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The proliferating and excessive use of internet games has caused various comorbid
diseases, such as game addiction, which is now a major social problem. Recently,
the American Psychiatry Association classified “Internet gaming disorder (IGD)” as
an addiction/mental disorder. Although many studies have been conducted on the
diagnosis, treatment, and prevention of IGD, screening studies for IGD are still scarce.
In this study, we classified gamers using multiple physiological signals to contribute
to the treatment and prevention of IGD. Participating gamers were divided into three
groups based on Young’s Internet Addiction Test score and average game time as
follows: Group A, those who rarely play games; Group B, those who enjoy and
play games regularly; and Group C, those classified as having IGD. In our game-
related cue-based experiment, we obtained self-reported craving scores and multiple
physiological data such as electrooculogram (EOG), photoplethysmogram (PPG), and
electroencephalogram (EEG) from the users while they watched neutral (natural scenery)
or stimulating (gameplay) videos. By analysis of covariance (ANCOVA), 13 physiological
features (vertical saccadic movement from EOG, standard deviation of N-N intervals,
and PNN50 from PPG, and many EEG spectral power indicators) were determined to
be significant to classify the three groups. The classification was performed using a
2-layers feedforward neural network. The fusion of three physiological signals showed
the best result compared to other cases (combination of EOG and PPG or EEG only).
The accuracy was 0.90 and F-1 scores were 0.93 (Group A), 0.89 (Group B), and
0.88 (Group C). However, the subjective self-reported scores did not show a significant
difference among the three groups by ANCOVA analysis. The results indicate that the
fusion of physiological signals can be an effective method to objectively classify gamers.

Keywords: internet gaming disorder, craving, electroencephalogram, addiction, electrooculogram,
photoplethysmogram

Abbreviations: VSM, Vertical saccadic movement; HSM, horizontal saccadic movement; RTPF, prefrontal relative theta;
RAPF, prefrontal relative alpha; DBRPF, prefrontal delta/beta ratio; DBRF, frontal delta/beta ratio; DBRP, parietal delta/beta
ratio; DBRO, occipital delta/beta ratio; DGRPF, prefrontal delta/gamma ratio; DGRF, frontal delta/gamma ratio; DGRP,
parietal delta/gamma ratio; DGRO, occipital delta/gamma ratio; TBRPF, prefrontal theta/beta ratio; TBRF, frontal theta/beta
ratio; TBRP, parietal theta/beta ratio; TBRO, occipital theta/beta ratio; TGRPF, prefrontal theta/gamma ratio; TGRF, frontal
theta/gamma ratio; TGRP, parietal theta/gamma ratio; TGRO, occipital theta/gamma ratio; ABRPF, prefrontal alpha/beta
ratio; ABRF, frontal alpha/beta ratio; ABRP, parietal alpha/beta ratio; ABRO, occipital alpha/beta ratio.
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INTRODUCTION

The proliferating and excessive use of Internet games has
caused various comorbidities, such as game addiction, which
is a major social problem of contemporary significance
(Young, 1998a,c). In 2013, the American Psychiatric Association
(APA) included “Internet gaming disorder” (IGD) in DSM-
5 (American Psychiatric Association, 2013; Petry and O’Brien,
2013), and in 2019, the World Health Organization (WHO)
included the disease as “Gaming disorder” (World Health
Organization, 2018). Many studies have been conducted on this
disorder (Kuss and Lopez-Fernandez, 2016; Kuss et al., 2018).
Therefore, the need for research on its diagnosis, treatment, and
prevention is evident.

There have been many ways to treat addiction in the past,
such as drug treatment, cognitive behavioral therapy, and cue-
exposure therapy (CET) (Monti and Rohsenow, 1999). In
particular, various studies have demonstrated that CET can be
applied to IGD (Zhang et al., 2016). In order to make the cue and
surrounding situation a reality, a virtual reality-based CET was
recently conducted (Ghi̧tã et al., 2019; Hernández-Serrano et al.,
2020). Zhang et al. (2016) cited various studies, emphasizing that
the neural responses caused by addictive cues are similar between
substance use disorder and IGD. They argued that CET treatment
would also work for IGD. Although previous studies on other
addictions, based on these neural responses, have contributed
to the diagnosis of addiction as an objective measurement, cue-
based studies, and screening studies for IGD are scarce.

