
1.  Introduction
Heat has been used as a tracer to estimate groundwater/surface-water exchange and hydraulic properties since 
pioneering work by Stallman in the 1960s (Anderson, 2005; Constantz, 2008; Stallman, 1965). The measure-
ment technology (e.g., thermistors and thermocouples) is relatively inexpensive, long-term field installations are 
possible, and data analysis is straightforward. The increasing interest in hyporheic, hypolentic, and hypopaludal 
processes over the last two decades has led to burgeoning applications of heat tracing below the sediment water 
interface (e.g., Anderson, 2005; Briggs et al., 2013; Constantz, 2008; Rau et al., 2014). Tools for data analysis 
are well established and some are available within the public domain (Gordon et al., 2012; Koch et al., 2016; 
Voytek et al., 2014). Data analysis commonly involves (a) calibration of numerical or analytical models of heat 
transport to infer specific discharge associated with groundwater/surface-water exchange (Koch et  al.,  2016; 
Lapham, 1989; Voytek et al., 2014) or (b) analysis of the amplitude phase of signals extracted from temper-
ature time series, which are then related to specific discharge through analytical models (Gordon et al., 2012; 
Schneidewind et al., 2016). We briefly review each of these two data analysis approaches as formulated within 
the existing tools 1DTempPro and VFLUX.

The 1DTempPro software package (Koch et al., 2016; Voytek et al., 2014) was written in C# for the Windows 
platform and provides a framework to calibrate a numerical model of heat transport to temperature time series 
collected at different depths below the sediment/water interface; this code allows for consideration of heteroge-
neity of hydraulic and thermal properties, complex (non-sinusoidal) boundary conditions, and abrupt changes 
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in exchange rate. Such abrupt changes can result from extreme weather driving rapid stage fluctuations, dam 
control on stream flows, or any flashy system. Model calibration is performed manually or by nonlinear regres-
sion. Estimation of time-varying discharge in 1DTempPro is cumbersome and commonly entails the independent 
analysis of manually windowed subsets (days to week) of long-term seasonal data sets. 1DTempPro provides 
a graphical interface for the VS2DH model. The finite difference scheme used by VS2DH is described in the 
following section.

The VFLUX MATLAB-based software package (Gordon et al., 2012; Irvine et al., 2015) provides a framework 
to extract signal amplitude and phase from temperature time series collected at different depths using dynamic 
harmonic regression (DHR). In DHR, a Kalman Filter (KF) algorithm (Young et al., 1999, 2004) is used to 
identify the time-varying amplitude and phase of a finite number of sinusoids that, superposed, optimize the 
fit to observed temperatures. Assuming an analytical model for heat transport, the extracted time-varying 
amplitude decay and (or) phase versus depth are related to discharge. Algorithms have been developed to use 
amplitude or phase or both amplitude and phase (e.g., Irvine et al., 2015). Compared to 1DTempPro, VFLUX 
and related signal-extraction methods (e.g., Hatch et al., 2006; Keery et al., 2007; Schneidewind et al., 2016) 
are better suited to the estimation of time-varying discharge. Signal extraction, however, can prove problem-
atic in the presence of episodic forcing (e.g., storm events) and during times of year when sinusoidal signals 
are naturally weak or when the vertical temperature gradient is small (Irvine et al., 2015; Lautz, 2012; Rau 
et al., 2015). In groundwater-upwelling zones, signals are also strongly attenuated with depth and may not be 
identified with DHR below approximately 15  cm under most conditions using typical temperature sensors 
(Briggs et al., 2016). In practice, DHR is subject to leakage and may impede recovery of abrupt changes in 
flux (Glose et al., 2021; Koch et al., 2016), but multifrequency signal extraction, for example, van Kampen 
et al. (2022) can mitigate these limitations. Reliance on simple analytical models to relate amplitude and (or) 
phase to discharge precludes consideration of heterogeneity, artificial heating sources, and the dependence of 
physical properties on temperature.

Here, we propose a recursive-estimation framework (Figure 1) to identify time-varying specific discharge asso-
ciated with groundwater/surface-water exchange. This approach uses: (a) a state-space model (SSM) of heat 
transport and (b) Kalman-based algorithms commonly used in control engineering (Brown & Hwang,  2012; 
Gelb, 1974; Simon, 2006) and time series analysis (Durbin & Koopman, 2012; Harvey, 1990). In the former 
context, Kalman-based approaches recursively predict the future states of a dynamical system (e.g., a circuit 
model or kinematic model of a vehicle's motion) and their covariance using both a process model and meas-
urements. In the latter context, the same mathematical procedure is used for a time series model (e.g., ARIMA 
or Box-Jenkins) rather than a physics-based process model. Our approach therefore can be viewed as a hybrid 
between calibration of rigorous process models (e.g., 1DTempPro) and digital signal processing (e.g., VFLUX), 
and subsequent analysis with analytical models. Indeed, our formulation offers the strengths of both: (a) compu-
tational efficiency for estimation of time-varying discharge, discretized based on the measurement interval; (b) 
resolution of abrupt changes in discharge; (c) consideration of complicated time-varying boundary conditions; 
and (d) quantitative assessment of estimation uncertainty offered by the posterior state covariance matrix in the 
Kalman-based approach.

2.  Methods
Heat transport below the sediment/water interface is commonly described using the one-dimensional (1D) 
convection/conduction partial differential equation (PDE) (after Constantz, 2008):

𝐶𝐶𝑠𝑠
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐾𝐾𝑇𝑇

𝜕𝜕2𝑇𝑇

𝜕𝜕𝜕𝜕2
− 𝐶𝐶𝑤𝑤𝑞𝑞

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
,� (1)

where KT is thermal conductivity of bulk sediment (W/(m °C)), Cw is volumetric heat capacity of water (J/(m 3 
°C)), Cs is the volumetric heat capacity of the bulk sediment (J/(m 3 °C)), T is temperature (°C), t is time (s), 
z is vertical position (m), and q is specific fluid discharge (m/day). We note that Equation 1 neglects thermal 
dispersion per common practice although consideration of dispersion is straightforward. Analytical solutions to 
the PDE are available for idealized boundary conditions and homogeneous properties (e.g., Luce et al., 2017). 
We note also that the 1D assumption is commonly used and justified (e.g., Lautz, 2010; Reeves & Hatch, 2016) 
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for heat tracing although such simplifications can, in general, introduce error 
in other contexts (Sinsbeck & Tartakovsky,  2015). Numerical approaches 
(e.g., finite-difference or finite-element) allow for consideration of complex 
boundary conditions and (or) heterogeneous properties. Although Equation 1 
is written for homogenous and temperature-independent properties, this is 
not a requirement for numerical models. For the heat tracing problem consid-
ered here, the model domain is within the sediment layer with boundary 
conditions assigned based on temperature measurements.

