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Abstract

Background and aim

Fatty acids acutely stimulate GLP-1 secretion from L-cells in vivo. However, a high fat diet

has been shown to reduce the density of L-cells in the mouse intestine and a positive corre-

lation has been indicated between L-cell number and GLP-1 secretion. Thus, the mecha-

nism of fatty acid-stimulated GLP-1 secretion, potential effects of long-term exposure to

elevated levels of different fatty acid species, and underlying mechanisms are not fully

understood. In the present study, we sought to determine how long-term exposure to satu-

rated (16:0) and unsaturated (18:1) fatty acids, by direct effects on GLP-1-producing cells,

alter function and viability, and the underlying mechanisms.

Methods

GLP-1-secreting GLUTag cells were cultured in the presence/absence of saturated (16:0)

and unsaturated (18:1) fatty acids (0.125 mM for 48 h, followed by analyses of viability and

apoptosis, as well as involvement of fatty acid oxidation, free fatty acid receptors (FFAR1)

and ceramide synthesis. In addition, effects on the expression of proglucagon, prohormone

convertase 1/3 (PC1/3), free fatty acid receptors (FFAR1, FFAR3), sodium glucose co-

transporter (SGLT) and subsequent secretory response were determined.

Results

Saturated (16:0) and unsaturated (18:1) fatty acids exerted opposing effects on the induc-

tion of apoptosis (1.4-fold increase in DNA fragmentation by palmitate and a 0.5-fold reduc-

tion by oleate; p<0.01). Palmitate-induced apoptosis was associated with increased

ceramide content and co-incubation with Fumonisin B1 abolished this lipo apoptosis. Ole-

ate, on the other hand, reduced ceramide content, and—unlike palmitate—upregulated

FFAR1 and FFAR3, evoking a 2-fold increase in FFAR1-mediated GLP-1 secretion follow-

ing acute exposure to 0.125 mmol/L palmitate; (p<0.05).
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Conclusion/Interpretation

Saturated (16:0), but not unsaturated (18:1), fatty acids induce ceramide-mediated apopto-

sis of GLP-1-producing cells. Further, unsaturated fatty acids confer lipoprotection, enhanc-

ing viability and function of GLP-1-secreting cells. These data provide potential mechanistic

insight contributing to reduced L-cell mass following a high fat diet and differential effects of

saturated and unsaturated fatty acids on GLP-1 secretion in vivo.

Introduction

Glucagon-like peptide-1 (GLP-1) has a central role in type 2 diabetes (T2D) due to its potenti-

ating effects on insulin secretion and the successful use of GLP-1 analogs in T2D therapy.

GLP-1 is synthesized from the preproglucagon gene (Gcg) in a subset of enteroendocrine cells

(EECs), denominated L-cells. The L-cells are found scattered in the intestinal epithelium with

increasing numbers towards the distal ileum and colon, representing in totality < 1% of the

epithelial cells. L-cells are polarized, exhibiting an apical surface with microvilli in contact

with the lumen, and a basolateral surface from which secretory vesicles exocytose [1]. GLP-1

secretion is stimulated by nutrient intake (carbohydrates, proteins, and fats) and potentiates

glucose-stimulated insulin secretion (GSIS)–i.e. the incretin effect. In addition to its insulino-

tropic effects, GLP-1 also stimulates β-cell proliferative and anti-apoptotic pathways, exerts

protective effects on cardiomyocytes, reduces insulin resistance, while also inhibiting glucagon

release, gastric emptying, and food intake [2].

Reduced plasma GLP-1 levels have been observed in T2D, but also with increased BMI and

obesity independent of T2D [3, 4]. Continuous administration of GLP-1 to T2D patients

restores GSIS and normalizes glycemia [2]. However, due to rapid degradation by Dipeptidyl

peptidase– 4 (DPP-4), stable analogs of GLP-1 such as exendin-4 and liraglutide, as well as

DPP-4 inhibitors such as sitagliptin, have been developed for T2D therapy.

