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246086@student.pwr.edu.pl (M.A.); 246108@student.pwr.edu.pl (M.K.); 246306@student.pwr.edu.pl (R.G.);
246214@student.pwr.edu.pl (M.W.); jaroslaw.mysliwiec@pwr.edu.pl (J.M.)
* Correspondence: adam.szukalski@pwr.edu.pl (A.S.); kabanskiadam@gmail.com (A.K.);

jgoszyk@gmail.com (J.G.)

Abstract: Triboluminescence (TL) is a phenomenon of light emission resulting from the mechanical
force applied to a substance. Although TL has been observed for many ages, the radiation mechanism
is still under investigation. One of the exemplary compounds which possesses triboluminescent
properties are copper(I) thiocyanate bipyridine triphenylphosphine complex [Cu(NCS)(py)2(PPh3)],
europium tetrakis dibenzoylmethide triethylammonium EuD4TEA, tris(bipyridine)ruthenium(II)
chloride [Ru(bpy)3]Cl2, and bis(triphenylphosphine oxide)manganese(II) bromide Mn(Ph3PO)2Br2.
Due to the effortless synthesis route and distinct photo- and triboluminescent properties, these
compounds may be useful model substances for the research on the triboluminescence mechanism.
The advance of TL studies may lead to the development of a new group of sensors based on force-
responsive (mechanical stimuli) materials. This review constitutes a comprehensive theoretical study
containing available information about the coordination of metal complex synthesis methodologies
with their physical, chemical, and spectroscopic properties.

Keywords: triboluminescence; mechanoluminescence; copper(I) complex; manganese(II) complex;
ruthenium(II) complex; europium(III) complex

1. Introduction

Triboluminescence (TL) may be obtained by rubbing, crushing, cracking, and grind-
ing as a result of an external force interaction with the substance [1]. Thousands of TL
compounds have been reported over the years. It has been estimated that due to the
mechanical action, light emission can be observed in 36% of all inorganic compounds,
19% of organic compounds, 37% of aromatics, 70% of alkaloids, and probably about 50%
of all crystalline substances [2]. The most well-known triboluminescent substances are
sucrose [3], UO2(NO3)2·H2O [4], quartz [1], and ZnS [5]. Since the phenomenon was de-
scribed hundreds of years ago, nowadays, a significant amount of TL compounds is known.
However, the universal mechanism that would allow to define physical explanation for all
cases of transformation mechanical energy into light has not been discovered yet.

The development of new TL compounds is a notable step in the research of the phe-
nomenon mechanism description. The complexes of [Cu(NCS)(py)2(PPh3)] [6], EuD4TEA [7],
[Ru(bpy)3]Cl2 [8], and Mn(Ph3PO)2Br2 [9] are noteworthy exemplary substances, mainly
due to their visible triboluminescence and photoluminescence [10]. All of the presented
compounds have a coordination structure [6–9]. Moreover, uncomplicated preparation
increases the attractiveness of described substances [6].

The implementation perspectives of TL compounds are wide. The most outstanding
idea is the application of mechanical stress-responsive materials as sensing elements
for the new generation of force and damage sensors [11]. The external force-inducing
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luminescence might also be used as an efficient energy source for the photosensitive
reactions [12]. Moreover, the advancement of triboluminescence-based systems might
be a chance for the development of new bioimaging techniques [13] and light-supported
therapies [14].

This work constitutes a short literature review on the synthesis, spectroscopic,
and physicochemical properties of the selected transition metal complexes and polymer-
doped systems. Moreover, special attention has been paid to the TL measurement system
and implementation perspectives of the triboluminescent compounds.

2. The (Un)known Mechanism of Triboluminescence

The triboluminescence seems to be an uncomplicated phenomenon. Unfortunately,
precise observation of TL is difficult due to many variables and its short duration. Because
of the diversified properties of TL compounds and acquired divergent results, the universal
triboluminescence mechanism has not been described yet. The crystals undergo elastic
and plastic deformations and then crumble during cracking, which creates new surfaces
exposed to external stimuli. The electric potential can be generated by charged fracture
planes during the movement of charged particles or even by the potential difference be-
tween the crystal and crushing tool [15]. Impurities also affect the crystal symmetry and
charge distribution. Furthermore, in order to study triboluminescence, it is necessary to
take into account the environment in which the crystal is located, in particular the pressure
and type of surrounding gas [13]. The relatively small progress in the understanding
of triboluminescence is not too surprising, given so many variables. Many factors influ-
encing the described phenomenon have been investigated, and several mechanisms of
triboluminescence have been proposed, based on the obtained results.

Initially, the link between triboluminescence and piezoelectric crystals was sought [15].
Mechanical force creates a potential difference, which causes the electron movement.
As a result, the surrounding gas is excited [1]. This theory was confirmed for the first
sucrose triboluminescence, which was recorded in 1922 [13]. It was noticed that it is
identical to the emission spectra of N2 gas discharge. The experiment was repeated under
controlled conditions, in which the surrounding gas was neon. The sucrose was crushed
again and, as a result, the emission of red light was observed [14]. It was also noted that
the triboluminescence spectrum of photoluminescent substances consists of two parts:
(i) identical to the photoluminescent spectrum and (ii) identical to the other spectrum of
the excited gas [16,17]. Based on that, the following mechanism was proposed. If the
triboluminescent substance also characterizes the photoluminescent properties, the excited
gas will induce the PL of the substance. However, many cases contradict the described
theory. Indeed, there are compounds whose triboluminescent spectrum is identical to that
of the photoluminescent one, but without any hint of gas excitation [18]. On the other hand,
there are many piezoelectric materials in nature that do not exhibit triboluminescence at
all [1].