In the following sections, we first formulate the process model for solution of 
Equation 1 and subsequently formulate filtering and smoothing algorithms to 
infer specific discharge.

2.1.  Process Model in Continuous Time

To facilitate recursive estimation, we reformulate Equation  1 as an SSM. 
First, we discretize the PDE's spatial terms using a finite-difference approx-
imation consistent with that of the VS2DH model (Healy & Ronan, 1996), 
which is used by 1DTempPro. For the finite-difference cell denoted by the 
subscript i:

𝑇̇𝑇𝑖𝑖(𝑡𝑡) =
𝐾𝐾𝑇𝑇

𝐶𝐶𝑠𝑠

𝑇𝑇𝑖𝑖+1(𝑡𝑡) − 2𝑇𝑇𝑖𝑖(𝑡𝑡) + 𝑇𝑇𝑖𝑖−1(𝑡𝑡)

Δ𝑧𝑧2
−

𝐶𝐶𝑤𝑤𝑞𝑞(𝑡𝑡)

𝐶𝐶𝑠𝑠

𝑇𝑇𝑖𝑖(𝑡𝑡) − 𝑇𝑇𝑖𝑖−1(𝑡𝑡)

Δ𝑧𝑧
� (2)

where Δz is the spatial discretization, which is assumed to be constant, Ti(t) 
is the temperature at the center of the finite-difference cell i at time t, and the 
subscripts i + 1 and i − 1 denote adjacent finite-difference cells. Although we 
have assumed homogeneity of physical properties in Equations 1 and 2, this 
assumption is not necessary, and heterogeneity could be considered in the 
SSM as it is in VS2DH. Rearranging Equation 2 and accounting for bounda-
ries adjacent to cells 1 and n:

𝑇̇𝑇𝑖𝑖(𝑡𝑡) =

(

𝐾𝐾𝑇𝑇

𝐶𝐶𝑠𝑠Δ𝑧𝑧2

)

𝑇𝑇𝑖𝑖+1(𝑡𝑡) +

(

−2𝐾𝐾𝑇𝑇

𝐶𝐶𝑠𝑠Δ𝑧𝑧2
−

𝐶𝐶𝑤𝑤𝑞𝑞(𝑡𝑡)

𝐶𝐶𝑠𝑠Δ𝑧𝑧

)

𝑇𝑇𝑖𝑖(𝑡𝑡) +

(

𝐾𝐾𝑇𝑇

𝐶𝐶𝑠𝑠Δ𝑧𝑧2
+

𝐶𝐶𝑤𝑤𝑞𝑞(𝑡𝑡)

𝐶𝐶𝑠𝑠Δ𝑧𝑧

)

𝑇𝑇𝑖𝑖−1(𝑡𝑡), 𝑖𝑖 = 2, . . . , 𝑛𝑛 − 1� (3a)

𝑇̇𝑇1(𝑡𝑡) =

(

𝐾𝐾𝑇𝑇

𝐶𝐶𝑠𝑠Δ𝑧𝑧2

)

𝑇𝑇2(𝑡𝑡) +

(

−2𝐾𝐾𝑇𝑇

𝐶𝐶𝑠𝑠Δ𝑧𝑧2
−

𝐶𝐶𝑤𝑤𝑞𝑞(𝑡𝑡)

𝐶𝐶𝑠𝑠Δ𝑧𝑧

)

𝑇𝑇1(𝑡𝑡) +

(

𝐾𝐾𝑇𝑇

𝐶𝐶𝑠𝑠Δ𝑧𝑧2
+

𝐶𝐶𝑤𝑤𝑞𝑞(𝑡𝑡)

𝐶𝐶𝑠𝑠Δ𝑧𝑧

)

𝑢𝑢1(𝑡𝑡)� (3b)

𝑇̇𝑇𝑛𝑛(𝑡𝑡) =

(

𝐾𝐾𝑇𝑇

𝐶𝐶𝑠𝑠Δ𝑧𝑧2

)

𝑢𝑢2(𝑡𝑡) +

(

−2𝐾𝐾𝑇𝑇

𝐶𝐶𝑠𝑠Δ𝑧𝑧2
−

𝐶𝐶𝑤𝑤𝑞𝑞(𝑡𝑡)

𝐶𝐶𝑠𝑠Δ𝑧𝑧

)

𝑇𝑇𝑛𝑛(𝑡𝑡) +

(

𝐾𝐾𝑇𝑇

𝐶𝐶𝑠𝑠Δ𝑧𝑧2
+

𝐶𝐶𝑤𝑤𝑞𝑞(𝑡𝑡)

𝐶𝐶𝑠𝑠Δ𝑧𝑧

)

𝑇𝑇𝑛𝑛−1(𝑡𝑡)� (3c)

where u1(t) and u2(t) are the temperatures at the top and bottom boundaries, respectively. Equations 3a–3c consti-
tutes a system of n-coupled first-order ordinary differential equations. The coefficients in Equations 3a–3c are 
time-varying because two terms contain q(t). To simplify the system, we approximate q(t) as constant over each 
measurement interval; this approximation is well justified, given sampling rates are commonly fast (on the order of 
minutes) compared to the expected changes in flux and thermal response (on the order of hours or days). We note 
that the time derivatives in Equation 1 remain derivatives in Equations 2 and 3 and hence the dot notation. The use of 
finite-difference discretization in space but not time is often referred to as the “method of lines” (Schiesser, 1991).