Today’s incretin therapy has achieved great success and arguably constitutes the best avail-

able pharmaceutical intervention for the treatment of T2D. However, enhancing endogenous

GLP-1 production is a novel avenue of incretin therapy, and would avoid potential deleterious

effects of long term treatment with GLP-1 agonists on beta cell function [5], and offer many

advantages to current incretin therapy. I.e. GLP-1 would be released by its native route directly

into the portal vein—where regulatory GLP-1-sensitive glucose sensors are expressed—prior

to hepatic passage [6]. Further, the pulsatile nature of endogenous GLP-1 secretion would be

maintained [7], which may prevent GLP-1 resistance [8].

Potentiating endogenous incretin secretion requires detailed knowledge and understanding

of the regulation of GLP-1-producing L-cells. Increased BMI and obesity are characterized by

increased levels of circulating free fatty acids and hyperlipidemia. Studies on the effects of lip-

ids and fatty acids on the function of GLP-1-secreting cells reveal that generation of long-

chain fatty acids greater than C10 is a critical step for fat-induced stimulation of GLP-1 secre-

tion in humans [9, 10]. Further, differential effects and mechanisms have been identified for

stimulation by different fatty acid species, where vascular vs. luminal exposure is also indicated

to be of importance [11].

Recently, focus has also been given to the possible alteration of L-cell mass in diabetic sub-

jects and its implication for the endogenous incretin response. Reports have indicated that L-

cell mass can be regulated by external stimuli [12, 13]. Short chain fatty acids have been indi-

cated to increase L-cell mass [14], and a high fat diet (HFD) has been shown to reduce the
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density of L-cells in the distal parts of the mouse intestine [15, 16], where differential direct

effects of different fatty acid species on the viability of GLP-1-producing cells have been

reported [17], but the mechanisms remain unknown. Importantly, an increased L-cell number

has also been associated with increased GLP-1 secretion [18]. Collectively these data support

the possibility of modulating L-cell density to enhance endogenous GLP-1 secretion.

The association of reduced L-cell mass with obesity, insulin resistance, and defective incre-

tin response, provokes questions as to how fatty acids can modulate not only the function but

also the viability of L-cells. Non-adipose tissue accumulation of triglycerides (steatosis) is an

indicator of lipid overload and hyperlipidemia in humans and animal models, and associated

with impaired insulin signaling and lipotoxicity [19]. Triglyceride accumulation in tissue and

triglycerides themselves are most likely inert in terms of lipotoxicity [20, 21]. However, non-

adipose tissue has a limited capacity for triglyceride storage and fatty acids channeled to other

metabolic fates, such as production of reactive oxygen species (ROS) or ceramide, are indi-

cated to mediate the lipotoxic effects. Carnitine acyltransferase I (CPT-1) mediated mitochon-

drial fatty acid uptake enables fatty acid oxidation generating ROS as a natural byproduct.

Hyperlipidemia and increased fatty acid oxidation may increase ROS to dangerous levels with

detrimental effects on cell survival and function. Also the generation of lipid metabolites such

as ceramide, composed of sphingosine and a fatty acid, resulting from breakdown of sphingo-

myelin and complex sphingolipids, or through de novo synthesis., have been shown to be

mediating lipotoxic effects in some cell types. In addition to this, GLP-1 secreting cells express

fatty acid receptors like FFAR1 indicated to be involved in the secretory response of GLP-1

secreting cells in response to fatty acids. However, the more long term effects of continuous

activation of FFAR1 following a high fat diet and hyperlipidemia is not well understood.

Recent research has elucidated many aspects of fatty acid-stimulated secretion, but more

detailed knowledge is needed, especially with regards to the effects of long term exposure to

fatty acids in terms of viability as well as function. Consequently, we sought to determine the

mechanisms mediating lipoapoptosis of GLP-1-producing cells and the roles of different fatty

acid species in viability and function, aiming to further elucidate the molecular regulation of

GLP-1-producing cells in health and disease.

Materials and methods

Cell culture and in vitro exposure

As a model of enteroendocrine L-cells, GLUTag cells—an immortalized murine enteroendo-

crine cell line expressing the proglucagon gene and secreting the glucagon-like peptides [22]—

were used. GLUTag cells recapitulate the response of primary intestinal L-cells to physiological

and pharmacological GLP-1 secretagogues [23, 24] and constitute one of the best models of

the L-cell.