All tested solids create new surfaces and release electrons during fracture. The most
photoluminescent materials can be excited for less than 5 eV, in comparison to nitrogen,
where 11 eV are needed to excite. On this basis, it was concluded that the electrons re-
leased during the fracture cause photoluminescence and also gas excitation, if possible [1].
If the compound does not show photoluminescence, only the surrounding gas is excited.
There are many tribo-photoluminescent compounds with optimal excitation values below
300 nm. Therefore, it seems impossible for the compound excitation to occur because of
gas discharge, since the area of gas discharge emission is extremely weak in this range,
which confirms the described theory [1]. The proposed mechanism works for most tribolu-
minescent compounds, but there are some exceptions. For example, quartz exhibits visible
orange triboluminescence in the air [1].

The explanation of TL, which would be comprehensive for all types of compounds,
still has not been described. The advances in the triboluminescence phenomenon under-
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standing will enable to design of the materials and systems exhibiting specific TL properties,
which undoubtedly will pave the way for new implementation possibilities.

3. Synthesis of Triboluminescent Complex Compounds

One of the most significant advantages of this group of complex compounds is its
relatively fast (several hours) and uncomplicated preparation. The accessible and cheap
substrates and direct synthesis methods create new possibilities of process optimization.
Further research may affect the future implementation of triboluminescent substances in
various materials and areas.

3.1. [Cu(NCS)(py)2(PPh3)] Complex

There are two main preparation methods of the [Cu(NCS)(py)2(PPh3)] complex cur-
rently described in the literature, i.e., one- and two-step processes [6,16]. Despite the
superficial differences, the presented chemical reactions are based on the same general type
of formation.

The first discussed synthesis method is a one-step process schematically presented in
Figure 1. According to the provided literature information, 5 mL of hot pyridine containing
dissolved CuSCN (0.121 g; 1.0 mmol) and PPh3 (0.262 g; 1.0 mmol) were mixed for 3 h in
70 ◦C. It is important to maintain the temperature; otherwise, the [Cu(NCS)(py)2(PPh3)]
complex will not form. Carrying out the synthesis at room temperature leads to the
precipitation of the [Cu(NCS)(PPh3)] complex [6]. Afterward, the solution was slowly
cooled down, and half of the solvent was evaporated under the fume hood. During
the evaporation process, the pale yellow crystals started to precipitate, and they were
subsequently filtered out [6]. It is optional to cleanse the product with toluene [16].
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with permission from (J. Chem. Educ. 2012, 89, 5, 652–655). Copyright (2012) American Chemical
Society [6].

The reaction yield can reach even 80–90%, and it is possible to obtain well-formed,
colorless crystals by slowly cooling down the mixture from previously implemented higher
temperature (80 ◦C) [1]. The one-step synthesis method is the most frequently repeated
one [6,10,17].

3.2. EuD4TEA Complex

Hurt et al. were the first who synthesized the europium complex in 1966. They used
anhydrous europium chloride as a source of europium(III) ions [7]. In 2011, the europium
chloride was replaced with europium(III) nitrate to avoid chloride contamination in the so-
lution [19]. This modification significantly reduced the cost of the synthesis and contributed
to the improvement of TL properties of the europium(III) complex [19]. The discussed
synthesis is presented in Figure 2 [20]. According to Fontenot R.S. et al. [20], to obtain
the EuD4TEA complex, firstly, europium(III) nitrate (1.44 g, 4.0 mmol) was dissolved in
25 mL of heated anhydrous ethyl alcohol. Afterward, dibenzoylmethane (2.93 g, 13.0 mmol)
and triethylamine (2 mL, 14.0 mmol) were added to the solution and heated up to obtain
a clear solution. The mixture was left at room temperature to cool down. During a slow
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temperature decrease, TL crystals were formed. The following day, the product was filtered
out and left to dry.
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Furthermore, it is possible to modify the synthesis process of the TL europium complex
by using different solvents [21]. Dissolving europium(III) nitrate in acetonitrile or acetone
speeds up the synthesis, so it is not necessary to heat the solution. Using acetone leads
to the precipitation of a small crystalline product, but after harvesting it and leaving it to
crystalize, well-formed crystals are obtained. The solvent has an impact on the intensity
of triboluminescence and decay time of EuD4TEA [21]. Additionally, it was found that
replacing anhydrous ethanol with laboratory ethanol has no impact on the TL results [21].

Moreover, doping EuD4TEA complex with organic substances such as piperine,
DMMP, TEPS [20], uranium [22], or even multivitamin [23] affect TL properties, which is a
useful feature for further application as an element of sensors. The influence of organic
dopants will be discussed in chapter 6.

3.3. [Ru(bpy)3]Cl2 Complex

In some publications, authors used the purchased [Ru(bpy)3]Cl2 complex [24,25],
although it can be synthesized in several different ways. Sumana Bhar and Rajakumar
Ananthakrishnan prepared the Ru(II)-metal complex with 70% yield by following the
method in [8]. They dissolved 2,2′-bipyridine (0.234 g, 1.5 mmol) and anhydrous RuCl3
(0.104 g, 0.5 mmol) in distilled water. Then, freshly prepared sodium phosphinate solution
was added dropwise. The mixture was boiled for 30 min under reflux. During the reaction,
the color of the solution gradually changed from bluish-green to orange-red. The solution
with the crude product was filtrated and KCl (3.728 g, 0.05 mol) was added to the filtrate.
The mixture was heated up to the boiling point and stirred for a few minutes to obtain
a deep red solution. After cooling down to room temperature red product crystallized
out of the solution. The crystals were filtered, then washed from the residual impurities
with ice-cold 10% aqueous acetone and acetone. In the end, the crystals were air-dried.
The whole process is schematically presented in Figure 3.
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In the literature, similar synthesis routes can be found, in which some parameters,
such as reaction time, reducing agent, solvent, and inert gas, have been changed [25–27].
Frequently, the complex is given only as an intermediate product for which the yield is not
given [2].