Several studies have defined IGD based on EEG, reported
comorbid symptoms, and assessed their severity (Choi et al.,
2013; Yao et al., 2015; Jin et al., 2016; Park et al., 2016; Kim
et al., 2017). However, previous studies have only compared
comorbid symptoms between control and IGD groups either
through resting-state-based EEG studies (Choi et al., 2013; Kim
et al., 2017) or event-related potential (ERP) (Yao et al., 2015;
Park et al., 2016). These studies are substantially limited in their
application for the treatment or prevention of IGD. In other
attempts, many researchers have investigated EEG responses
from patients with IGD while presenting them with game-
related stimuli (Han et al., 2010, 2015). In particular, there are
a few studies that classify and test the reliability of game-related
stimuli by using multiple physiological signals, not including
EEG (Kim et al., 2018, 2019). However, while traditional
addiction studies help to diagnose or prevent addiction by
classifying (Mete et al., 2016; Mumtaz et al., 2018; Sakoglu
et al., 2019; Kamarajan et al., 2020) or utilizing biofeedback
(Evans and Abarbanel, 1999; Dehghani-Arani et al., 2013; Du
et al., 2014), adequate physiological studies of IGD have not
been conducted. In previous addiction studies, many researchers
distinguished addiction from non-addiction (Doborjeh et al.,
2016; Saddam et al., 2017), as diagnostic indicators. There are
few studies on classification in the field of IGD research. Ling
et al. (2015) classified coexisting diseases using ERP. Lee and
Kang (2014) conducted a classification study for IGD using
EEG data, classifying only the features of each participant, not
groups. Ji et al. (2019) attempted to classify IGD using subjective
assessments (Chen’s Internet addiction score) and respiratory
data. Since these studies do not directly classify the disease as

IGD and non-IGD, offering a limited perspective compared to
other addiction studies. Therefore, quantitative research that can
contribute to the treatment and diagnosis of IGD is necessary,
specifically, to supplement subjective assessment.

In this study, we analyzed three groups, as distinct from
previous experiments that divided participants into control and
patient groups, since there are several users who enjoy games
without developing an addiction. These three groups were
categorized as follows: Group A, which rarely plays games; Group
B, which enjoys and plays games regularly; and Group C, which
is classified as having IGD. Our study was multimodal, and
comprised electrooculograms (EOGs), photoplethysmograms
(PPGs), and electroencephalography (EEG). The purpose of this
study was to contribute to the study of objective measurements
for the diagnosis of IGD by identifying statistical features that
distinguish the three groups.

MATERIALS AND METHODS

Experimental Design
Stimuli Selection
We selected three types of games [FIFA online 3 (FIFA), Sudden
Attack (SA), and League of Legends (LOL)] as stimuli, which
were rated as the top three computer games in the Republic of
Korea in 2016 (Gametrics, 2016). Furthermore, 12 game-playing
videos (12:3 types of game videos× 4; video running time: 5 min)
were selected to conduct an online pre-survey, for selection of
stimuli, in which all participants watched videos intended to
induce craving, and shortly thereafter reported their degree of
craving. Two high-scoring videos were selected per game. Each
selected video was divided into six 25-s videos. Finally, 36 game-
playing videos were selected. Additionally, 36 natural videos with
medium levels of arousal and valance were selected. The selected
videos can be found at https://youtu.be/K83jANLQoHE.

Protocol
All participants watched 36 game-playing videos and 36 neutral
videos alternately using a head-mounted display (HMD) device
(Oculus DK2 HMD; Oculus VR LLC, Menlo Park, CA,
United States) to enhance immersion. We tried to remove the
familiarity effect by adding neutral videos between the gameplay
videos. We also added a break time between sessions to remove
the base effect of craving. Video clips showing dynamic scenes
were presented in a counterbalanced order. After watching each
video clip, the participants reported the degree of craving that
they felt at that moment, on a 5-point Likert scale. The self-
reporting questionnaire was as follows: the degree of game
craving that you are feeling now (1 = I do not feel any craving for
gaming now; 3 = I feel craving for gaming now; 5 = I feel very
strong craving for gaming now); please press the button (1–5).
Figure 1 schematically shows the experimental protocol.

