed in the
ICU and may minimize this particular co-morbidity, though
debate remains whether such practices are justified (Jung and
MacLaren, 2002; Stollman and Metz, 2005). Less well charac-
terized, and managed, are alterations in the motor components
of gastric reflex function. Despite utilizing a variety of techni-
cal approaches, the majority of reports in the clinical literature
describe derangements in upper GI reflex emptying and motil-
ity, especially after SCI occurring above the mid-thoracic spinal
cord (Kewalramani, 1979; Berlly and Wilmot, 1984; Fealey et al.,
1984; Nino-Murcia and Friedland, 1991; Rajendran et al., 1992;
Stinneford et al., 1993; Segal et al., 1995; Kao et al., 1999; Williams
et al., 2012). In extreme cases, the high degree of gastric feeding
intolerance demonstrated by these patients necessitates aggressive
total parenteral nutrition and occasionally invasive GI surgical
intervention in order to maintain positive energy and nitrogen
balance (Dwyer et al., 2002).

The GI neurohormone ghrelin, previously described as being
secreted from oxyntic cells within the gastric mucosa (Date et al.,
2000; Grönberg et al., 2008), is up-regulated during periods of
negative energy balance, such as before meals, and is down-
regulated after feeding (Cummings et al., 2001). Recently, a study
of uninjured, paraplegic and quadriplegic individuals reported
no differences in levels of serum ghrelin across all groups fol-
lowing an overnight fast (Wang et al., 2005). Unfortunately, with
the exception of a study on eating attitudes (Levin et al., 2006),
clinical studies are lacking regarding the dietary behaviors of the
SCI population. In contrast to the able-bodied population, data
regarding the orexigenic and pro-motility responses to exogenous
ghrelin following SCI is non-existent.

PROXIMAL DUODENAL FUNCTION
The principal functions of the proximal duodenum include (1)
neutralization of acid in the chyme delivered from the stomach;
and (2) enzymatic reduction of particles to simple molecules for
absorption. Considerable feedback mechanisms exist between the
antrum, pylorus, and duodenum for the delivery of chyme in a
manner that does not exceed the digestive capacity of the small
intestine (Ueno et al., 2005; Schulze, 2006). As a result of nor-
mal exposure to both an appropriate composition of reduced
food particles and the rate of trans-pyloric delivery of chyme, the
duodenum releases GI peptides and hormones that are integral
to these feedback mechanisms (Dockray, 2006; Englander and
Greeley, 2008; Dockray and Burdyga, 2011).

Data regarding gut hormone levels in the SCI population
are scarce. Motilin, a 22-amino acid peptide released from the
upper intestine, stimulates gastric and intestinal myoelectric
activity during phase III contractions of the migrating myo-
electric complex of the interdigestive phase. Comparisons of
serum motilin levels in a limited sample of uninjured, para-
plegic and quadriplegic subjects revealed that motilin levels were
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largely similar across all three groups, though there was a trend
toward elevated motilin levels in the paraplegic group (Saltzstein
et al., 1995). Peptide YY (PYY) is a 36-amino acid peptide hor-
mone that is similar to GI peptides PP and NPY that is released
from epithelial cells within the ileum and colon. However, the
actions of circulating PYY target the upper GI as an “ileal brake”
whereby PYY potently diminishes gastric acid secretion, gastric
emptying, intestinal propulsion and pancreatic exocrine secre-
tion (Englander and Greeley, 2008). In this same study described
above, levels of PYY in chronic SCI individuals were similar in
the fasted state but were significantly elevated in the early post-
prandial state of quadriplegic subjects (Saltzstein et al., 1995).
The limited sample size and the absence of essential physio-
logical parameters, such as gastric emptying rates during the
postprandial serum measurements, limit the interpretation of
these findings and merit re-evaluation in a larger sample from the
SCI-population.

UPPER GASTROINTESTINAL DYSFUNCTION IN
EXPERIMENTAL MODELS OF SCI
Over the past 20 years, the SCI research community has gained a
clearer understanding of the interrelated cellular and biochem-
ical processes which comprise the aftermath of SCI; identified
the challenges for successful regeneration of damaged tissue; and
expended considerable intellectual capital upon the recovery of
stepping and standing after SCI. Unfortunately, post-SCI changes
to GI autonomic reflexes remain inadequately explored, however,
recent attention has been directed at derangements in GI function
in animal models of experimental SCI.