The GLP-1-secreting GLUTag cell line (source: glucagon-producing enteroendocrine cell

tumor that arose in transgenic mice generated on an out-bred CD-1 background) [24], gra-

ciously donated by Dr. Neil Portwood at Karolinska Institutet, Solna, Sweden, and originally

from Dr. Daniel J. Drucker, Mount Sinai Hospital, Samuel Lunenfeld Research Institute,

University of Toronto, Canada, was cultured in DMEM (Thermo Fisher Scientific, Waltham,

MA) supplemented with 10% fetal bovine serum (FBS) (Thermo Fisher Scientific), 5.5 mM

glucose, 10,000 U/ml penicillin and 10,000 μg/mL streptomycin sulfate (Thermo Fisher Scien-

tific) under 5% CO2.

Primers and antibodies were purchased from: Tocris Bioscience, Bristol, United Kingdom

(GSK 650394) and ChemBo Pharma Co., Ltd. (EMD638683) ceramide Ab (Enzo Life Sciences,

Inc.). FFAR1 antagonist GW1100/371830 was purchased from Albiochem, EMD Millipore.
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The activator of protein kinase C 12-O-tetradecanoylphorbol-13-acetate (TPA), adenylate

cyclase activator forskolin, CPT1 inhibitor etomoxir, and the ceramide synthase inhibitor

Fumonisin B1 were purchased from Sigma Aldrich.

Palmitate (sodium palmitate, Sigma Aldrich) / Oleate (Sigma Aldrich) exposure media was

supplemented with 2% FBS (ThermoFisher Scientific), 5.5mM glucose (Sigma Aldrich, 10,000

U/ml penicillin and 10,000 μg/mL streptomycin sulfate (Thermofiher Scientific, Invitrogen,

Inc.), in addition to 0.44% bovine serum albumin (BSA, fatty acid free) (Roche Diagnostics

GmbH, Germany) The fatty acid was incubated with the BSA supplemented medium for a

minimum of 40 min at 37 degrees to ensure binding of fatty acid to BSA and cells were washed

twice with 2% FBS, 5.5 mM glucose media prior to exposure to Palmitate/Oleate in Palmitate/

Oleate exposure media. Palmitate was dissolved in 50% ethanol during heating to 70˚C. Con-

trol cells were given vehicle with equal amounts of ethanol as the palmitate exposed cells (final

concentration of ethanol: 0.12%).

Caspase-3 activity assay

GLUTag cells were plated (at a density of 250,000 cells/ml) and grown in 6-well plates for 24 h.

Cells were then washed twice with low serum medium (2% FBS, 5.5 mM glucose) prior to

treatment with 0.125 mM palmitate in the presence or absence of indicated concentrations of

Fumonisin B1, GW1100, or Etomoxir in 2% FBS and 5.5 mM glucose for an additional 48 h.

Caspase-3 activity assay kit (Cell Signaling Technology, Inc., Danvers, MA) was used accord-

ing to the manufacturer’s instructions. Briefly, this caspase-3 colorimetric assay is based on the

hydrolysis of a substrate by caspase-3, resulting in the release of a fluorescent product. Fluores-

cence (excitation/emission ~342/441 nm) was measured using appropriate excitation and

emission filters or settings.

Fluorescence was normalized against the protein concentration of the individual well (see

below).

Protein assay

GLUTag cells were washed twice with phosphate-buffered saline (PBS) and lysed on ice in a

RIPA lysis buffer containing 150 mM NaCl, 20 mM Tris, 0.1% SDS, 1% Triton X-100, 0.25%

Na-deoxycholate, 1 mM Na3VO4, 50 mM NaF, 2 mM EDTA and Protease inhibitor cocktail

(Sigma Aldrich) for 30 min. Samples were clarified by centrifugation, supernatants were trans-

ferred to new tubes and the total protein concentration was determined with Bio-Rad DC pro-

tein assay (method of Lowry [25], using BSA as a standard [Bio-Rad Laboratories, Hercules,

CA]).

Hormone secretion

GLUTag cells were plated at a density of 180,000 cells/ml and grown in 6-well plates for 24–48

h. Cells were then treated with palmitate/oleate at indicated doses for an additional 48 h.