Participants and Procedures
Before recruitment, we were approved and reviewed by the
Institutional Review Board (IRB) (Approval number: 2017-013)
of Korea Institute of Science and Technology (KIST). And
we made poster including inclusion and exclusion criteria for
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FIGURE 1 | Schematic representation of the experimental protocol.

recruitment according to IRB. The following inclusion criteria
were used: (1) Anyone who has played LOL, Sudden Attack
and FIFA online. (2) Anyone who rarely or heavily play games.
(3) Adolescents /late-adolescents 13–22 years old. The following
exclusion criteria were used: (1) Those who have not suffered
from, or are currently suffering from, a brain disease or mental
illness. (2) Anyone who enjoy or prefer games other than
LOL, Sudden Attack or FIFA online. Using online and offline
posters, we posted them in online communities (Facebook page
related to high school and college) and notice board (offline)
at Hanyang university, Seoul, South Korea. Participants were
recruited from the Korea Institute of Science and Technology
(KIST) in Seoul, South Korea. The experiments were conducted
at the KIST between July 8, 2016, and May 25, 2017. Participants
were requested to refrain from smoking and caffeine intake, and
to get a good amount of sleep the day before the experiment.
All procedures were explained to, and informed consent was
obtained from all participants before the experiment began.
After experiment, we rewarded participants with monetary
remuneration according to IRB.

Fifty-one adolescent males (age: 19.20 ± 2.48 years)
participated in the experiment. We chose the Young’s Internet
Addiction Test, which has been most commonly used to evaluate
the severity of game addiction (Young, 1998a), since there was no
“Gold standard” for IGD assessment. In this study, we classified
all participants into Groups A, B, and C according to the Korean
version (Lee et al., 2013) of Young’s Internet Addiction Test
(Y-IAT-K). All participants watched three types of gameplay
videos to induce game-related cravings. We also analyzed EEG,
EOG, and PPG on the preferred gameplay videos, drawing from
a previous study in which the favorite game-related stimuli
induced craving more than the non-favorite game-related stimuli
(Ha et al., 2020).

In this study, Group A rarely played games. Therefore, the
possibility of a diagnosis of IGD would be very low, unlike Group

C. However, as participants in Group B enjoyed the games as
long and often as those in the IGD group and had high risk
of developing IGD, we needed to distinguish Group B from
other groups. We set three groups with the inclusion criteria as
follows: (1) for Group A, Y-IAT-K scores < 30 (Young, 1998b),
for Group B, 30 < Y-IAT-K scores < 60 (Wang et al., 2017;
Dong et al., 2018), and for Group C, Y-IAT-K scores > 60
(Ha et al., 2020; Zhou et al., 2021); (2) the participants had
a favorite game among FIFA, SA, and LOL. The exclusion
criteria were as follows: (1) participants diagnosed with substance
abuse; (2) participants with previous or current episodes of
neurophysiological disease; and (3) participants who preferred
other games to FIFA, SA, or LOL. We classified 15 participants
into Group A (age: 19.00 ± 2.60 years), 18 participants into
Group B (age: 19.30 ± 2.49 years) and 18 participants into
Group C (age: 19.30 ± 2.49 years) according to each group’s
Y-IAT-K score.

Data Measurements and Processing
An EEG recording system that can measure other physiological
signals was used (sampling rate: 2,048 Hz; Active-two, Biosemi
S.V., Amsterdam, Netherlands). EEG was acquired using a
cap that provided 64 electrodes positioned according to the
International 10/20 system. EOG signals were acquired above,
below, and on the left side of the right eye and right side of the
left eye. The PPG signal was acquired from the left index finger.
Figure 2 shows the EEG recording system with the HMD and
EOG channel locations in the HMD.

EOG Processing
The EOG data preprocessing and analysis were conducted using
Matlab. First, we down-sampled from 2,048 to 64 Hz and
epoched them during the watching of video clips (25s), using
two EOG components (vertical and horizontal) to estimate
saccadic eye movements. The vertical EOG component was
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FIGURE 2 | Experimental setup.

calculated by subtracting the channel above from the channel
below the right eye. The horizontal EOG component was
calculated by subtracting the left side channel in the right eye
from the right-side channel in the left eye. Second, we applied
a median filter (7 points window size) to remove noise and
subtracted the median value of each component to remove
the baseline drift (Lee et al., 2016). Third, to estimate vertical
saccadic eye movements (VSM) and horizontal saccadic eye
movements (HSM), the continuous wavelet transform-saccade
detection algorithm was used (Chang et al., 2017). Lastly, the
degree of saccadic movement was evaluated by calculating the
line integration of the estimated eyeball movement path, as in
previous studies (Kim et al., 2018, 2019).