We can now express Equations 3a–3c as a linear time-varying SSM transition equation:

𝑻̇𝑻 (𝑡𝑡) = 𝑨𝑨(𝒕𝒕)𝑻𝑻 (𝑡𝑡) + 𝑩𝑩(𝒕𝒕)𝒖𝒖(𝑡𝑡),� (4)

where at time t, A(t) is the n-by-n state-transition matrix, containing the coefficients of the finite-difference 
cell temperatures in Equations  3a–3c; B(t) is the n-by-2 input matrix, containing the coefficients of the two 
boundary temperatures in Equations 3b and 3c; and u(t) is a 2-by-1 vector of system inputs that is the boundary 
tempera tures. Consistent with Koch et al. (2016) and many other studies, thermal boundary conditions at the top 

Figure 1.  Schematic diagram illustrating heat tracing for 
groundwater/surface-water exchange: (a) field-experimental setup with 
temperature sensors indicated by colored circles; (b) observed temperatures 
used for model boundary conditions and calibration data; (c) the two-step 
filtering procedure involving prediction and correction; and (d) the filter 
results, including estimated temperature and discharge states. The filter 
steps through data assimilating new measurements at time tk to produce state 
estimates for time k.
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(u1(t)) and bottom (u2(t)) of the model are assigned based on measured temperature time series at the shallowest 
and deepest measurement locations, respectively.

The solution to Equation 4 to advance the system states from sample time tk−1 to tk is

𝑇𝑇 (𝑡𝑡𝑘𝑘) = 𝑒𝑒𝑨𝑨(𝑡𝑡𝑘𝑘−1)Δ𝑡𝑡𝑇𝑇 (𝑡𝑡𝑘𝑘−1) + ∫
𝑡𝑡𝑘𝑘

𝑡𝑡𝑘𝑘−1

𝑒𝑒𝑨𝑨(𝑡𝑡𝑘𝑘−𝜏𝜏)𝑩𝑩(𝜏𝜏)𝒖𝒖(𝜏𝜏)𝑑𝑑𝑑𝑑𝑑� (5)

where Δt is the sample interval. In Equation 5, the integration is performed assuming the temperatures at the 
boundaries (i.e., u(τ)) vary linearly between measurements at time tk−1 and tk (i.e., a first-order hold).

Our use of a finite-difference spatial discretization to reduce the PDE to a system of ordinary differential equations 
and the subsequent use of the matrix exponential for temporal solution are rare but not unique. The procedure 
was first proposed in groundwater hydrology by Umari and Gorelick (1986) for problems in advective-dispersive 
transport and groundwater flow. Here, the procedure allows us to formulate the process model as an SSM (Equa-
tion 4), thus facilitating a straightforward application of well-established and powerful system-identification tools 
for state estimation (Brown & Hwang, 2012; Gelb, 1974; Särkkä, 2013; Simon, 2006).

We note that this discretization scheme results in a first-order spatial difference for the advective term, which 
results in a convergence rate on the order of Δz. Such a differencing scheme would lead to stability issues for 
a spatial and temporal finite-differencing approach; however, since we use the matrix exponential in place of 
temporal discretization, the solution is not subject to the same stability issues.

2.2.  Recursive Estimation in Discrete Time

Applications of recursive estimation in hydrology are numerous (Sun et al., 2016) but rarely involve the type of 
real-time (“online”) state-estimation applications for which the methods were originally developed and intended 
(Kalman,  1960); rather, Kalman-based approaches are more commonly used for offline (i.e., not real time) 
parameter-estimation problems, in which the Kalman recursions sequentially assimilate previously acquired time 
series measurements. We refer the interested reader to Sun et al. (2016) for a review of Kalman-based applications 
in hydrology and to Shapiro et al. (2022), Shapiro and Day-Lewis (2021), Kang et al. (2018), Kitanidis (2015), 
Ng et al. (2014), and Li et al. (2015) for representative hydrologic applications.

Whereas the heat-transport process is simulated in continuous time, the estimation problem is solved in discrete 
time; that is the recursive estimation is performed at the times where measurements are acquired. This contin-
uous/discrete scheme is common in the literature (e.g., Brown & Hwang, 2012) and provides for the accurate 
and stable process modeling and efficient assimilation of time series data. The state vector for the discrete-time 
estimation problem, xk, at measurement time tk is augmented to include specific discharge as a state:

�� = [�1 (��) . . . �� (��) � (��)]� .� (6)

Converting the state transition equation (Equation 4) from continuous to discrete time, including the measure-
ment equation, using the new augmented state vector, xk, and applying a first-order hold for the input, yields

𝒙𝒙𝑘𝑘 = 𝚽𝚽𝑘𝑘−1𝒙𝒙𝑘𝑘−1 +𝑮𝑮
0

𝑘𝑘−1
𝒖𝒖𝑘𝑘−1 +𝑮𝑮

1

𝑘𝑘−1
𝒖𝒖𝑘𝑘 +𝒘𝒘𝑘𝑘−1, and� (7a)

𝒚𝒚𝑘𝑘 = 𝑯𝑯𝑯𝑯𝑘𝑘 + 𝒗𝒗𝑘𝑘,� (7b)

where Φk − 1 is the discrete-time transition matrix calculated at time k − 1; 𝐴𝐴 𝑮𝑮
0

𝑘𝑘−1
 and 𝐴𝐴 𝑮𝑮

1

𝑘𝑘−1
 are the discrete-time 

input matrices calculated at time k-1, discussed subsequently; uk−1 is a 2-by-1 vector containing the temper-
atures measured at the top and bottom boundaries; wk−1 is the process-noise vector with each element corre-
sponding to one of the augmented n + 1 states; yk is a m-by-1 vector of simulated observations; and vk is the 
measurement-noise vector with each element corresponding to one of the augmented m measurements. For our 
problem, the state-space measurement equation (Equation 7b) simply extracts or interpolates from xk the temper-
atures yk at measurement locations. For each observation, the corresponding row of H comprises weights that 
linearly interpolate the temperature at the observation location using the closest two finite-difference cell centers. 
Here, we assume that both the process and measurement noise are independent Gaussian white noise.
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The matrices 𝐴𝐴 𝚽𝚽𝑘𝑘−1 , 𝐴𝐴 𝑮𝑮
0

𝑘𝑘−1
 , and 𝐴𝐴 𝑮𝑮

1

𝑘𝑘−1
 are found at each sample time assuming 

a first-order hold for the input following Virtanen et al. (2020). The SSM is 
augmented a second time to include the inputs from times k − 1 and k, and the 
matrix exponential of the augmented system's transition matrix is calculated, 
producing:

�

⎡

⎢

⎢

⎢

⎢

⎣

� (��−1) Δ� � (��−1) Δ� 0

0 0 �

0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

��−1 �0
�−1 +�1

�−1 �1
�−1

. . . . . . . . .

. . . . . . . . .