Immediately after the 48 h incubation, the medium was discarded and the cells were washed

with pre-warmed glucose-free KRBH buffer/0.2% BSA, followed by a 30 min pre-incubation

with the same buffer. Cells were then treated for 30min with/without 0.25 mM palmitate in

pre-warmed glucose-free KRBH buffer/0.2% BSA. For a subset of experiments, the 30 min

palmitate treatment was preceded by a 10min pre-incubation with indicated concentrations

of GW1100. Immediately after the incubation with palmitate, the buffer was collected in tubes

on ice. GLP-1 content in medium/buffer was analyzed using a total GLP-1 ELISA (Cat. #

EZGLP1T-36K, Millipore Corporation) according to the manufacturer’s instructions. GLP-1
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results were normalized by total protein in the individual wells (see above). All experiments

were performed in duplicates and repeated� three times to assess the consistency of results.

RNA extraction, cDNA synthesis, and quantitative RT-PCR

GLUTag cells were lysed and RNA extracted using Aurum total RNA mini kit (Cat # 7326820)

(BioRad Laboratories) according to the manufacturer’s instructions. cDNA was synthesized

for qPCR using iScript™ cDNA synthesis kit (BioRad Laboratories) according to the manufac-

turer’s instructions. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA expression

was used as an internal control. A one-step RT-PCR kit with SYBR Green (iScript™ one-step

RT-PCR kit with SYBR1 Green) (BioRad Laboratories) was used for real-time quantitative

RT-PCR. This kit utilizes iScript RNase H+ reverse transcriptase and hot-start iTaq DNA

polymerase.

For each sample, the mRNA level of each target gene relative to GAPDH was estimated by

calculating the DeltaCt, or ΔCt (CtTarget Gene− CtGAPDH) and then converting to 2−ΔCt. To

compare mRNA levels between experimental groups, the ratio of the average 2−ΔCt for each

treatment group relative to the control group (2−ΔΔCt) was determined for each gene.

Primers were designed using Invitrogen custom primer design software (Invitrogen, Inc).

The primer list and specifications are given in S1 Table.

Western blot analysis

GLUTag cellular protein was extracted using RIPA lysis buffer containing 150 mM NaCl, 20

mM Tris, 0.1% SDS, 1% Triton X-100, 0.25% Na-deoxycholate, 1 mM Na3VO4, 50 mM NaF, 2

mM EDTA and Protease inhibitor cocktail (Sigma Aldrich) for 30 min on ice. Samples were

clarified by centrifugation, the supernatants were transferred to new tubes and the total protein

concentration was determined with Bio-Rad DC protein assay using BSA as a standard (Bio-

Rad). Equal amounts of protein were then mixed with reducing SDS-PAGE sample buffer,

boiled for 5 min and proteins were separated by SDS-PAGE. Samples were electrophoresed on

a 10% polyacrylamide gel under denaturing conditions, followed by transfer to PVDF mem-

brane (Bio-Rad Laboratories). Membranes were blocked with 5% milk in PBS-T; primary

(over-night at 4˚C) and secondary (1 hour at RT) antibody incubations were performed in the

same buffer, with three 10-min washes in PBS-T intervening. The anti phospho-p38 was pur-

chased from Abcam, Cambridge, UK (cat# ab195049), and the totp38 and β-actin antibodies

were from Santa Cruz, Biotechnology, CA (cat # sc-3533 and sc-47778). Horseradish peroxi-

dase-conjugated secondary antibodies (1:5,000) (Santa Cruz Biotechnology, CA) and ECL

(enhanced chemiluminescence) (ThermoFisher Scientific) reagents were used to detect pro-

teins. Images and quantifications were obtained using Molecular Imager ChemiDoc XRS with

Quantity One Software v. 4.6.5 (Bio-Rad Laboratories).

Detection of intracellular reactive oxygen species (ROS)

GLUTag cells were plated at a density of 180,000 cells/ml and grown in 6-well plates for 24–48

h. Cells were then treated with palmitate/oleate as described above at the indicated doses for

an additional 6 h or 48 h. Intracellular ROS levels were measured using Image-iT LIVE Green

Reactive Oxygen Species Detection Kit (Molecular Probes, Life Technologies Europe BV) as

previously described [14] using a fluorogenic marker, 5-(and-6)-carboxy-20,70-dichlorodihy-

drofluorescein diacetate (carboxy-H2DCFDA), that is cleaved in the presence of ROS.