PPG Processing
PPG data preprocessing and analysis were conducted using
Matlab software. First, we epoched them during the watching of
video clips (25 s) and down-sampled t from 2,048 to 128 Hz.
Second, we conducted 0.5–4 Hz band-pass filtering and found the
peaks of the PPG data by using the toolbox in Matlab. Several
abnormal peaks were corrected by visual inspection and were
manually indicated as peaks. Finally, heart rates (HR), normal
to normal intervals (N-N intervals), standard deviation of N-N
intervals (SDNN), and PNN50 were calculated. PNN50 is the %
of the total N-N intervals in which the difference between two
consecutive N-N intervals is greater than 50 ms.

EEG Processing
EEG data preprocessing and analysis were conducted using
EEGLAB,1 a toolbox of Matlab (2020b, Mathworks Inc., Natick,

1http://sccn.ucsd.edu/eeglab

MA, United States). We first down-sampled the EEG data to
512 Hz and epoched them while watching the video clips (25-
s). Subsequently, we conducted 0.5–50 band-pass filtering, and
removed eye movement and muscle artifacts by conducting
artifact subspace reconstruction (Mullen et al., 2013). Finally,
a common average reference was obtained. The power spectral
density (PSD) was calculated using Welch’s method (Stoica and
Moses, 2005). The ranges of the five frequency bands were as
follows: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta
(12–30 Hz), and gamma (30–50 Hz) (Kim et al., 2013; Roh et al.,
2016). Furthermore, relative power was used as a feature. The
percentage of power in any band compared with the total power
in the EEG is the relative power (for instance, “relative theta”
is the percentage of theta of the combined sum of delta, theta,
alpha, beta, and gamma). We denoted regions of interest for
EEG analysis as prefrontal (Fpz), frontal (Fz), parietal (Pz), and
occipital (Oz) areas.

Feature Extraction
In this study, statistical indicators were selected as features for
classification. Therefore, we chose expected indicators which
could be significant to conduct statistical tests. EOG, PPG,
and EEG indicators which were verified in previous cognitive
studies on addiction, memory, and emotion were used as
classification features. With regards to EOG, there have been
a few addiction-related studies (including IGD). According to
Kim et al. (2018), there was a correlation between saccadic
movements and attention to game video in the IGD group.
In their study, saccadic movements were significantly different
between exposure to neutral and gameplay videos. Therefore, we
used VSM and HSM obtained from EOG as our features with
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an assumption that VSM and HSM will be statistical significance
on our experiment.

With regards to PPG, we used only the time domain-based
indicators (HR, SDNN and PNN50) because the long epoch time
was required to extract frequency domain-based PPG-indicators
(Smith et al., 2013; Jiang et al., 2017; Castaldo et al., 2019). We
also made our decision based on previous PPG studies related
to addiction (including IGD). We used HR, SDNN, and PNN50
which are general time-domain indicators of PPG as our features
with an assumption that they will be statistical significance
on our experiment.