⎤

⎥

⎥

⎥

⎥

⎦

.� (8)

The relevant matrix blocks are extracted from the result of this operation, 
from which 𝐴𝐴 𝚽𝚽𝑘𝑘−1 , 𝐴𝐴 𝑮𝑮

0

𝑘𝑘−1
 , and 𝐴𝐴 𝑮𝑮

1

𝑘𝑘−1
 are calculated.

The last row of the linear system of Equation 7a describes the transition of 
q(t). The true transition of q(t) is governed by hydraulic forcing, which is 
unknown in practice; hence, a stochastic process must be assumed for the 
transition of this state. Here, q(t) is modeled as a random walk (RW), a parsi-
monious model commonly used for the variation of unobserved states. The 
RW model in discrete time, from time step k − 1 to k, is

𝑞𝑞𝑘𝑘 = 𝑞𝑞𝑘𝑘−1 +𝑤𝑤𝑘𝑘−1,� (9)

where wk − 1 is zero-mean Gaussian white-noise. Identification of the variance is discussed in Appendices A and B 
and demonstrated in Supporting Information S1 (Sections 3–4).

The goal of filtering is to estimate a system's current states using information acquired up to and including the 
current time (Figure 2), that is, real-time (online) estimation. Similar to the linear KF, the EKF assimilates each 
new measurement using a two-step procedure, prediction, and correction, illustrated schematically in Figure 3. 
The filter is initialized with a prior state estimate (𝐴𝐴 𝒙̂𝒙

+

0
 ) and prior covariance (𝐴𝐴 𝑷𝑷

+

0
 ). The prediction step (time 

update) projects the system states and their covariance from time tk − 1 to tk. The projection of the states (Equa-
tion 10) is performed based on Equation 7a, and the projection of the covariance (Equation 11) is based on a 
linearization involving the state Jacobian, Fk, calculated at step k using a central finite-difference scheme and 
perturbation around the current state estimate:

Figure 2.  Schematic diagram explaining (a) prediction, where estimation 
is performed at times beyond the interval over which data are available, [t0, 
T]; (b) filtering, where estimation is performed at the time, T, of the current 
measurement; and (c) smoothing, where estimation is performed for times 
within the interval over which data are available (after Särkkä (2013)).

Figure 3.  Schematic diagram showing the workflow for the two-step Extended Kalman Filter (EKF) recursion and associated 
calculations. The Extended Rauch-Tung-Striebel Smoother workflow (not shown) includes forward and backward EKF passes 
over the measurements, using the results of the first pass to initialize the second.
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𝒙̂𝒙
−
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+𝑮𝑮

0
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1
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𝑷𝑷
−

𝑘𝑘 = 𝑭𝑭 𝑘𝑘−1𝑷𝑷
+

𝑘𝑘−1
𝑭𝑭

𝑇𝑇

𝑘𝑘−1
+𝑸𝑸,� (11)

where Q is the process noise covariance, assumed here to be time-invariant. The state Jacobian Fk differs from 
the discrete-time transition matrix Φk because Φk depends on discharge, which is included in the state vector. We 
further assume that the process noise for all states is independent zero-mean Gaussian white noise and constant 
across time with one variance common to all temperature states and a different variance for the RW of the specific 
discharge, consistent with w (Equation 7a).

The correction step (measurement update) assimilates new measurements at time tk, based on a measurement 
Jacobian, H, which, here, is time-invariant because the predicted measurements yk depend linearly on the temper-
atures in the current state xk. The Kalman gain, Kk (Equation 12), is used in the correction step to weight how the 
new measurements affect the state estimate (Equation 13) and covariance (Equation 14):

𝑲𝑲𝑘𝑘 = 𝑷𝑷
−

𝑘𝑘𝑯𝑯
𝑇𝑇
(

𝑯𝑯𝑯𝑯
−

𝑘𝑘𝑯𝑯
𝑇𝑇
+𝑹𝑹

)−1

,� (12)

𝒙̂𝒙
+

𝑘𝑘 = 𝒙̂𝒙
−

𝑘𝑘 +𝑲𝑲𝑘𝑘

(

𝒚𝒚𝑘𝑘 −𝑯𝑯𝒙̂𝒙
−

𝑘𝑘

)

, and� (13)

𝑷𝑷
+

𝑘𝑘
= (𝑰𝑰 −𝑲𝑲𝑘𝑘𝑯𝑯)𝑷𝑷

−

𝑘𝑘 ,� (14)

where R is the measurement noise covariance at time k. Here, we assume the measurement noise is time-invariant 
independent zero-mean Gaussian white noise; thus, R is a diagonal matrix with elements being measurement 
error variances, consistent with v in Equation 7b.

The EKF algorithm thus advances through the time series data, predicting and correcting at each sample time 
(Figure 3). Our EKF recursions follow well-established procedures for the filter as described in both modern 
(Brown & Hwang, 2012; Särkkä, 2013; Simon, 2006) and classic texts (Gelb, 1974) on optimal state estimation.

Whereas the goal of filtering is to estimate current states based on measurements up to the present time, smooth-
ing uses all available information. The goal of smoothing is to estimate a system's state using information from 
the past and present with respect to the times being estimated, that is, en bloc (offline) estimation (Figure 2). 
Just as the linear Rauch-Tung-Striebel Smoother (RTSS) is the smoothing algorithm based on the linear KF, the 
ERTSS is the smoothing algorithm based on the EKF (Särkkä, 2013). Here, we consider fixed-interval smoothing 
(FIS), which produces estimates over a fixed time interval that is identical to the interval over which measure-
ments are available. The ERTSS FIS entails by first running an EKF forward through the time series measure-
ments to obtain forward-pass filter estimates. The state and covariance estimates for each step of the forward 
pass are then used in a second, backward pass through the measurements, producing the smoothed result. For a 
linear problem, the RTSS can be shown to produce optimal estimates (Rauch et al., 1965), but the same is not 
guaranteed for the ERTSS applied to nonlinear problems (Särkkä, 2013). Of course, optimality depends also 
on the appropriate selection of Q and R, which control the reliance on the prediction relative to the reliance on 
measurements. See Appendices A and B for automated selection methods, including the Discrepancy Principle 
(Constable et al., 1987; Hansen, 1997), which is demonstrated in Section 3. Furthermore, the convergence to 
optimal estimates and the stability of the filter depend also on the selection of 𝐴𝐴 𝒙̂𝒙

+

0
 and 𝐴𝐴 𝑷𝑷

+

0
 .