Published reports and our own preliminary observations in an
animal model of SCI have demonstrated striking similarities to

the clinical presentation of profound GI dysmotility in humans.
Expanding upon the initial reports that high thoracic spinal
transection delayed the emptying of a phenol red liquid test
meal (Gondim et al., 1999, 2001), we reported that T3-SCI ani-
mals show a diminished food intake (Primeaux et al., 2007).
Subsequent studies utilized an Inactin-anesthetized preparation
in which sub-miniature, dual-element, strain gauges were sutured
to the serosal surface of the gastric corpus, thus recording circular
smooth muscle contractions. We reported a significant reduc-
tion in gastric motility that was not altered by sympathectomy
(Tong and Holmes, 2009). Our results were in agreement with
earlier conclusions by Gondim et al. who concluded that post-
SCI dysmotility was vagally mediated (Gondim et al., 2001).
Furthermore, utilizing the [13C]-octanoate breath test see Ghoos
et al. (1993) as an indirect measure of gastric emptying in intact
rats, we concluded that diminished gastric function after SCI
was not likely due to the effects of Inactin anesthesia (Qualls-
Creekmore et al., 2010b).

Canon and Lieb were the first to describe the gastric accom-
modation reflex (Canon and Lieb, 1911). This vagally-mediated
reflex is elicited either by physiological (low pressure) disten-
sion of the esophagus (Saltzstein et al., 1995)or direct filling of
the isolated stomach (Takahashi and Owyang, 1997)and permits
the stomach to relax in response to large volumes of ingesta,
thus maintaining low levels of intragastric pressure (Wilbur and
Kelly, 1973). In our T3-SCI model, physiological distension of the
esophagus failed to elicit a reflex relaxation of the stomach (Tong
and Holmes, 2009). Expanding upon the study by Takahashi and
Owyang (Takahashi and Owyang, 1997), retrograde gastric filling
in T3 surgical control rats elicited marked increases in intra-
gastric pressure as well as intragastric pressure waves similar to

FIGURE 2 | Spinal cord injury diminishes mechanical sensitivity

of the stomach to fluid distension. Representative gastric pressure
traces in high thoracic spinal cord injured (T3 SCI, upper trace) and
surgical (laminectomy only) controls (T3 Control, lower trace)
demonstrating that during 6 min of continuous filling (at a rate
of 1 ml/min, starting at closed arrowhead and terminating at open
arrowhead). T3 SCI rats exhibited a smaller increase in gastric pressure

and that pressure-evoked motility waves were less pronounced. Initial
pressure peak (denoted by asterisks) was an artifact of initiating the filling
cycle. Gastric distension was maintained at the termination of the filling
cycle. Distension was performed by passing a saline-filled catheter via an
incision in the proximal duodenum and through the occluded pylorus. The
lower esophageal sphincter was untouched and maintained closure at the
gastric cardia.
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those observed in conscious, freely moving rats fed a test meal
(Janssen et al., 2008). In T3-SCI rats, both intragastric pressure,
as well as intragastric pressure waves, are substantially diminished
(Figure 2; Holmes et al., 2008).

Further studies using [13C]-octanoate tagged solid meals in
awake animals confirmed that gastric dysmotility is accompanied
by a delay in gastric emptying and that dysmotility persists up
to 6 weeks after T3-SCI, (Qualls-Creekmore et al., 2010a). These
persistent deficits led us to conclude that delayed gastric empty-
ing is unlikely to be due to “spinal shock” as gastric dysmotility
persists long after SCI animals are generally considered to have
stabilized (ca. 3–6 weeks post-SCI).