Materials 2021, 14, 7142 5 of 26

3.4. Mn(Ph3PO)2Br2 Complex

This compound was synthetized in all known publications based on a method reported
by Goodgame D.L. et al. [9]. The manganese complex with bromides and triphenylphos-
phine was prepared by the one-pot method shown in Figure 4. The phosphine oxide
and manganous salt are mixed in a 2.2:1 molar ratio and then dissolved in 20–40 mL hot
absolute ethanol. The mixture was left to cool down and precipitate crystals. The product
was filtered out, washed with cold ethanol, and vacuum dried. The achieved yield was
equal to 60% [9].
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Infrared spectroscopy (IR) analysis of the product showed signals of P-O stretching—
1163 cm−1 and 1158 cm−1, which confirms the presence of the phosphine oxide in the
manganese(II) complex [9]. In the literature, another method was also described [25].
In fact, this method is an extension of the method described by Goodgame D.L. et al. [9].
First, 0.13 mol of triphenylphosphine oxide and 0.04 mol of MBr2 tetrahydrate were
dissolved in hot ethanol. Reagents were exactly stirred and refluxed at 60 ◦C for 1 h. Next,
the product was slowly cooled down to room temperature. The final mixture was filtered
and left in the ambient conditions for few days. After that, precipitated light green crystals
were filtered out, washed with cold anhydrous alcohol, and left to dry [25].

It is also possible to add some dopants to the crystals, for example HBr and HgCl2 [25].
In this case, in the first step, solutions of admixtures are added to the reaction mixture.
The rest of the procedure is the same as for the synthesis of pure Mn(Ph3PO)Br2 [25].

4. Chemical and Structural Analysis

Analysis of the fundamental structural properties may give an opportunity to describe
the details of the triboluminescence mechanism. Moreover, sufficient chemical and physical
properties are necessary for the application of given compounds.

4.1. [Cu(NCS)(py)2(PPh3)] Complex

The crystallographic structure of a triboluminescent compound may have a crucial
influence on the TL properties [18]. In the case of the described compound, the Cu+ ion
is surrounded by four electron-donor ligands: thiocyanate group, triphenylphosphine,
and two pyridine molecules (Figure 5a,b). The coordination number is equal to 4.
The NCS− group is bonded with the central atom by one electron pair of nitrogen atom [28].
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The morphology was described according to the scanning electron microscopy (SEM)
technique. The crystals have a triangular shape, of which the sides are characterized by
Gaussian distribution (Figure 5c). Side lengths were estimated in the range of (Figure 5d):

• d1: 100–25 µm;
• d2: 15–10 µm;
• d3: 40–20 µm [28].

The center of the molecule with Cu+ ion has distorted tetrahedral geometry [28].
The summarized values of the bond lengths and angles are presented in Table 1.

Table 1. Geometry of the [Cu(NCS)(py)2(PPh3)] molecule [10].

Bond Length (Å) Bond Angle (◦)

Cu-X 2.013(2) X-Cu-N(ar) 99.58(8)

Cu-N(ar)
2.091(2) X-Cu-P 106.70(6)

2.070(1) P-Cu-N(ar) 115.34(6)

Cu-P 2.1974(5) N(ar)-Cu-N(ar) 100.37(7)

S-C 1.638(2) Cu-N-C 157.4(2)

C-N 1.168(3) N-C-S 179.5(2)

Copper complex crystallizes in the P21 space group, which is part of the monoclinic
crystal system [28]. This structure is characterized by a lack of symmetry centers, which
is essential to enable the triboluminescence phenomenon. The edge lengths of an oblique
rectangular prism are as follows:
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• a = 9.4006(4) Å;
• b = 15.1492(7) Å;
• c = 10.2153(4) Å.

The angle of a slope between the sides and base is equal to β = 116.9660(10)◦ [28].
Infrared spectroscopy (IR) was used to perform the structural analysis (Figure 6a).

The substance exhibits strong absorption of pyridine at 1594 cm−1 and two absorption
peaks at 2065 and 748 cm−1, which is characteristic of NCS ligand, where the moiety is
linked to the copper via the Cu-N bond [6]. The signals localized at 1479 and 1434 cm−1

are characteristic of triphenylphosphine [6]. The solid-state NMR spectroscopy method
was also used. 31P CPMAS (cross-polarization magic-angle spinning) was also performed
and confirmed the structure of the compound [10]. The obtained 31P CPMAS parameters
are as follows: ρ = −7.2; ∆ν1 = 1537; ∆ν2 = 1568; ∆ν3 = 1581; <∆ν> = 1526; d = −11.00 Hz;
dνCu = 0.79 × 10−9.
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Chemical Society [6].

The described copper complex exhibits sufficient thermal stability (Figure 6b) up to
the temperature of 75 ◦C. Above this value, the sample weight reduction is observed,
which is related to the complex decomposition. The first step of the degradation process
is based on one pyridine ligand detachment. Next, at a temperature range of 114–120 ◦C,
the second pyridine moiety is being detached. The final step of the copper complex thermal
degradation occurs in a range of 150–330 ◦C, where the PPh3 and CuNCS parts, are being
separated. At the higher temperature, the colorless CuNCS is stable [6]. According to the
literature [16], the melting point of the considered compound was observed at 165–167 ◦C.

The solubility of the copper complex was investigated as well. Its crystals dissolve
in pyridine, chlorinated solvents, acetonitrile, DMSO [6], and chloroform [16]. However,
the compound is resistant to moisture and air [6].