In this work, we focus on the estimation of specific discharge and assume that the values of thermal properties 
(KT, Cw, and Cs) are known. Compared to hydraulic conductivity, which varies by approximately six orders of 
magnitude in natural sediments, thermal properties are more tightly constrained (Stonestrom & Constantz, 2003). 
Furthermore, in situ direct measurement of the thermal properties of bed materials is possible using inexpen-
sive handheld field probes (e.g., the Decagon KD-2 or the Meter Group TEMPOS) as in, for example, Briggs 
et al. (2014).

The limitations of our approach include: (a) the 1D assumption, (b) the assumption of constant discharge between 
sample times, (c) assumption of known thermal properties, and (d) the linearization and Gaussian assumption 
underlying the EKF and ERTSS. The first limitation is common to many approaches to heat tracing. The second 
limitation is mitigated by using modern measurement technology, which is capable of logging measurements at 
minute intervals. The third can be addressed by in situ measurement as noted above or assessed using the sensi-
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tivity analysis (see Section 3.1). The third and fourth could also be addressed in future extensions of this work 
involving stochastic Kalman-based frameworks, such as the Ensemble Kalman Filter (EnKF) and Particle Filter 
(PF) (e.g., Särkkä, 2013; Simon, 2006); these filters (and associated smoothers) are better suited than the EKF to 
strongly nonlinear and non-Gaussian problems.

2.3.  Python Implementation

Three Jupyter notebooks, available from McAliley et al. (2022) and also reported in Supporting Information S1, 
set up and run analyses of synthetic and field-experimental data (Section 3). The spatial discretization of the 
convection/conduction equation, construction of the SSM matrices, matrix-exponential solution, and filter-
ing and smoothing algorithms are implemented in a Python library, tempest1d, also available from McAliley 
et al. (2022); this library contains two classes that are needed to implement the filter. The first class, ModelProp-
erties, is a convenience container to hold spatial discretization parameters and thermal properties. The second 
class, EKF, extends filterpy's ExtendedKalmanFilter class to form the Jacobian of the system dynamics function 
and hold problem-specific parameters. Code dependencies include filterpy (Labbe, 2018) and, in turn, filterpy's 
dependencies (e.g., numpy and scipy). In addition, the Jupyter notebooks use matplotlib for graphics. The use of 
Jupyter notebooks in this work facilitates: (a) reproducibility of research, (b) application to other data sets, (c) 
extension by others, and (d) integration with other software and interfaces.

3.  Examples
We demonstrate the EKF and the ERTSS in two examples. First, we consider a synthetic data set with step 
changes in specific discharge; this example provides an assessment of the algorithms' ability to resolve extremely 
abrupt changes in the specific discharge. The application to synthetic data allows for a straightforward compari-
son of the performance of the EKF, ERTSS, and the commonly used discharge-estimation algorithms of VFLUX, 
for a problem where the true specific discharge is known. In the second example, we consider field-experimental 
data from the Upper Neversink watershed in New York, representing a realistic application where the true phys-
ical parameters and discharge are unknown.

3.1.  Example 1: Synthetic Problem

The synthetic scenario spans 20 days and features a vertical discharge with four stages of constant discharge, each 
stage lasting 5 days. The four values of discharge for the stages are 0, 1, 0, and −1 m/day as shown in Figure 4a. 
To generate synthetic data, we assume that the sediment/water interface has sinusoidal diurnal and weekly peri-
odic components with amplitudes of 5°C and 3°C, respectively, and an upward linear trend of 0.3°C per day as 
shown in Figure 4b; this signal is used to prescribe the Dirichlet boundary condition for the top of the synthetic 
model. We place the bottom boundary at 5 m below the surface, where we assume a constant temperature of 
10°C, giving the boundary condition for the base of the model. The values of hydraulic and thermal properties 
and model specifications are given in Table 1. The numerically computed temperatures of the topmost meter over 
time are shown in Figure 4c; from these temperatures, the synthetic data are taken at 0.06, 0.1, 0.2, 0.4, 0.7, and 
1 m depths below the sediment/water interface at a 10-min interval. The synthetic data were corrupted with zero 
mean Gaussian noise of standard deviation 0.0625°C, the resolution of the commonly used iButton temperature 
sensor (Figure 4d).

The EKF and ERTSS require a process covariance matrix, Q, as explained in Section 2. For this example, we 
assume a diagonal Q. Each diagonal entry represents the variance of the corresponding state. The last diago-
nal entry corresponds to the temporal variance of the discharge over Δt; the assumed value for this covariance 
controls the magnitude of temporal variation in the discharge estimate and thus strongly affects the performance 
of the filter. We tested values ranging across several orders of magnitude, choosing a value of 7 × 10 −5 (m/day) 2 
(see Appendices A and B, Supporting Information S1). This choice corresponds to an expected standard devia-
tion of 0.0086 m/day from the start of a 10-min time interval to the end. The first n diagonal entries of the process 
covariance matrix correspond to the temperatures in each model cell; these values could be set to zero for the 
EKF, but such a choice results in numerical instability in the ERTSS. Therefore, the remaining diagonal entries 
were set to 10 −4 (°C) 2, a small value, reflecting the assumption that the heat transport model is highly certain.
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Figure 4.  Synthetic 20-day data with (a) known specific discharge; (b) time-varying temperature boundary conditions to generate synthetic data; (c) simulated 
temperatures with dashed horizontal black lines showing the measurement locations; and (d) temperature time series measurements with additive Gaussian noise.

Physical property Value

KT 2 W/(m°C)

Cw 4.182 × 10 6 J/(m 3°C)

Cs 2 × 10 6 J/(m 3°C)

Model specification Value

Initial estimate for q −0.864 m/day

Initial, prior standard deviation for temperature states 5°C

Initial, prior standard deviation for q 1.002 m/day

Process standard deviation for temperature states 1 × 10 −2°C

Process standard deviation for q 0.0086 m/day

Standard measurement error 0.0625°C

Table 1 
Physical Properties and Model Specifications for Example 1
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Both the EKF and ERTSS estimates of discharge are close to the true discharge (Figure 5); however, the ERTSS 
improves the estimates over the EKF estimates in three respects. First, the ERTSS estimates are smoother in 
time as each estimate is informed by more measurements and thus less affected by measurement noise. Second, 
it decreases the uncertainty associated with the estimates as indicated by the tighter confidence intervals. Third, 
it better localizes the step changes in time because it is using information from before and after the changes 
to  inform all estimates. Figures 5c and 5e demonstrate this third effect. For both the EKF and ERTSS, the full 
response to the step changes is approximately 0.2 days (<5 hr).