Finally, with the understanding that the reflex control of the
stomach is under considerable modulation by gut hormones,
like CCK and ghrelin, we have begun to test the sensitivity of
T3-SCI rats to GI peptides which evoke vagally-mediated gastric
reflexes (Ueno et al., 2005). It is well accepted that periph-
eral CCK-8s activates C-type vagal afferent fibers and increases
c-Fos immunoreactivity in NTS cells of neurally intact animals
(Renehan et al., 1995; Zittel et al., 1999; Sullivan et al., 2007).
Our study was particularly revealing in that peripheral CCK-8s
administration 3 days after injury induced significantly less c-Fos
expression in the NTS than in uninjured control rats (Tong et al.,
2011). In the same experimental animals, c-Fos expression within
the adjacent AP was similar in both groups, suggesting that gas-
tric neurocircuitry involving the NTS was selectively impaired.
Previous experimental studies suggest that CCK acts both periph-
erally and directly upon brainstem vagal circuits (Raybould and
Tache, 1988; Fraser and Davison, 1992; Li and Rowland, 1995;
Sayegh and Ritter, 2000; Baptista et al., 2005a,b, 2006; Holmes
et al., 2009b). However, T3-SCI rats did not demonstrate a gas-
tric efferent vagal response to central microinjection of CCK-8s
into the DVC and the reduced sensitivity to centrally admin-
istered CCK-8s in the DVC persisted at 3 weeks after injury.
Furthermore, whole-cell patch clamp recordings of NTS neu-
rons from T3-SCI rats suggested a reduced activity of CCK-8s
on synaptic inputs onto NTS neurons. Our preliminary data
with peripheral and central administration of the prokinetic
gut hormone, ghrelin, also reveals a reduced sensitivity within
the NTS of SCI rats (Holmes et al., 2009a; Browning et al.,
2010).

In summary, the reduction in vagal afferent responsiveness
to mechanical and chemical stimuli, as well as the reduction
in presynaptic glutamatergic inputs onto NTS neurons, suggests
a generalized hyposensitivity of vagal afferent neurotransmis-
sion to the brainstem following SCI. Evidence of vagal afferent
hyposensitivity has been identified in other GI pathobiological
states (Hatanaka et al., 1997; Xue et al., 2009). In particular,
Xue and colleagues suggest that part of the diminished visceral
afferent sensitivity in an inflammation-induced model of func-
tional dysmotility is mediated through an inducible NOS (iNOS)
mechanism (Xue et al., 2009). However, this observation was lim-
ited only to afferents within the mesenteric arcade, and did not
include the vagus. While levels of neuronal NOS are chronically
diminished following experimental T9-SCI (Kabatas et al., 2008),
preliminary data in T3-SCI rats suggests that GI iNOS levels are
elevated in the days after SCI (Holmes, unpublished observation).

IS DIMINISHED VAGAL SENSORY PROCESSING ONE
CULPRIT?
Whether these preliminary observations reflect a mechanism of
SCI-mediated GI dysfunction requires further testing. The fact
that SCI affects a neural circuit as spatially removed from the
site of injury as vago-vagal control of the stomach presents an
intriguing paradox. Since the main neural circuitry controlling
the stomach remains physically intact after human and experi-
mental SCI, why is gastric function compromised so persistently?
Our evidence points to a persistent inhibition of vagally-mediated
gastric reflexes which do not appear to involve sympathetic input
to the stomach. While the neural mechanisms responsible for this
post-SCI gastroinhibition remain obscure, recent reports provide
a potential explanation.

NEUROPLASTICITY IN THE BRAIN-GUT AXIS
The spontaneous firing property of DMV neurons, mentioned
previously, implies that alterations in firing rate can produce pro-
found changes in gastric vago-vagal reflexes. Activation of NMDA
and non-NMDA receptors in response to high levels of glutamate
release is essential for the rapid transmission of feeding-relevant
stimuli (Berthoud et al., 2001; Hornby, 2001). However, the
visceral organ or function-specific wiring of brainstem neuro-
circuitry is complex, and the available permutations in synaptic
organization confers a substantial degree of functional plasticity
within GABAergic and glutamatergic synapses (see Babic et al.,
2011 ). Recently an elegant model for vago-vagal plasticity has
been put forward (Browning and Travagli, 2010). Essentially,
these authors propose that cAMP levels within nerve terminals
of GABAergic NTS neurons modulate receptor trafficking to the
neuronal membrane, and hence regulate the ability of neurotrans-
mitters of this synapse to be modulated (Browning et al., 2006;
Browning and Travagli, 2009). Furthermore, cAMP levels may
be regulated by vagal afferent input via group II metabotropic
glutamate receptors (mGluR) known to be expressed within the
DVC (Hay et al., 1999). Unlike glutamate release in response
to digestion-relevant stimuli, tonic low level release of gluta-
mate from vagal afferents keeps cAMP expression low due to a
higher affinity of mGluR for glutamate. This activation of mGluR
by low-level glutamate release confers greater NTS release of
GABA, thus inhibiting gastric function, in addition to rendering
the GABAergic neuron resistant to modulation (Browning et al.,
2006; Browning and Travagli, 2007).