4.2. EuD4TEA Complex

The Eu3+ ion is coordinated with eight dibenzoylmethane’s oxygen atoms, so the
coordination number of EuD4TEA is equal to 8 [29]. Those coordination bonds create
tetrabidentate anionic europium(III) complex. To equalize the charge of the molecule the
structure is protonated with triethylammonium molecule (Et3NH+) [29]. The protonated
tertiary ammonium group is responsible for its strong triboluminescent properties [7].
The molecule structure is presented in Figure 7a [29]. The hydrogen bonds between the
Et3NH+ group and oxygen have a strong impact on stabilizing the long-range structure
of the complex. The EuD4TEA was investigated using scanning electron microscopy
(SEM) [29]. The SEM imagine (Figure 7b) represents a large agglomerate, which is built



Materials 2021, 14, 7142 8 of 26

with smaller rectangular crystals. The size is characterized by Gaussian distribution
(Figure 7c). According to the data, the average size estimates are 400–30 µm [29].
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The structure of the EuD4TEA complex was solved and the space group was defined
as P21, which is part of the monoclinic crystal system. The coordination geometry is
square-antiprismatic [29]. Details of molecule geometry are presented in Table 2.

Table 2. The geometry of the EuD4TEA molecule [29].

Bond Length (Å) Bond Angle (◦)

Eu1-O1 2.365(16) Eu1-O8 2.366(16)

Eu1-O3 2.369(15) Eu1-O6 2.386(16)

Eu1-O2 2.385(17) Eu1-O7 2.401(16)

Eu1-O4 2.402(13) Eu1-O5 2.421(17)

O8-Eu1-O6 109.7(6) O3-Eu1-O6 70.3(6)

O3-Eu1-O7 121.5(5) O8-Eu1-O7 72.3(6)

O2-Eu1-O4 70.2(6) O1-Eu1-O4 75.1(5)

O2-Eu1-O5 71.2(6) O1-Eu1-O5 71.2(6)

The unit cell dimensions are as follows:

• a = 9.0297(7) Å;
• b = 24.830(3) Å;
• c = 25.203(2) Å [29].

The angle of a slope between sides and the base is equal to β = 91.323(3)◦, and the
volume is 5649.2(9)◦ Å3 [29].

The TL properties of the described EuD4TEA complex depend on the europium
salt used in the synthesis [19]. The use of the europium(III) chloride not only extends
the synthesis time and increases the cost, but also deteriorates TL emission. Two of the
same parallel syntheses, which are differing only in the use of europium(III) salt, were
made. In the reaction ethanol was used as a solvent. TL spectra of the products were
measured (Figure 8) [19]. The intensity of emission increased by 82% for EuD4TEA crystals
doped with europium(III) nitrate. Moreover, the yield of synthesis increased, because the
unnecessary step of washing out chlorides was omitted [19].
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4.3. [Ru(bpy)3]Cl2 Complex

Ru(II)-metal complex is a valuable material for triboluminescence investigation, es-
pecially due to the well-described structural properties [24,31,32]. The substance shows a
strong absorption band around 2370 cm−1, and several minor bands between 1500 cm−1

and 1800 cm−1 (Figure 9a) [31]. Transition metal complexes are difficult to analyze by mass
spectrometry mainly due to their tendency to reduction during ionization and low volatility.
Viswanatham Katta et al. analyzed the ions of transition metal complexes with electrospray
ionization. They obtained spectra of [Ru(bpy)3]Cl2 (M = 641 g/mol) by electrospraying a
15 pmol/pL solution in acetonitrile. Figure 9b shows MS spectra with a low level of colli-
sional activation; the peak at m/z 285 corresponds to the Ru(bpy)3

2+ ion [32]. Full 1H NMR
spectrum (400 MHz) of Ru(II)-metal complex in D2O was obtained at room temperature.
The clear signals coming from the 2,2′-bipyridine system were found (Figure 10) [24].
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Kian Sing Low et al. analyzed a few Ru and Fe complexes by X-ray diffractometer.
In [Ru(bpy)3]Cl2, the ruthenium ion is surrounded by three bidentate bipyridyl ligands,
which are electron donors. The coordination number of the central atom is equal to 6.
The chemical structure and crystal-packing diagram are presented in Figure 11.
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The ruthenium complex exhibits typical octahedral deformation, the bond lengths
are Ru–N [2.065 Å], C–C [1.454 Å], N–C [1.345 and 1.366 Å], N–Ru–N bite angle is 79.0◦,
and N–C–C–N torsion angle is [−4.5◦] and [−5.0◦]. Other data are collected in the Table 3.

Table 3. [Ru(bpy)3]Cl2·6H2O crystal data [33].

Crystal Data Data Collection

Chemical formula C30H24N6RuCl2·6H2O Tmin, Tmax 0.676, 1.000

Mr 748.62 No. of measured, independent and
observed [I > 2σ(I)] reflections 11 174, 1220, 994

a, c (Å) 13.1383 (12), 20.995 (3) Rint 0.084

V (Å3) 3138.6 (6) θ values (o) θmax = 27.5, θmin = 3.7

F(000) 1536 (sin θ/λ)max (Å−1) 0.650

Dx (Mg m−3) 1.584 Refinement

µ (mm−1) 0.72 R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.153, 1.09

Crystal size (mm) 0.21 × 0.16 × 0.12
No. of reflections 1220

∆pmax, ∆pmin (e Å−3) 0.98, −0.56

4.4. Mn(Ph3PO)Br2 Complex

The described complex contains the Mn+II ion surrounded by two Br− ions and
two triphenylphosphine oxide, which are bonded with the metal atom by oxygen atoms
(Figure 12). The coordination number is equal to 4. Molecules of the Mn(Ph3PO)2Br2
crystallize as a mononuclear structure in a polar space group P1, so the manganese(II)
complex has a non-centrosymmetric structure. Cell parameters were defined as follows:

• a = 10.013(7) Å;
• b = 10.253(7) Å;
• c = 10.564(6) Å.
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Additional data are collected in the Table 4. Unit cell angles are as follows: α = 65.31(6)◦,
β = 63.75(5)◦ γ = 89.72(7)◦ [34].
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Table 4. Geometry of the Mn(Ph3PO)2Br2 molecule [9].