With regards to EEG, we took into account previous
studies on emotions and addiction, and we conducted features
extraction based on the assumption that the features related
to addiction and memory can induce game related craving
(Dong et al., 2011; Ha et al., 2020) and attention to stimuli.
Some studies have reported a relationship between prefrontal
delta power (RDPF) and craving/addiction (Reid et al., 2003,
2006; Pripfl et al., 2014), between prefrontal theta power (RTPF)
and reward property (Reid et al., 2003 2006), and between
prefrontal alpha power (RAPF) and automatic arousal and anxiety
(Reid et al., 2006). As a result, we selected RDPF, RTPF and
RAPF as features. To improve classification performance, we
extracted a greater number of features based on our research
of previous studies. Most EEG based studies previously focused
on slow wave (delta, theta, alpha) / fast wave (beta, gamma)
ratio: (1) Delta-beta ratio studies: behavioral inhibition and
anxiety (Putman, 2011; De Pascalis et al., 2020; Poole et al.,
2020). (2) Delta-gamma ratio studies: working memory task
(Missonnier et al., 2020). (3) Theta-beta ratio studies: attention
and mental stress (Clarke et al., 2019; Yi Wen and Mohd Aris,
2020). (4) Theta-gamma ratio studies: memory (Moretti et al.,
2009). (5) Alpha-beta ratio studies: attention and mental stress
(Liu et al., 2013; Yi Wen and Mohd Aris, 2020). Based on
these studies, we selected delta/beta, delta/gamma, theta/beta,
theta/gamma, and alpha/beta ratio as features. Because these
studies have also focused on various brain regions (prefrontal-
frontal, parieto-occipital etc.), our final selection consists of
23 features [RDPF, RTPF, RAPF, prefrontal delta/beta ratio
(DBRPF), frontal delta/beta ratio (DBRF), parietal delta/beta
ratio (DBRP), occipital delta/beta ratio (DBRO), prefrontal
delta/gamma ratio (DGRPF), frontal delta/gamma ratio (DGRF),
parietal delta/gamma ratio (DGRP), occipital delta/gamma ratio
(DGRO), prefrontal theta/beta ratio (TBRPF), frontal theta/beta
ratio (TBRF), parietal theta/beta ratio (TBRP), occipital theta/beta
ratio (TBRO), prefrontal theta/gamma ratio (TGRPF), frontal
theta/gamma ratio (TGRF), parietal theta/gamma ratio (TGRP),
occipital theta/gamma ratio (TGRO), prefrontal alpha/beta ratio
(ABRPF), frontal alpha/beta ratio (ABRF), parietal alpha/beta
ratio (ABRP), occipital alpha/beta ratio (ABRO)].

Statistical Method
The Shapiro–Wilk test was conducted to test the normality of the
dataset. All demographic, EOG, PPG, and EEG datasets satisfied
normality. Analysis of variance (ANOVA) was used to confirm
the matched age and compare demographic data (game playtime,

Y-IAT-K) among the three groups. Paired sample t-test was
used to compare between craving scores for each group, after
participants watched neutral videos and favorite gameplay videos.
Additionally, analysis of covariance (ANCOVA), a technique for
analyzing grouped data with covariates was used to compare
EOG, PPG, and EEG features between the three groups, while
participants watched neutral videos and favorite gameplay videos
(Keselman et al., 1998). We calculated Cohen’s d, the expected
effect size for the paired sample t-test, and Cohens’ f2/ partial eta-
squared ηP

2, the expected effect size for the ANOVA/ANCOVA
using G∗power (Faul et al., 2007, 2009). The expected Cohens’ d
in this study were as follows: number of participants = 16 (Group
A): 0.75 [α: 0.05, 1-β: 0.8], number of participants = 18 (Groups
B and C): 0.70 [α: 0.05, 1-β: 0.8]; standard values of 0.1, 0.25,
and 0.4, for effect size, generally adjudged as small, moderate,
and large, respectively. The expected Cohen’s f2 for ANOVA was
0.45 [α: 0.05, 1-β: 0.8]; standard values of 0.1, 0.25, and 0.4, for
effect size are generally adjudged as small, moderate, and large,
respectively. The expected partial eta-squared ηP

2 for ANCOVA
was 0.168 [α: 0.05, 1-β: 0.8]; standard values of 0.01, 0.06, and
0.14, for effect size are generally adjudged as small, moderate, and
large, respectively. We performed the Shapiro-Wilk test, paired
sample t-test, and ANOVA using GraphPad Prism (Version 8.00
for MAC, GraphPad Software, La Jolla California United States)
and ANCOVA using the statistical toolbox of Matlab (2020b,
Mathworks Inc., Natick, MA, United States). Benjamini-Yekutli’s
false discovery rate (FDR) correction was conducted for multiple
comparison corrections (N = 28) in the ANCOVA (Benjamini
and Yekutieli, 2001). Bonferroni correction was conducted for
multiple comparison corrections (N = 3) in the post hoc analysis.

Classification Method
We used a two-layer feed-forward neural network
(FFNN) to conduct classification for a total of
51 samples × number of features. The statistical features
were selected using ANCOVA. To design and train the FFNN, we
used the Neural Net Fitting App from the Matlab toolbox (2020b,
Mathworks Inc., Natick, MA, United States). By using this app,
training network with fivefold cross-validation was conducted
(the train and validation set in a ratio of 8:2). The training
function of FFNN was based on the Levenberg-Maquardt
algorithm. Figure 3 shows the graphical structure of the FFNN.
To obtain best performance, we put each value in two-layer
(first, second layer) and selected the best performance according
to each condition (EOG and PPG/EEG/Fusion). To present
the performance of classification for each group, the following
variables were used: accuracy, recall, precision, and F-1 score.
• Accuracy for class α is used to calculate the proportion of

the total number of predictions that are correct.