The NTS and DMV neurons are not the only point in the
gut-brain axis where significant neuroplasticity occurs. ENS plas-
ticity has been described in response to luminal contents (Soret
et al., 2010) and disease processes (Huizinga et al., 2009; Mawe
et al., 2009). As mentioned previously, vagal afferent fibers and
cell bodies are sensitive to feeding related peptides such as CCK)
(Appleyard et al., 2005; Baptista et al., 2005b). These vagal affer-
ent neurons also demonstrate considerable plasticity to trauma
(Zhang et al., 1996) as well as physiological stimuli (Burdyga et al.,
2004, 2006a, 2008; de Lartigue et al., 2007). These physiologi-
cal stimuli are proposed to switch vagal afferents between “fed”
and “fasted” states (see Dockray and Burdyga, 2011) and provide
one mechanism ultimately elevating cAMP levels in GABAergic
neurons (Browning and Travagli, 2009).
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FUTURE DIRECTIONS
Upon revisiting the vagal neurocircuitry controlling gastric func-
tion (presented in Figure 1), it is evident that there are sev-
eral points where this pathophysiological cascade may occur. At
the level of the GI lumen, diminished synthesis and/or release
of GI peptides may represent a signaling failure following SCI
(Figure 3.1). In addition to a persistent (up to 6 week post-SCI)
reduction of gastric reflex responses to mechanical and peptider-
gic signaling, our observations demonstrate that in vivo CCK
release following a mixed nutrient meal is diminished follow-
ing SCI while iNOS mRNA expression is elevated (Holmes—
unpublished observations). NO− serves as an important regula-
tor of CCK release in STC-1 cells (Mangel et al., 1996) as well as

an endogenous modulator of vagal afferent sensitivity (Page et al.,
2009). This suggests that in addition to smooth muscle relaxation,
iNOS-derived NO− may be implicated in the diminished release
of GI peptides following SCI while also initiating a pathophys-
iological reduction of vagal afferent signaling at the level of the
receptive fields.

Diminished CCK release entails additional pathobiological
sequelae beyond failure to promote nutrient-mediated vagal
afferent signaling. For example, gut permeability is a hallmark
of numerous disease states and spinal transection has been
shown to induce bacterial translocation within the gut (Liu
et al., 2004). In a hemorrhagic shock model of inflammation
and bacterial translocation, CCK-1 receptor activation of the

FIGURE 3 | Hypothesized schematic of diminished vagal sensory

processing following T3-SCI. (1) Impairments within GI enterocytes (for
example CCK-secreting “I” cells) leading to a reduction in the synthesis or
release of feeding-related GI peptides such as CCK may reflect a failure in
transduction mechanisms at the level of the primary afferent.
(2) Downregulation of appropriate receptors, which most likely occurs at
multiple levels of vagal afferent neurons residing within the nodose ganglion
[reviewed in Dockray and Burdyga (2011)], to feeding-related GI peptides
diminishes glutamatergic signaling in the NTS-DMV leading to failed signaling

at first synapse. Additionally, derangements in the transmission of gastric
distension signals by mechanosensitive vagal afferents may also promote a
parallel reduction in visceral stimuli which is independent of GI peptide
release. (3) Ultimately, reduced signaling to NTS neurons permits
unmodulated GABAergic inhibition of DMV motor outflow to the stomach
that represents a failure of reflex integration at the second synapse in the
vago–vagal circuit. Deficits at any one, or across all, of these levels will lead
to gastric dysmotility and may limit the efficacy of potential therapeutic
mechanisms.
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vagus maintained intestinal integrity (Lubbers et al., 2009,
2010), presumably through activation of an α7-nicotinic receptor
(α7-nAChR) anti-inflammatory mechanism (Luyer et al., 2005).