Bond Length (Å) Bond Angle (◦)

O–Mn–O 101.7(2)

Mn–O
2.036(5) O–Mn–Br 109.8(2)

2.027(5) O–Mn–Br 114.2(2)

Mn–Br
2.467(1) O–Mn–Br 103.7(2)

2.475(1) O–Mn–Br 111.6(2)

Br–Mn–Br 114.95(5)

The FTIR analysis of the products showed a peak at 1155 cm−1, which is caused by
stretching of the P=O group. Two bands at 3051 and 1595 cm−1 indicate the presence
of aromatic rings in triphenylphosphine. Another doublet signal at 726 and 686 cm−1 is
caused by Mn–O stretching and bending [25].

5. Photo- and Triboluminescence Phenomena
5.1. TL and PL of the [Cu(NCS)(py)2(PPh3)] Complex

The photoluminescent properties of the [Cu(NCS)(py)2(PPh3)] were first visually
assessed. It is possible to observe strong photoluminescence of crystals with an excitation
wavelength of 365 nm. Claudio Pettinari et al. compared the photoluminescence properties
of the several copper complexes, including [Cu(NCS)(py)2(PPh3)] [10]. Each of them
showed a broad absorption band localized at 370–490 nm. The maximum of the emission
band was observed at 496 nm (Figure 13) [28]. Additionally, the authors measured the
emission decay time, which was 5.8 ns [10].
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the acquired excitation spectrum is shown as empty squares. Reprinted (adapted) with permission
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In another work, two emission bands were observed—at 479 nm and 587 nm [16].
All of the photoluminescence spectra presented in the literature coincide to a large extent;
however, minor differences occurred. It may be due to the distinctions in the purity of the
tested compounds, measurement conditions, and used apparatus.
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The [Cu(NCS)(py)2(PPh3)] complex shows one of the strongest triboluminescent
properties among the already known compounds, which makes their observation possible
in daylight. The emitted light takes a blue-green color (Figure 14) [6].
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glass rod.

The triboluminescence spectrum is shifted by 10 nm towards lower energy compared
to the photoluminescence one; thus, maximum emission of TL occurs at 500 nm (Figure 13).
The full width at half-maximum (FWHM) of the triboluminescence spectrum is 90 nm,
which is 23 nm smaller than the same parameter of the PL. No other significant differences
were noted between the intensity of the triboluminescence and photoluminescence emis-
sion [28]. Measurements were performed using a specially designed system described in
Section 7 of the article.

5.2. TL and PL of the Europium Complex

Under UV light irradiation, strong red photoluminescence of the EuD4TEA complex
is observed. The wavelength of the maximum emission is 612 nm, which corresponds to
5D0 → 7F2 transition in Eu3+ ions. Additionally, transitions from 5D0 to 7F1, 7F3, and 7F4
occur [23].

The light emitted during the mechanical deformation of crystals takes a red color,
and it is caused by the typical Eu4+-centered 5D0 → 7F0−4 transitions, but mainly
5D0→ 7F2 transitions (Figure 15b) [35]. The TL and PL spectra are presented in Figure 15a [35].
Maximum emission of TL occurs at 614 nm. The obtained spectra exhibit significant simi-
larities; however, TL has a lower intensity. Due to the end of the spectrometer’s measuring
range, the signal coming from 5D0 → 7F4 transition has not been recorded [35].
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measured maximum of the emission upon 450 nm excitation wavelength was 519 nm [37]. 
The lifetime of the excited ionic state marked as *N2, *[R(bpy)]2+ was 40 µs (Figure 17). 
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solution as 0.044 [38]. 

Figure 15. (a) TL (red line) and PL (black line) emission spectra of EuD4TEA complex. (b) Energy diagram of Eu4+ [35].

The EuD4TEA exhibits one of the highest triboluminescence intensities among all
currently known substances. The bright emission is noticeable in daylight and the inten-
sity is 106% stronger than the most popular triboluminescent compound—ZnS:Mn [36].
The relative light yield of the europium(III) complex is 42 146± 7784 and ZnS:Mn 20 426 ± 1294
(Figure 16). The described measurements were performed with samples made with eu-
ropium(III) nitrate [36].
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Figure 16. TL light yield results for chosen materials. Reprinted from: Fontenot, R.S.; Hollerman,
W.A.; Aggarwal, M.D.; Bhat, K.N.; Goedeke, S.M.A. versatile low-cost laboratory apparatus for
testing triboluminescent materials. Measurement. 2012, 45, 431–436. Reprinted with permission from
Elsevier [36].

5.3. TL and PL of the [Ru(bpy)3]Cl2 Complex

Photoluminescent properties are observed in the [Ru(bpy)3]Cl2· · · 6H2O complex
because of the presence of the [Ru(bpy)3]2+ cations [24]. Glyus L. Sharipov and Adis
A. Tukhbatullin described fundamental spectroscopic properties of the obtained com-
plex. The measured maximum of the emission upon 450 nm excitation wavelength was
519 nm [37]. The lifetime of the excited ionic state marked as *N2, *[R(bpy)]2+ was 40 µs
(Figure 17). Kalyanasundaram K. reported the quantum yield of the described complex in
an aqueous solution as 0.044 [38].
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Tukhbatullin A.A.; Triboluminescence of tris(2,2′-bipyridyl)ruthenium(II) dichloride hexahydrate. Jour. of Lum. 2019, 215,
116691. Reprinted with permission from Elsevier [38].

The triboluminescence spectrum of [Ru(bpy)3]Cl2 · 6H2O consists of two parts (Figure 17).
The first one comes from the emission of N2, while the second one is similar to the pho-
toluminescence of the complex. The similarity of the TL and PL spectra is caused by
the *[Ru(bpy)3]2+ ion excitation; however, the excitation mechanisms are different [37].
The theories of the triboluminescence fundamentals are described in Section 2.