As a basis for comparison, we analyzed the synthetic data using VFLUX (version 2) (Figure 5e). The “Hatch 
Amplitude” analytical model of VFLUX was applied using the known synthetic thermal parameters and the 0.1 
and 0.2 m depth pair. VFLUX does not resolve the step changes as well as either the ERTSS or EKF. The VFLUX 
DHR algorithm requires approximately 2  days to fully respond to step changes. Furthermore, the quality of 
discharge estimates is strongly degraded during the period of strong upwelling from days 15–20 likely due to the 
highly attenuated diurnal signal at 0.2 m depth during this time, highlighting the limitations of the signal-based 
analytical models in zones of groundwater discharge.

We also investigated the effect of using an incorrect value for the thermal conductivity. We perturbed the true 
thermal conductivity by 10% in either direction. The RMSE of the discharge estimates increased from 0.052 m/
day to 0.065 and 0.064 m/day because of using a thermal conductivity value that was 10% too low and 10% too 
high, respectively. The mean of the change in estimated discharge over the change in thermal conductivity was 
−0.0022 m/day per W/m°C; thus, the discharge estimates are not strongly sensitive to reasonable uncertainty in 
thermal conductivity in this example.

3.2.  Example 2: Field-Experimental Data From the Upper Neversink Subwatershed

To demonstrate the applicability of our approach to field data, we use data from the Upper Neversink watershed, 
which falls within the Delaware River Basin, one of the U.S. Geological Survey's Integrated Water Science 
basins. The Neversink is an area of ongoing intensive hydrologic monitoring, including new infrastructure for 
networked real-time monitoring of vertical temperature profiles in streambeds and exposed groundwater seeps. 
We present the data available from a vertical temperature installation in a river-bank seep at the hillslope break 
that typically contributes the observed (with thermal infrared) discharge to the channel below (Figure 6).

Temperatures were recorded using a Campbell Scientific CS230 temperature profiler with thermistors located at 
0, 0.05, 0.1, 0.3, and 0.5 m below the sediment/water interface (Figure 7a). We neglect data from the thermistor 
at 0 m as data from the sediment/water interface are commonly noisy and may prove problematic if stage drops, 
and the thermistor is exposed to air. We use the temperature time series from the thermistors at 0.05 and 0.3 m 
to define Dirichlet boundary conditions for the SSM. Measurements from the thermistor at 0.1 m are used for 
calibration. Data from the thermistor at 0.5 m are not used because the depth to bedrock is less than 1 m, resulting 
in increasing lateral heat transport with increasing depth. Furthermore, the VFLUX analysis used only data from 
the thermistors at 0.05 and 0.1 m due to extended times of highly attenuated diurnal signals at deeper sensors. 
The EKF requires a minimum of three thermistors, so using the thermistors at 0.05 m, 0.1 m, and 0.3 m allows 
the closest comparison of the estimates by both methods.

The covariance matrices for the EKF were formed as follows. First, we form the measurement noise covariance 
matrix, which expresses the estimated measurement error. The manufacturer-specified resolution of the thermis-
tors is 0.0078°C. However, based on experience with the instrument, we estimate that the standard deviation due to 
instrument error is 0.03°C. Furthermore, the temperature data as available online from USGS are rounded  to  the 
nearest 0.1°C. Assuming that rounding errors are uniformly distributed between −0.05°C and 0.05°C, the stand-
ard deviation of the rounding error is 𝐴𝐴 0.1∕

√

12
◦
C = 0.0289◦C . The total measurement noise standard deviation 

is the square root of the sum of the squares of these two values, 0.042°C. The square of this value is placed along 
the diagonal of the measurement covariance matrix, and the off-diagonal terms are set to zero.

We use a diagonal process covariance matrix, just as in the synthetic example. A value of 0.00086 m/day was 
chosen for the discharge standard deviation using the discrepancy principle (see Appendices A and B, Supporting 
Information S1, and Section 4). We again set the remaining diagonal entries of the process covariance matrix to 
the value of 10 −4 (°C) 2 to ensure stability for the ERTSS. This value corresponds to a process standard deviation 
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Figure 5.  (a) Estimated discharge for Example 1, obtained using the Extended Kalman Filter (EKF) and Extended Rauch-Tung-Striebel Smoother (ERTSS), with 
95% confidence intervals shaded; (b) measured temperatures at the middle four thermistors, plotted as circles, and temperatures predicted by the EKF with ERTSS; (c) 
estimated discharge during the first step change; (d) RMS error in temperature at each time step; (e) estimated discharge during the last step change; and (f) Comparison 
of the ERTSS and VFLUX estimates.
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of 0.01°C, which is significantly less than the measurement standard deviation of 0.042°C. Keeping this value 
below the measurement standard deviation ensures that the state covariance is primarily determined by the meas-
urement standard deviation, not the temperature process standard deviation, reflecting the assumption that the 
process model captures the governing physics well.

The values of hydraulic and thermal properties and model specifications are given in Table 2 and were estimated 
based on field sediment observations. Results from the ERTSS are shown in Figure 7b. The ERTSS analysis took 
approximately 2 min on a laptop computer with a 2.9 GHz Quad-Core Intel Core i7 processor. Note that the use 
of 1DTempPro would take at least an order of magnitude longer for these problems. As with the synthetic data 
test, the Hatch Amplitude model of VFLUX was run using the same thermal parameters as for ERTSS. VFLUX 
produces spurious estimates during a few days in December of 2020, during which temperatures stayed nearly 
constant. Because VFLUX relies on sinusoidal diurnal temperature variations, the algorithm performs poorly 
when there is no sinusoidal component to temperature fluctuations. Neither the EKF nor the ERTSS have this 
performance limitation. We also note that the SSM approach presented here uses temperature measurements 
to form a lower boundary condition, while VFLUX assumes a semi-infinite half-space. This difference might 
explain some of the discrepancy between VFLUX and ERTSS discharge estimates, especially during a rapid 
upward exchange. As shown in Supporting Information S1, the EKF and ERTSS are also robust in the presence 

Figure 6.  (a) Drone-based ortho imagery shows the location of a shallow groundwater bank seep along the west branch of the Neversink River relative to a U.S. 
Geological Survey Next Generation Water Observing System gage; (b) a photograph of instrumented seep in fall with noted placement of the vertical temperature 
profiler next to a monitoring piezometer; and (c) an infrared image of the seep in winter showing sustained discharge of relatively warm groundwater to the land 
surface.
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of data gaps, which are a common issue for automated analyses of continuous data. Figure 7c shows that predicted 
temperatures track measured temperatures, and Figure 7d shows that residual errors mostly fall within 0.1°C.