Accordingly, following incubation with indicated concentrations of palmitate/oleate, the

cells were then washed with KRBH buffer prior to adding 25 μM carboxy-H2DCFDA to each

well. Following 30 minute incubation at 37˚C, excess probe was removed by washing the cells
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again with KRBH buffer. Cells were then lysed in PBS containing 1% Triton X-100. Carboxy-

DCF fluorescence in cell lysates was detected at an excitation/emission wavelength of 495/529

nm using a microplate reader (SpectraMax M2, Molecular Devices). Fluorescence was normal-

ized against the protein concentration of the individual well.

Detection of intracellular ceramide

Immunocytochemistry. GLUTag cells were grown on 20 μl/cm2 coverslips coated with

poly-L-lysine (Sigma Aldrich). Following treatment with 0.125 mM palmitate/oleate in low

serum medium (2% FBS, 5.5 mM glucose) for the indicated times, cells were washed with PBS,

and 4% paraformaldehyde (Sigma Aldrich) added, followed by incubation with 1% BSA in

PBS-T for 30 min to block unspecific binding and an over-night incubation at 4˚C with pri-

mary ceramide monoclonal antibody (MID 15B4 from Enzo Life Sciences). Cells were washed

in PBS and incubated with 2% BSA in PBS for 30 min at room temperature (to avoid non-spe-

cific hydrophobic interactions), followed by a 1.5 h incubation at room temperature with sec-

ondary anti-mouse ALEXA Fluor 488 Ab (1:500 dilution in PBS + 2% BSA). After washing,

cells were incubated with 0.5 μg/ml Hoechst (Sigma Aldrich) for 1 min, washed and mounted

on glass slides using Polyvinyl alcohol mounting medium with DABCO1, antifading, Sigma

Aldrich). Edges of the cover glass were sealed with clear nail polish and slides stored in dark at

4˚C pending analysis.

Fluorescence measurement. GLUTag cells were grown in 96-well plates. The procedure

for immunocytochemistry was followed, and immediately after incubation with the secondary

antibody (anti-mouse ALEXA Fluor 488), fluorescence in the wells was measured at an excita-

tion/emission wavelength of 495/519 nm, using a microplate reader (SpectraMax M2, Molecu-

lar Devices).

Propidium iodide staining and flow cytometry

GLUTag cells were plated at a density of 180,000 cells/ml and grown in 6-well plates for 24–48

h. The cells were then cultured for 48 h with or without 0.125 mM palmitate + 0.5% BSA. Cell

numbers and viability were determined by incubation with 5 μg/ml propidium iodide for 10

min, followed by trypsinization and flow cytometry analysis using a FacsCalibur instrument

(Becton-Dickinson).

Statistical analyses

Comparisons between multiple groups were made by a one-way ANOVA. Student-Newman-

Keul’s post hoc test was used. Comparisons between control and single treatment groups were

made using two-tailed Student’s t-test. P<0.05 was deemed statistically significant.

Results

Palmitate and oleate exert opposing effects on the formation of reactive

oxygen species, activation of the mitogen-activated protein kinase p38

and viability of GLP-1-producing cells

As we and others have previously shown—and analogous to its effect on insulin producing β-

cells—palmitate exerts lipotoxic effects and induction of apoptosis in GLP-1-producing cells

[17, 26, 27]. This effect is indicated to be aggravated by simulated hyperglycemia, as co-incuba-

tion of palmitate with 11 mM glucose slightly but significantly increased caspase-3 activation

(18.5±5.95 percent increase) as compared to palmitate alone.

Effects of fatty acids on GLP-1-producing cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0177605 May 16, 2017 6 / 14

https://doi.org/10.1371/journal.pone.0177605


To determine if the lipotoxic mechanisms are specific to high ambient concentrations of

long chain saturated fatty acids, GLUTag cells were exposed to equimolar concentrations of

palmitate (16:0) or the monounsaturated fatty acid, oleate (18:1). Our results demonstrate

that palmitate increases—while oleate decreases caspase-3 activity (Fig 1A) and DNA

Fig 1. Palmitate and oleate exert opposing effects on the formation of reactive oxygen species, activation of the mitogen-

activated protein kinase p38 and viability of GLP-1-producing cells. 0.125 mM oleate significantly decreases—while 0.125 mM

palmitate significantly increase—caspase-3 activation (A) and DNA fragmentation (B) in GLUTag cells following a 48h incubation. Co-

incubation of 0.125mM palmitate with 0.125mM Oleate abolishes palmitate induced caspase-3 activity (C) and DNA fragmentation (D).