[Ru(bpy)3]Cl2· · · 6H2O crystals are asymmetric [38], which makes this compound
a particularly valuable material for TL investigation. According to one of the postu-
lated theories, only centrosymmetric compounds exhibit triboluminescence, so the non-
centrosymmetric crystal with strong triboluminescence sheds new light on the topic [38].
Moreover, the correlation between the degree of fragmentation and TL intensity has not
been observed [37], which has been reported for centrosymmetric crystals [39].

Glyus L. Sharipov and Adis A. Tukhbatullin reported triboluminescence spectra in
specific gas environments, such as neon and argon (Figure 18). The obtained TL spectrum
under neon exhibits intense emission corresponding to excited neon and, in addition,
from N2 excitation. A similar effect is observed in the argon environment; however,
the weak emission from excited *[Ru(bpy)3]2+ ion (620 nm) is still visible. The ion emission
in the neon environment is not reported due to a strong Ne emission. The observed nitrogen
emission can be caused by N2 molecules absorbed on the surface of the material [37].

The TL spectrum was also collected in O2 atmosphere (Figure 19). The reported
emission from N2 was suppressed, while the emission from excited ion *[Ru(bpy)3]2+

was unchanged. On this basis, it was found that the excitation of the complex is not caused
by absorption of the energy emitted by the excited N2 molecules.
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Figure 19. TL spectra of [Ru(bpy)3]Cl2: (a) in O2 atmosphere and (b) at 300–440 nm during injection
of Ar under pressure up to 130 kPa. The emission peaks corresponding to the excited gases and ions
are marked with *N2, *[Ru(bpy)3]2+, *OH symbols. Reprinted with permission from Elsevier [37].

5.4. TL and PL of the Manganese Complex

The excitation spectrum of the Mn(Ph3PO)Br2 contains a broad band between 250 and
350 nm. It is caused by π–π* transition in the compound [25]. Photoluminescence of the
manganese(II) complex could be explained by using ligand field theory. The maximum
emission is recorded at 510 nm, which is caused by 4T1 → 6A1 transition [9]. As a result of
the mechanical interaction, green emission is observed. The excitation and PL spectra are
presented below (Figure 20).
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Figure 20. Excitation and photoluminescence spectra of the manganese(II) complex [34].

The photoluminescence efficiency of the manganese(II) complex can be affected by
doping. HBr-doped compounds exhibit brighter emission and higher efficiency. On the
other hand, a compound doped with HgCl2 performs weaker photoluminescence than an
undoped complex. The decrease in emission could be caused by the presence of chlorine
ions, which provide more non-radiative decay pathways [25].

The emission also decreases with the increase of surrounded gas pressure [40–42].
The measurements were performed with a modified Drickamer Type I high-pressure
optical cell.

Mn(Ph3PO)2Br2 complex shows a strong triboluminescent. Emission maximum occurs
at 510 nm. Triboluminescence spectrum shape is conforming to the photoluminescence
spectrum (Figure 21) [41]. The emission lifetime of triboluminescence is equal to 602 µs [9].
Measurements were performed using a specially designed system described in Section 7.
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Ligands in the complex structure have a significant impact on the luminescent prop-
erties. Interestingly, changing from Br− ions to Cl− causes the disappearance of the
photoluminescence properties, although Mn(Ph3PO)2Cl2 still possesses efficient tribolumi-
nescent properties (Figure 22). For the manganese(II) complex with chlorine anions as a
ligand emission maximum is shifted to 520 nm [9].
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6. Various Stimuli Affecting the Triboluminescence

The common method for TL measurements utilizes a drop tower, where a falling
object with defined weight is a cracking sample. Then, generated radiation is collected
by a dedicated spectrometer. The details of the TL measurement system are described in
Section 7.

Regardless of the impact force, the maximum intensities oscillate at wavelength values
close to 496 nm. The spectrum shape of [Cu(NCS)(py)2(PPh3)] complex also remains
unchanged. For the larger impact force, a higher intensity of the triboluminescence is
observed. Between the smaller applied force (0.98 N) and the largest one (4.98 N), more
than twice higher TL intensity was observed (Figure 23) [28,42].

Moreover, it has been shown that the TL emission depends on the crystallites size [28].
Each successive hit causes fragmentation of the crystalline material, which reflects the
decrease of the triboluminescence intensity during the subsequent attempts [28]. The SEM
pictures of the crystalline particles captured before the TL measurement and after the
first, third, fifth, and eighth attempts are shown in Figure 23c. A Gaussian distribution
was fitted for mean diameters, yielding results of 120 ± 20, 100 ± 15, 80 ± 12, 50 ± 10,
and 30 ± 8 µm for the abovementioned hit numbers, respectively.

Combining the polymer matrix with photoluminescent and triboluminescent com-
pounds, and their influence on the examination of optical properties has been recently
reported in the literature [28,42]. It was extensively investigated what kind of effect may
influence the triboluminescence phenomenon when placing the [Cu(NCS)(py)2(PPh3)]
complex in another material. The Cu(I) complex was used in composites with different
polymers and also placed inside the hydrogels structures [28,42].
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images (scale bar = 400 µm) and corresponding particle size distribution of the Cu(I) complex before and after mechanical
action; top inset shows images of crystals before and after UV light exposure. Reprinted (adapted) with permission from
(J. Phys. Chem. C 2017, 121, 21, 11709–11716). Copyright (2017) American Chemical Society [28].