Independent of whether normal GI release of either CCK or
ghrelin occurs after SCI, our observation that exogenous CCK
fails to increase NTS c-Fos expression would indicate that the
mechanism of gastric dysmotility may occur, at least in part,
through reduced receptor expression and/or reduced excitabil-
ity of vagal afferents. Neurophysiological changes in gastric
vagal afferent fibers may form the second level of vagal affer-
ent dysfunction in the development of post-SCI dysmotility
(Figure 3.2). For example, vagal afferent reorganization occurs
in response to surgically-induced gastric trauma (Phillips and
Powley, 2005) and extends to alterations in the spontaneous
firing rate of the afferent vagus (Miranda et al., 2009). The
role of capsaicin-sensitive C-type fibers has long been recog-
nized in GI reflex function, particularly CCK-mediated reflexes
(Raybould and Tache, 1988; Sivarao et al., 1998). Additionally,
vagal afferent neurons, which reside within the nodose gan-
glion, express CCK-1 receptors [aka. CCK type “A” receptors
(Zhao et al., 2010)]. Identifying changes in vagal afferent respon-
siveness would provide a logical mechanistic explanation for
our reported observation that exogenous peripheral adminis-
tration of CCK induces diminished c-Fos expression following
SCI (Tong et al., 2011). Similar observations have been pro-
vided for the action of ghrelin (Page et al., 2007) and expression
of ghrelin receptors (Burdyga et al., 2006b; Page et al., 2007)
and would extend to our observations after T3-SCI (Holmes
et al., 2009a; Browning et al., 2010). These GI peptide-mediated
changes are not the only mechanism by which visceral sensations
fail to reach the brainstem as our data illustrates an impair-
ment of mechanosensitive neurotransmission which also occurs
following SCI.

Based upon the available data, our present research is further
aimed at addressing the hypothesis that post-SCI reduction in
vagal and/or NTS neuronal sensitivity to visceral signals biases
GI brainstem circuits toward a tonic GABAergic inhibition of
DMV efferent outflow to the stomach (Figure 3.3). Whether
the mechanism of action is an inability of GI peptides to ele-
vate cAMP levels in GABAergic neurons and/or nerve terminals
after SCI or limited glutamatergic input that does little more

than drive mGluR-mediated dampening of cAMP levels, it is the
inability to modulate the inhibitory effects of this NTS-DMV
GABAergic synapse that is most likely responsible for triggering
gastric dysmotility following SCI.

TRANSLATIONAL PERSPECTIVE
Despite considerable evidence of upper GI dysmotility in the
SCI population, the mechanisms remain poorly understood and
require further study in order to develop evidence-based thera-
peutic strategies individuals with SCI. The conclusions of sym-
pathetic involvement in the clinical report by (Fealey et al.,
1984) still merits further investigation. However, there is grow-
ing evidence that derangements in gastric vagal neurocircuitry
contribute to functional GI motility disorders in neutrally intact
patients (Holtmann et al., 1998; Lunding et al., 2008; Manabe
et al., 2011). Chronic changes in gut hormone levels, as well as
the long term changes in vago–vagal gastric reflexes signaling are
two universal targets for research in both intact and neurotrauma
patients.

Ultimately, the failure within the brain-gut axis to respond
to GI signaling pathways presents a clinical dilemma. Promising
therapeutic strategies for other functional motility disorders may
not necessarily translate to the SCI population or even across dif-
ferent regions of the GI tract (Holmes et al., 2009a; Browning
et al., 2010; Ferens et al., 2011). Furthermore, while enteral feed-
ing is associated with improved outcome in the critical care
patient, conditions of enteral intolerance exist which may lead
to increased mortality. Increasing gastric motility by pharma-
cological agents such as ghrelin mimetics offers considerable
therapeutic potential. However, failure to understand the mecha-
nisms which result in feeding intolerance may render therapeutic
interventions ineffective if not detrimental. The unique sequelae
of secondary injuries and pathologies spatially remote from the
injury site, which are not limited to GI dysfunction, underscores
the knowledge gaps which remain in our understanding of SCI.
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