ROS production in GLP-1-secreting cells after 48 h (E) and phosphorylation of the ROS-sensitive kinase p-38 following 8h (F) is

increased in response to 0.125mM palmitate, but not in response to 0.125mM Oleate. Bars represent mean ± SEM for n = 3–6

independent experiments analyzed in duplicates. Comparisons between groups were made by a one-way ANOVA, and Student-

Newman-Keul’s post hoc test. *, p<0.05; ***, p<0.001 compared with control cells. #, p<0.05 compared with palmitate-treated cells.

https://doi.org/10.1371/journal.pone.0177605.g001
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fragmentation (Fig 1B) following a 48 h incubation. Furthermore, a co-incubation of palmitate

with equimolar concentrations of oleate abolishes palmitate-induced caspase-3 activity (Fig

1C) and DNA fragmentation (Fig 1D).

As we have previously shown that palmitate induced lipotoxicity is mediated, at least in

part, by increased production of ROS and activation of the ROS-sensitive mitogen-activated

kinase p38 [27], we also evaluated ROS production and p38 phosphorylation in response to

oleate. However, neither palmitate induced ROS production, nor activation of the ROS-sensi-

tive kinase p38, is replicated by oleate (Fig 1D and 1E).

Palmitate-induced lipotoxicity in GLP-1-producing cells is dependent on

the formation of ceramide

GLUTag caspase-3 activation, and cell viability were assessed following exposure to palmitate

in the presence/absence of the carnitine palmitoyltransferase-1 (CPT-1) inhibitor etomoxir,

inhibiting mitochondrial fatty acid uptake and thus fatty acid oxidation. Our results demon-

strate that co-incubation with etomoxir does not significantly alter caspase-3 activation or via-

bility following a 48 h exposure to palmitate (Fig 2A and 2B). Similarly, co-incubation with

GW1100—a reversible antagonist of the palmitate activated FFAR1 receptor—failed to alter

the effects of palmitate on caspase-3 activity and viability (Fig 2C and 2D). However, palmitate

—but not oleate—leads to a rapid increase of ceramide in GLP-1-producing cells as deter-

mined by immunocytochemistry (Fig 2E), as well as fluorescence measurements (Fig 2F). Fur-

ther, co-incubation with the ceramide synthase inhibitor Fumonisin B1—known to block

ceramide formation resulting from both de novo synthesis and the salvage pathway of ceramide

synthesis—counteracts the induction of caspase-3 activity and reduced viability (Fig 2G and

2H) following a 48 h incubation with palmitate.

Oleate, but not palmitate, increases the expression of G protein-coupled

receptor FFAR1 mRNA and amplifies the acute secretory response of

GLP-1 producing cells to fatty acids

To determine the effects of long term exposure to elevated levels of fatty acids on the function

of GLP-1-producing cells, we determined the expression of proglucagon, the sodium glucose

transporter (SGLT) involved in the secretory response of GLP-1-secreting cells to glucose, and

the fatty acid receptors FFAR1 (GPR40) and FFAR3 (GPR43) involved in the response to fatty

acids and linked to GLP-1 secretion [28], following exposure to 0.125 mM palmitate/oleate for

6 h, 24 h and 48 h.

Our results indicate no significant effects on SGLT expression in response to either fatty

acid (Fig 3A and 3B). Further, palmitate downregulates the expression of proglucagon, FFAR

1 (GPR40) and FFAR3 (GPR43) after 48h (Fig 3A), whereas oleate increases the expression of

proglucagon after 24h, and of FFAR1 (GPR40) and FFAR3 (GPR43) mRNA following 48h

(Fig 3B). Interestingly, GLP-1 secretion in response to 0.5 mM palmitate also increases two-

fold in cells cultured in the presence of oleate for 48 h, i.e. palmitate induces a two-fold

increase in GLP-1 secretion from untreated cells versus a four-fold increase in secretion from

oleate pre-treated cells (Fig 3C). Thissecretory effect of palmitate is indicated, in accordance

with what has previously been reported [29, 30], to be mediated by FFAR1 (Fig 3D).