6.1. Polymer Mats Coated with a Triboluminescent Compound

To create a material with the triboluminescent properties, crystalline particles of
the Cu(I) complex were deposited on the surface of electrospinning mats, made of four
polymers: poly(methyl methacrylate) (PMMA), polystyrene (PS), polyurethane (PU), and
poly(vinylidene fluoride) (PVDF). Spectroscopic measurements of TL were performed with
the same tower system, as in the case of pure crystalline material (Figure 24).
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Figure 24. SEM (a,b) and FM (c,d) images (scale bar = 200 µm) of the composite mats prepared by both surface impregnation
(a,c) and blending (b,d) [28]; (e) TL emission of the composites prepared by PMMA, PS, PVDF, and PU as a function of the
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Depending on the used polymer, different emission intensities were obtained. Tribolu-
minescence intensities for the first impact are 1200, 2500, 4000, and 2750 counts per second
for materials based on PMMA, PS, PU, and PVDF, respectively [28]. For all used composites
(polymer mats/copper complex crystals), the triboluminescence signal is visible when the
same sample is mechanically treated several times. For PMMA, PS, PVDF, and PU, tribo-
luminescence response was observed for three, five, six, and eight impacts, respectively.
For all of the subsequent samples, maxima and spectra shape are the same, but the intensity
gradually decreases as the composite becomes quenched [28]. In addition, composite mats
were also fabricated by another method. In this alternative approach, called blending,
the [Cu(NCS)(py)2(PPh3)] crystals were dissolved in a polymer solution, and the homo-
geneous mixture was used to make electrospinning mats. Interestingly, the composites
prepared by the blending method exhibited none of TL response [42]. Probably, during the
dissolving process, the molecules of the copper complex dispersed in the polymer, which
led to the loss of the long-range crystal structure. Differences between these two tech-
niques are also visible in the SEM pictures (Figure 25a,b) and under a fluorescence micro-
scope (Figure 25c,d). During imaging with fluorescence microscopy (FM, λexc. = 365 nm),
the samples of polymer substrates exhibited no luminescent properties, so the acquired
colorful emission visible in the photos comes from the copper(I) complex. The surface
impregnation process (Figure 25c) leads to creating local areas with higher intense emission,
which is caused by advanced aggregation and complex particle deposition. For comparison,
a composite obtained by blending (Figure 25d) shows a homogeneous luminescence over
the entire surface of the fibers, which indicates dispersion of the copper(I) complex in
the polymer matrix at the molecular level. This result implies an important connection
between the crystalline structure and triboluminescent properties [28]. The PU fibers were
the thinnest ones among the tested polymers. This probably contributed to the decrease
in interfiber space, reduction of the sieving effect, and as a consequence, the deposition
of more crystals. It is also possible that chemical affinity between the PU matrix and
the copper(I) complex occurred [28]. The summarized parameters of enriched polymer
triboluminescent mats are presented in Table 5.
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Table 5. Photophysical properties for the [Cu(NCS)(py)2(PPh3)] complex and its composites with polymeric mats (Φf—
absolute fluorescence quantum yield, Eopt—optical band gap, FWHM—full width at half-maximum, λTL

em —maximum TL
emission wavelength, λPL

em —maximum PL emission wavelength) [28].

[Cu(NCS)(py)2(PPh3)] λPL
em (nm) FWHMPL λTL

em(nm) FWHMTL Eopt (eV) Φf (%)

solid bare 490 113 500 90 2.92 98.0

surface-
impregnated

PMMA 490 113 497 87 3.06 30.8

PS 490 107 496 85 3.05 34.7

PU 497 116 498 86 3.05 87.7

PVDF 490 112 496 85 3.00 52.9

blended

PMMA 512 130 NA NA 3.44 0.28

PS 519 127 NA NA 3.53 0.50

PU 525 140 NA NA 3.57 1.75

PVDF 519 143 NA NA 3.55 0.86

In conclusion, it has been shown that the surface impregnation technique makes it pos-
sible to prepare homogeneous triboluminescent composites, where light emission depends
on the polymer substrate type. Out of the used composites, the best triboluminescence
properties were given by surface-impregnated PU. This shows that these materials can be
applied in practice as, e.g., pressure sensors [11].

Apart from plane polymer mats, it is possible to receive three-dimensional polymeric
structures with triboluminescence emission [43]. Hydrogels can be used for this purpose.
Samples were synthesized using acrylamide (AA), and its derivatives as monomer.
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Solutions of N-(hydroxymethyl)acrylamide (NHMA) and N-isopropylacrylamide
(NIPAM) were combined with N,N′-methylenebisacrylamide (MBA) and ammonium
persulphate (APS) as a reaction initiator, respectively. N,N,N′,N′-tetramethylethyldiamine
(TEMED) was used as a cross-linker of polymers. Then, the Cu(I) complex crystals were
added. The solutions were poured into a Petri dish and left to polymerize overnight at
room temperature [42].

The performed approach affected the TL properties. Namely, the growth of tribo-
luminescence intensity was observed for all types of hydrogel samples compared to the
pure Cu(I) complex. Moreover, the luminescence was more intense in the case of water
treatment. The brighter light was emitted if the gel was placed underwater in a shorter time.
Among monomers used in synthesis the NIPAM one was stood out, whose polymer matrix
with Cu(I) complex achieved the highest TL emission time from all the investigated sam-
ples (Figure 26). NIPAM and ligands of the copper(I) complex have typical hydrophobic
properties. Hence, such an approach may enhance the total emission time [42].
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The triboluminescence aberrations can also come from the optical properties of the
utilized polymer medium, which could easily propagate, scatter, or refract the emitted light.
Hydrogels have greater optical density and viscosity compared to the surrounding air
environment. These parameters’ growth intensifies triboluminescence emission. Moreover,
the Cu(I) complex crystals suspended in the gel are separated from each other and kept a
crystalline structure [42].