Accuracy

=
TP

(
class = α

)
+ TN

(
class = α

)
TP

(
class = α

)
+ FN

(
class = α

)
+ TN

(
class = α

)
+ FP

(
class = α

)
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FIGURE 3 | Graphical structure of the two-layer feedforward neural network.

•Recall (also known as sensitivity) for class α is used
to measure the proportion of actual positives that are
correctly identified.

Recall =
TP

(
class = α

)
TP

(
class = α

)
+ FN

(
class = α

)
•Precision (also known as positive predictive value) for class

α is used to measure the proportion of actual negatives that are
correctly identified.

Precision =
TP

(
class = α

)
TP

(
class = α

)
+ FP

(
class = α

)
•F-1 score for class α is used to measure test’s accuracy.

F1 score = 2 ×
Recall

(
class = α

)
× Precision

(
class = α

)
Recall

(
class = α

)
+ Precision

(
class = α

)
Where TP (true positive), FN (false negative), TN (true

negative) and FP (false negative).

RESULTS

Demographic Data and Self-Reported
Craving Score
There was no significant difference in age between the three
groups. However, game play time, which refers to the average
game time in a day, and Y-IAT-K scores differed significantly
between the three groups. All the significant results satisfied the
expected effect sizes. Detailed values are listed in Table 1. Looking
at Figure 4, the paired t-test results for self-reported cravings
scores were significant for each group [Group A: t = 5.15 (neutral
videos, 1.13 ± 0.21; gameplay videos, 2.06 ± 0.79), Cohens’

d = 1.88; Group B: t = 9.12 (neutral videos, 1.62± 0.51; gameplay
videos, 3.49± 0.94), Cohens’ d = 3.13; Group C: t = 8.08 (neutral
videos, 2.26 ± 0.86; gameplay videos, 4.17 ± 0.48), Cohens’
d = 2.77]. However, the ANCOVA results showed no differences
between the three groups.

Statistical Analysis
Among the EOG components, VSM for gameplay videos
controlling neutral videos showed significant results among the
three groups (ANCOVA, p-value < 0.05). Among the PPG
components, SDNN and PNN50 were statistically significant
(ANCOVA, p-value < 0.05). Only the effect size of the VSM
is higher than the expected effect size for ANCOVA. However,
VSM, SDNN and PNN50 were not highly significant [p-
value (FDR Correction) > 0.0075]. Figure 5 and Table 2
present detailed values. Ten EEG indicators for gameplay videos
controlling neutral videos showed significant results between
the three groups (ANCOVA, p-value < 0.05). The significant
indicators were as follows: RTPF, RAPF, DGRPF, DBRPF, TBRPF,
ABRPF, ABRF, DGRP, DGRO, and TGRO. There were also six
highly significant features (RTPF, DGRO, TBRPF, TGRO, ABRPF,
and ABRF) [p-value (FDR Correction) < 0.0075]. Almost all
features are higher than the expected effect size for ANCOVA,
except for RAPF, DGRPF, and DGRP. Figure 6 and Table 3
present detailed values.

Classification
Feature Selection
Indicators that met the statistical criteria (p-value < 0.05) were
used as classification features and they are listed as follows: VSM,
SDNN, PNN50, RTPF, RAPF, DGRPF, DBRPF, TBRPF, ABRPF,
ABRF, DGRP, DGRO, and TGRO. To design the features, they
were modified since they were composed of before-and-after data
on each indicator. This variation (in this study, the value of
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TABLE 1 | Mean, standard deviation (SD), F, and p-value of analysis of variance (ANOVA) on demographic data.