Discussion

This study demonstrates differential effects of saturated (16:0) and unsaturated (18:1) fatty

acids on GLP-1-secreting cell viability and function. The present findings provide novel data
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Fig 2. Palmitate-induced lipotoxicity in GLP-1-producing cells is dependent on the formation of ceramide. Co-

incubation of 0.125mM palmitate with etomoxir did not significantly alter caspase-3 activation (A) or viability (B) after 48

h. Similarly, co-incubations of 0.125 mM palmitate and FFAR1 antagonist GW1100 did not alter palmitate induced

caspase-3 activity (C) or viability (D). GLUTag cells were stained using Hoechst (blue) and a ceramide monoclonal

antibody (green) following exposure to 0.125mM palmitate and 0.125mM oleate for 6h (E), where 0.125mM palmitate—

but not 0.125mM oleate—increasedthe number of ceramide positive GLUTag cells as assessed by detection of

fluorescence proportional to the number of positive cells (F). Co-incubation of 0.125mM palmitate with Fumonisin B1

significantly attenuate palmitate induced caspase-3 activity (G) and reduced viability (H) following 48 h. Bars represent
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in support of a role for ceramide synthesis in palmitate-mediated apoptosis of GLP-1-produc-

ing cells. Specifically, our data show that long-term treatment with palmitate increases cer-

amide production, caspase-3 activity, DNA fragmentation and cell death in GLP-1-producing

cells, whereas oleate exerts opposing effects. In addition, oleate—but not palmitate—upregu-

lates FFAR1 (GPR40) / FFAR3 (GPR43) mRNA expression and enhances the subsequent

FFAR1-mediated secretory response of GLP-1-producing cells.

In agreement with effects on insulin-producing β-cells, short-term exposure of GLP-1-pro-

ducing cells to fatty acids has previously been shown to increase GLP-1 secretion without

affecting cell viability [26, 31]. Further, lipids are well-recognized stimuli of GLP-1 secretion in

humans[32, 33].

However, many of the studies investigating effects of fatty acids on GLP-1 secretion have

focused on acute effects, and rendering decreased L-cell mass following a high fat diet, and the

mean ± SEM for n = 3 independent experiment analyzed in duplicates. Comparisons between groups were made by a

one-way ANOVA, and Student-Newman-Keul’s post hoc test. *, p<0.05 compared with control cells. #, p<0.05

compared with palmitate-treated cells.

https://doi.org/10.1371/journal.pone.0177605.g002

Fig 3. Oleate, but not palmitate, increases the expression of G protein-coupled receptor FFAR1 mRNA and

amplifies the acute secretory response of GLP-1 producing cells to fatty acids. Whereas 0.125 mM palmitate

significantly reduced GLUTag proglucagon and FFAR1 (GPR40) / FFAR3 (GPR43) mRNA expression after 48h (A), oleate

exposure significantly increased the expression of proglucagon / FFAR 1 (GPR40) and FFAR3 (GPR43) mRNA after 24h /

48h respectively (B). GLP-1 secretion in response to 0.5 mM palmitate was increased 2-fold following a 48h exposure to

0.125mM oleate (C). Comparisons between groups were made by a one-way ANOVA, and Student-Newman-Keul’s post

hoc test. Bars represent mean ± SEM. *, p<0.05; ***, p<0.001 compared with controls. #, p<0.05 compared with palmitate-

treated cells.

https://doi.org/10.1371/journal.pone.0177605.g003
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reduced GLP-1 plasma levels that have been observed in association with increased BMI, insu-

lin resistance and T2D, it can be hypothesized that toxic effects of chronic hyperlipidemia, i.e.

induction of lipotoxicity, similar to those observed in insulin-producing β-cells both directly

and indirectly—through potential reduction in L-cell mass—impairs L-cell secretory capacity,

as well as the ability of the surviving L-cells to compensate.