4.  Discussion
Based on a synthetic example, the EKF/ERTSS offers improved resolution of rapid changes in flux compared to 
the commonly used VFLUX tool (Figure 5f), while offering the major benefits of signal-extraction methods, that 
is, computational efficiency for the estimation of time-varying flux. The ERTSS algorithm, in particular, allows 
for accurate temporal localization of abrupt changes. An application to field-experimental data indicates that the 
EKF/ERTSS may be less subject to problems arising from strong upwelling, where the diurnal signal exploited 
by DHR is weak or absent, and VFLUX produces spurious results (Figure 7b). The focus on the diurnal signal 
can also be problematic for DHR approaches in overcast conditions.

The choice of process variance for the discharge has a strong effect on the performance of the filter. A large 
discharge variance leads to discharge estimates that are governed by temperature data fit. Discharge variance 

Figure 7.  (a) Temperature data set from Upper Neversink Watershed; (b) vertical discharge estimated using Extended Kalman Filter (EKF) and Extended 
Rauch-Tung-Striebel Smoother (ERTSS), compared with discharge estimates obtained by applying VFLUX to temperatures at 0.05 and 0.1 m; (c) measured 
temperatures at 0.1 m compared to temperatures estimated using ERTSS; and (d) residuals between simulated and observed data based on the ERTSS results. Spurious 
VFLUX estimates in December 2020 coincide with a period of multiple days of near-constant temperatures.



Water Resources Research

MCALILEY ET AL.

10.1029/2021WR030443

13 of 18

that is too large can lead to estimates that overfit the temperature data and vary unrealistically from downwelling 
to upwelling and back daily. A large discharge variance also results in unrealistically large uncertainties in the 
estimates. A small discharge variance, meanwhile, yields overly smooth discharge estimates with overconfident 
estimates of uncertainty and a poor data fit. We use the discrepancy principle described in Appendix A (see also 
Supporting Information S1, Sections 3–4) to choose the optimal process variance. By this approach, the expected 
measurement RMSE is estimated based on the measurement noise. Then, the optimal process variance is the 
value for which the resulting RMSE equals the expected. Furthermore, the variance and character of the discharge 
over time should be considered. For instance, in the field data example, we ensure that the discharge estimates 
are physically realistic not alternating between positive and negative discharge (downwelling and upwelling) on 
a daily basis.

The process and noise variance, as well as the initial prior covariance, also affect the stability of the EKF (and 
thus ERTSS) and its convergence. We find that positive diagonal entries in the process covariance matrix are 
necessary for ERTSS stability. Also, if the initial prior covariance is too small (i.e., excessive confidence in the 
initial state estimates is assumed), the filter measurement updates will not be large enough, and the filter will not 
converge. Conversely, stability issues can result if the prior covariance is too large. However, we find that when 
the filter converges stably, the ERTSS estimates are not significantly affected by the choice of initial prior covar-
iance, and only early EKF estimates are affected.

The ERTSS analysis of the synthetic and field data required on the order of 20 and 120 s of computer process-
ing time, respectively, using a 2.9 GHz Quad-Core Intel Core i7 processor in a laptop computer, underscoring 
the computational efficiency of the EKF/ERTSS approach compared to, for example, use of 1DTempPro. The 
ERTSS requires approximately twice the computer processing time of the EKF and thus is tractable for practical 
problems in vertical heat tracing for groundwater/surface-water exchange.

5.  Conclusions
We presented and demonstrated a new approach to estimate specific discharge associated with groundwater/ 
surface-water exchange using temperature data collected below the sediment/water interface. Our recursive- 
estimation framework combines the strengths of previous approaches based on either signal extraction or model 
calibration: (a) computational efficiency for estimation of time-varying discharge, (b) resolution of abrupt changes 
in discharge, (c) consideration of arbitrary time-varying Dirichlet boundary conditions, and (d) quantitative assess-
ment of estimation uncertainty. We also note that the new framework is effectively a multifrequency approach; it 
obviates the decision to analyze amplitude or phase or both and it requires no windowing procedure.

The optimal filtering approach is well suited to online, real-time data assimilation and estimation; furthermore, 
the Kalman-based approach is also well suited to forecasting (Figure 2), which amounts to performing the predic-

Physical property Value

KT 1.68 W/(m°C)

Cw 4.182 × 10 6 J/(m 3°C)

Cs 2.829 × 10 6 J/(m 3°C)

Model specification Value

Initial estimate for q 0 m/day

Initial, prior standard deviation for temperature states 5°C

Initial, prior standard deviation for q 1.002 m/day

Process standard deviation for temperature states 0.01°C

Process standard deviation for q 8.64 × 10 −4 m/day

Standard measurement error 0.042°C

Table 2 
Physical Properties and Model Specifications for Analysis of the Field-Experimental Data Set From the Upper Neversink Watershed in Example 2
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tion step without new measurements. Our SSM and the assumed model for the transition of q (Equation 9) could 
be modified to consider the inputs as states and to forecast inputs and discharge both. Alternatives to the RW 
model (e.g., structural time series, Gauss-Markov, autoregressive, or integrated RW processes) could allow for 
prediction of temperature states and discharge for management problems related to thermal loading to surface 
water, for example, maintenance of thermal refugia for temperature-sensitive aquatic species. Real-time assimila-
tion and data reduction problems in other fields are driving intensive development and investment in libraries for 
machine learning, which include tools for recursive estimation, for example, Tensorflow (Abadi et al., 2016) and 
Pyro (Bingham et al., 2019). There is enormous potential for application of these tools in data-driven hydrology 
(Shapiro & Day-Lewis, 2022) to address real-time water management and capitalize on real-time hydrologic 
observation networks.