6.2. Dopant Implementation

Triboluminescent properties can be modified by the inclusion of organic dopants
during the synthesis. Zeng X.R. et al. reported on a morphine-doped EuD4TEA complex
exhibiting eight times higher triboluminescence than pure sample [43]. Moreover, the effect
of piperine, DMMP, and TEPS doping was widely studied by Fontenot R.S. et al., who
reported the influence of the dopants on TL yield, crystals morphology, synthesis time,
and TL decay time [20]. The implementation of the piperine, which had been chosen due
to its similarity to morphine, does not have a significant influence on the TL properties of
the material. However, DMMP-doped material exhibits a 55% higher TL yield, whereas
TEPS inclusion quenches the emission by 46% [20].

The measurements of photo- and triboluminescence show no influence of dopants
on spectra. For both experiments shifts of the characteristic emission peaks are not ob-
served. According to the authors, implemented dopants play the role of the co-activator or
quenching agents [20].

Broad possibilities of the complex properties modification by doping with organic com-
pounds significantly extend the implementation perspective. Even inclusion of unusual sub-
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stances such as common multivitamin remarkably affects TL properties [23]. The influence
of the series of organic compounds was widely described by Fontenot R.S. et al. [44].

7. Experimental Setup for the Triboluminescence Measurements

The TL measurement setup contains two fundamental elements: the first one is
responsible for the force application and the second allows to perform the emitted radiation
analysis. Although the TL measurement’s methodology is simple and the triboluminescent
compounds are omnipresent, there are no commercially available setups for this type of
experiment. It causes the need for a framework design and manufacturing by each of the
research groups. The most commonly used type of triboluminescence measurement system
is based on a drop tower in which the dropping ball constitutes a source of the mechanical
force (Figure 27). The potential energy of the ball changes into kinetic energy, which is then
transferred to the sample. By changing the height of the drop, it is possible to manipulate
the energy of the interaction. The mechanical force implementation causes light emission.
The emitted light is transferred via a fiber optic to a spectrometer, where induced radiation
is collected and analyzed [36].
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Figure 27. Representation of a drop tower used for the measurement of triboluminescence
properties [36].

The undoubted advantage of the presented type of measurement system is an un-
complicated construction and its low manufacturing cost. The tunable height of the drop
makes it possible to measure the influence of the conditions on the induced emission.
As indicated in the previous part of the paper, the applied mechanical force is one of the
stimuli which straightforwardly influences the triboluminescence properties [10,28]. Due
to the simple setup construction, its modification is feasible. The drop tower can be used
for both crystal powder and matrices doped with triboluminescent compounds. The im-
plementation of the sealing system can allow for TL measurements in pure gas conditions.
The significant influence of this stimulus has been observed previously [45]. However,
the [Cu(NSC)(py)2(PPh3)] complex has not yet been tested in this way. The pure gas measure-
ments may become an essential element of the triboluminescence mechanism description.

8. Perspectives of TL Implementation

Triboluminescent compounds have a wide range of applications. One of the most
promising is designing a new group of mechanical force and stress sensors based on TL
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materials. An exemplary sensing system described by D. Olawale et al. is based on a
manganese-doped zinc sulfide (ZnS:Mn) and can be used for concrete elements’ damage
monitoring [11]. The proposed solution uses the connected fiber optics system, which
is covered with the TL material in specific areas. The structural damages lead to light
generation, which is, in the next step, detected by an electronic system monitoring the
whole network of fiber optics. The proposed solution may have particular use in registering
seismic damages of buildings [11].

Moreover, wind flow can be used to achieve a mechanoluminescence response. Jeong
et al. designed elastic-ML materials, which consists of the multicolored ZnS:Cu microparti-
cles embedded in PDMS fiber. This composite can be applied in wind-activated, energeti-
cally independent displays and lightning systems [46].

N. Terasaki et al. researched mechanoluminescent nanoparticles, which can be useful
in bioimaging. Followed by the triboluminescence generation with ultrasonic waves,
the compound can monitor the work of the digestive system [13]. Triboluminescence can
also be used as a light source for a fluorescent probe. Ceramic TL materials that stay inside
the body, or cells activated by ultrasounds emit light, influence organic dye molecules [47].
Furthermore, using ultrasound techniques these compounds found the application in light-
supported therapies [13]. Additionally, the triboluminescent compounds have potential
application in catalyzing photosensitive reactions. A method has been developed to
synthesize stable SAOE-Zr-TiO2 by TL generation in situ. The obtained hybrid material is
based on europium doped strontium aluminate (SAOE) with TiO2 nanoparticles [12].

The process of designing and manufacturing many types of solutions, especially
sensors, is primarily based on the well-known materials’ properties changes under the
influence of an external stimulus. The development of TL-based devices and techniques
is significantly straightened due to the unknown nature of the triboluminescence phe-
nomenon. Obtaining new triboluminescent materials may shed new light on the possible
definition of the mechanism of stress-induced light emission.

9. Conclusions

In this contribution, we have described the variety of transition metal coordina-
tion complexes, which are excellent examples to study the triboluminescent mechanism.
In the article, we paid attention to synthesis routes, various spectroscopic product analyses,
as well as TL and PL measurements discussion. Moreover, the triboluminescent properties
dependent on external factors, for example, embedded in the polymer mats, were presented.
We found that the described compounds do not require a complicated synthesis apparatus
and procedure. It can be received in a common laboratory with a simple working fume
hood. Mainly, the synthesis is just a one- or two-step procedure. As discussed in this short
review compounds have appealing spectroscopic properties, such as significant and visible
TL and PL, which leads to many practical applications. This could help in further research
on the TL mechanism, which would allow defining universal explanation or clear division
for all cases of transformation mechanical energy into the light in different class materials.

Development in this field is crucial for further implementation. Currently, there
are promising results; however, without additional knowledge about the nature of the
considered phenomenon, it is impossible to fully exploit the triboluminescence potential.
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