In accordance with the presence of such mechanisms, we have previously shown that—

albeit acute exposure stimulates secretion—long term exposure to elevated levels of palmitate

induces ROS-dependent lipotoxic effects [26, 27, 34]. The present findings indicate that this

lipotoxicity is mediated by ceramide synthesis and specific to the long chain saturated fatty

acids (16:0), and thus not replicated by long term exposure to elevated levels of long-chain

unsaturated fatty acids (18:1). These findings are in agreement with previously reported differ-

ential effects of saturated and unsaturated fatty acids on cell viability [17]. However, herein we

demonstrate that this difference is maintained following extended exposure to the fatty acids

and we demonstrate increased caspase-3 activity and DNA fragmentation, indicating differ-

ences in induction of apoptosis leading to the impaired cell viability. Further, our data suggest

that increased β-oxidation is not the main mechanism underlying ROS-mediated lipoapopto-

sis in GLP-1-producing cells. Although we fail to see a significant effect of palmitate in the

presence of CPT-1 inhibition, the increased basal caspase-3 activity under these conditions

may mask the effect of palmitate, as there is no significant effect of CPT-1 inhibition on cas-

pase-3 activity or viability following long term palmitate exposure. However, further studies

and characterization of fatty acid oxidation in response to saturated (16:0) and unsaturated

(18:1) fatty acids in this cell type are necessary to rule out any contribution of increased fatty

acid oxidation in palmitate mediated apoptosis. However, the involvement of ceramide syn-

thesis in the induction of apoptosis indicated from the present studies aligns well with what

has been reported for other cell types and ROS-mediated lipotoxicity. Specifically, T2D and

defective insulin secretion are associated with products generated from saturated fatty acids,

whereas unsaturated fatty acids have been shown to exert protective effects. Although the exact

mechanisms underlying these observations remain elusive, ceramide synthesis resulting in

increased ROS production [35] [36] and oxidative damage [37] is implicated in the induction

of lipotoxicity in various cell types. The present study indicates that similar mechanisms may

be involved in saturated fatty acid-induced apoptosis of GLP-1-producing cells, whereas long

term exposure to elevated levels of unsaturated fatty acids reduces ceramide content and ROS

production.

Notwithstanding a rapid turnover of the EECs in the intestine, reports have indicated that

L-cell mass can be regulated by external stimuli [12, 13] and the direct impact of fatty acids on

GLP-1-producing cell viability demonstrated herein further supports that direct effects of

luminal/vascular fatty acids on intestinal L-cells may modulate L-cell mass and thus endoge-

nous GLP-1 secretion from EECs.

We also demonstrate that long term exposure to fatty acids alters the secretory responsive-

ness of GLP-1 producing cells. Specifically, we demonstrate increased transcription of FFAR1

and enhanced FFAR1-dependent GLP-1 secretion following long term treatment with unsatu-

rated fatty acid (18:1), which may indicate a potential mechanism whereby unsaturated fatty

acids exert more potent stimulatory effects on GLP-1-producing cells. However, this is specu-

lative and further studies are needed to clarify if unsaturated fatty acids upregulate functional

FFAR1 expression, the role for FFAR1-induced GLP-1 secretion in humans, and the involve-

ment of such potential alterations in the subsequent secretory response of the cells.

The simultaneous up-regulation of both FFAR1 and FFAR3 in response to oleate observed

is in line with studies showing the existence of bicistronic mRNA encoding FFAR1 and FFAR3
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[38]. Germane to the data presented here, FFAR3 ligands have also been indicated as potential

positive regulators of L-cell mass [13].

In conclusion, the present study provides novel data on molecular mechanism underlying

differential effects of an unsaturated (18:1) and a saturated (16:0) fatty acids on the induction

of apoptosis and lipotoxicity in GLP-1-producing cells. Such effects could potentially contrib-

ute to the observations of reduced GLP-1 plasma levels in obese and diabetic patients, indi-

rectly impeding the ability of the β-cell to compensate for insulin resistance through increased

insulin secretion. In addition, these effects prompt further assessment of whether dietary fatty

acid composition and diets rich in long chain unsaturated fatty acid may be an approach to

enhance L-cell mass and GLP-1 secretion. Ultimately, understanding the molecular mecha-

nisms underlying the effects of fatty acids on L-cell mass and function may lead to an increased

understanding of the natural unfolding of polygenic T2D, identification of novel signaling

pathways, and potential new targets for enhancing endogenous GLP-1 secretion.
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