Future extensions to our approach and the associated Python library could include further investigation into 
methods for automated selection of the process covariance to identify the appropriate trade-off between model 
complexity and data misfit. For example, the maximum-likelihood method has been used to infer hyperparame-
ters for process noise based on the analysis of measurement residuals (Young, 2011, p. 81). Another direction for 
future work is consideration of alternative filtering and smoothing methods based on, for example, the Unscented 
Kalman Filter (UKF), EnKF, or PF (e.g., Särkkä, 2013). Although the heat tracing problem is clearly amenable to 
solution using the simpler EKF as presented in this paper, the UKF could have advantages for strongly nonlinear 
examples, and the more computationally intensive EnKF and (or) PF could allow for simultaneous estimation 
of thermal and (or) hydraulic properties and stochastic assessment of parameter uncertainty. A further possible 
extension is the consideration of Fixed Lag Smoothing (FLS) instead of FIS. In FLS, the estimation is focused 
on a time prior to the most recent available measurement, that is, the estimation is delayed with respect to the 
measurements by a fixed lag. The FLS thus has some of the advantages of FIS, that is, improved temporal reso-
lution of changes in states, reduced estimation uncertainty, and reduced estimation errors. Although the potential 
improvements with FLS come at the cost of real-time estimation, the cost may be worth a short delay (a few 
measurement intervals) for many problems.

Aside from improvements to the estimation framework, the process representation in our approach could easily 
be extended to address artificial heating. In the presence of strong upwelling, the diurnal signal that is commonly 
exploited in vertical heat tracing is weak or nonexistent. Active heating, for example, using electrical resis-
tive heating elements, can generate an artificial signal to overcome this limitation of heat tracing (e.g., Briggs 
et al., 2016). As formulated here, our approach and associated codes can address non-sinusoidal boundary condi-
tions, but accurate representation of common heat sources would require an axis-symmetric two-dimensional or 
else a three-dimensional finite-difference grid; this amounts to a straightforward extension.

Appendix A:  Using the Discrepancy Principle to Select Discharge Process Variance
A common method in geophysics to identify covariance models in inverse problems is the discrepancy principle 
(Morozov, 1966). Here, we use this approach to identify the magnitude of the process variance. By the discrep-
ancy principle, the process variance for the discharge is chosen such that the data residuals have the expected 
standard deviation; hence, this method requires knowledge of the standard deviation of the measurement error 
(see Appendix B for an alternate method that has no such requirement). Let us define the normalized data misfit  as

�� = 1
�

�
∑

�=1

(

�� −�����
�

)��−1(�� −�����
�

)

,� (A1)

where 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅

𝑘𝑘
 is the estimated state produced by ERTSS at time tk, K is the index of the final time step, and N is 

the total number of temperature observations across all time steps. Because the measurement errors are random 
variables, so too the data misfit is a random variable. For independent measurement errors that follow normal 
distributions, the normalized data misfit follows a chi-square distribution with an expected value of 1. Thus, by 
the discrepancy principle, the optimal choice for the process variance will yield a normalized data misfit of 1.

We applied the discrepancy principle to the ERTSS estimates for both the synthetic example and the field data 
example. For the synthetic example, we used discharge process variance values ranging from 10 −8 to 10 0 (m/day) 2. 
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The application of the discrepancy principle yielded a discharge process variance value of 7.5 × 10 −5 (m/day) 2. 
Figure A1a shows the resulting data misfit values.

We also applied the discrepancy principle to the data set from the Neversink River (Figure A1b). We used an 
estimate of 0.042°C for the standard deviation of the observed temperatures to determine a target data misfit. A 
discharge process variance of 7.5 × 10 −7 (m/day) 2 results in a data misfit that is 1.015 times the expected value.

Appendix B:  Selecting Discharge Process Variance by the L-Curve Criterion
Without an accurate estimate of the measurement error, the L-curve criterion can be used (Hansen, 1992). In this 
method, the data misfit is plotted against a measure of model structure for many values of the process variance 
on a plot with logarithmically scaled axes. Often, the resulting plot resembles the letter “L.” The process variance 
corresponding to the point of maximum curvature, or “corner point” of the L-curve, is taken as the optimal value.

To quantify model structure, we use the norm of the first derivative in time of the discharge,

𝜙𝜙𝑚𝑚 =

𝐾𝐾
∑

𝑗𝑗=1

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)2

.� (B1)

Let 𝐴𝐴 𝐴𝐴𝐴 = log (𝜙𝜙𝑚𝑚) and 𝐴𝐴 𝐴𝐴𝐴 = log (𝜙𝜙𝑑𝑑) , noting that 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐴 both depend on the discharge process variance. The curva-
ture of the L-curve is computed at every inner point by finite difference as

𝜅𝜅 =
𝑥̂𝑥′𝑦̂𝑦′′ − 𝑦̂𝑦′𝑥̂𝑥′′

(

(𝑥̂𝑥′)
2
+ (𝑦̂𝑦′)

2
)

3

2

� (B2)

where derivatives are taken with respect to the discharge process variance. First and second derivatives are 
approximated by central differencing.

We applied the L-curve criterion to both the synthetic data and the Neversink River data. Figure B1 shows the 
L-curve for synthetic data. We applied the method to both EKF and ERTSS results, and we found that EKF results 
yield a more robust and easily identified the point of maximum curvature than ERTSS results. The resulting point 
of maximum curvature has a corresponding discharge process variance of 10 −4 m 2/day 2, the same value that the 
discrepancy principle yielded. Figure B1 shows the L-curve for the Neversink River data. Most of the points on 
the L-curve have negative curvature, but there is a clear point of maximum curvature corresponding to a discharge 
process variance of 2.4 × 10 −7 m 2/day 2.

Figure A1.  Normalized data misfit corresponding to different choices for discharge process variance for (a) the synthetic example and (b) the Neversink River data set. 
The data misfit has been divided by the number of data, so the target value equals 1 (the orange line). The red circle shows the value of the discharge process variance 
closest to the target data misfit value.
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Figure B1.  Unnormalized data misfit (not divided by the number of data) and model structure corresponding to different choices for discharge process variance for 
(a) the synthetic example and (b) the Neversink River data set. The red circle in each subplot shows the point of maximum curvature. For the synthetic data set, it 
corresponds to a discharge process variance of 1.0 × 10 −4 m 2/day 2. For the Neversink River data set, 2.4 × 10 −7 m 2/day 2 is the value at the point of maximum curvature.

Data Availability Statement
The Python library tempest1d, Jupyter notebooks to run the examples and all data used in this work are available 
at https://doi.org/10.5066/P99DBTKT. In addition, the notebooks are provided in Portable Document Format in 
Supporting Information S1.
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