Mean (SD) F p f2

Group Aa

(n = 15)
Group Bb

(n = 18)
Group Cc

(n = 18)
F(2, 48)
(n = 51)

Age 20.27 (2.43) 18.67 (2.50) 18.83 (2.41) 2.08 ns

Game
playtime

0.73 (0.94) 3.11 (2.37) 4.89 (2.45) 16.16 <0.0001****
(a,b *, a,c ****,

b,c **)

0.77

Y-IAT-K 24.13 (2.56) 45.83 (7.75) 67.78 (4.74) 251.3 <0.0001****
(a,b ****, a,c

****, b,c ****)

3.13

aGroup A, who rarely play games; bGroup B, who enjoy and plays games regularly; cGroup C, who is classified as having Internet gaming disorder; Game playtime, the
average time of gameplay per day in the previous week; Y-IAT-K, Korean version of Young’s Internet addiction test; *p < 0.05, **p < 0.01, ****p < 0.0001, significant
p-value for ANOVA and Bonferroni’s multiple comparisons test; f2, effect size for ANOVA (Cohen’s f2). ns, non-significant.

gameplay video data—neutral video data) for each indicator is an
important characteristic. The modified feature was as follows:

Feature (Ratio) =
Significant indicator (Gameplay videos)

Significant indicator (Neutral videos)

Classification Performances
The results of the classification of 2-layers FFNN were compared
according to three cases, and the results were as follows. The
accuracy of Case-1 using only significant EOG and PPG features
was 0.86 (number of features, 3; number of nodes in the first
layer: 33; second layer: 20). The accuracy of Case-2 using
only significant EEG features was 0.87 (number of features, 10;
number of nodes in the first layer: 25; second layer: 7). The
accuracy of Case-3 using all significant features was 0.90 (number
of features, 13; number of nodes in the first layer: 26; second

FIGURE 4 | Analysis of the self-reported craving scores of 51 participants.
***p < 0.0001 (paired sample t-test).

layer: 40). Table 4 presents the detailed values of accuracy, recall,
precision, and F-1 score.

DISCUSSION

The purpose of this study was to identify features to objectively
measure IGD. Accordingly, participants were classified into
groups A, B, and C. Age was statistically matched in the
demographic data. Since statistically significant differences were
observed for Y-IAT-K scores and the average gameplay time,
we were able to clearly classify the experimental groups.
Interestingly, all three groups had higher self-reported craving
scores while watching gameplay videos (significant paired
t-test results), whereas self-reported scores did not significantly
distinguish the three groups (non-significant ANCOVA results).
These results disprove that game-related cues induced more
craving for games. However, these subjective ratings could not
classify the three groups.

All physiological signals were statistically analyzed. For EOG,
VSM was statistically significant from the result of ANCOVA. The
lower the movement of the eyeball while concentrating (when the
participant watches gameplay videos), the lower the VSM, and
the greater the movement of the eyeball (when the participant
watches neutral videos), the more disrupted the concentration,
higher the VSM. Several studies have already reported that VSM
is related to concentration (Hoffman and Subramaniam, 1995;
Mogg et al., 2003). Kim et al. (2018) interpreted high VSM
of participants with IGD watching gameplay videos as high
concentration. However, we concluded that eye movement on
a gameplay video could not be the sole indicator of addiction.
We assumed that the more addicted the participants are, the
higher their familiarity would be with the game. Ultimately,
these factors made the difference between HC and IGD’s focus
on the game, which resulted in statistical significance between
the groups. For PPG, both SDNN and PNN50 showed similar
tendencies. As shown in the results of Group A, the SDNN
and PNN50 decreased in the gameplay videos condition than
in the neutral videos condition. This finding means that the
heart rate fluctuation becomes monotonous. Previous studies
have suggested that this phenomenon is stressful and unstable
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FIGURE 5 | Symbols and lines plot for analysis of covariance with significant results of electrooculogram and photoplethysmogram features. (A) Vertical saccadic
movement (VSM). (B) Standard deviation of normal to normal (N-N) intervals (SDNN). (C) The % of the total N-N intervals in which the difference between two
consecutive N-N intervals is geater than 50 ms (PNN50). *p < 0.05 (post-hoc of analysis of covariance with Bonferroni correction).

TABLE 2 | Mean and standard deviation (SD) of slope, F, and p-value of analysis of covariance (ANCOVA) on electrooculogram and photoplethysmogram features.

Mean slope (SD) F P η2
P

Group Aa

(n = 15)
Group Bb

(n = 18)
Group Cc

(n = 18)
F(2, 45)
(n = 51)

VSM 0.82 (0.11) 0.40 (0.13) 0.25 (0.19) 4.68 0.014*
(a,b ns a,c *,

b,c ns)

0.172

SDNN 0.29 (0.12) 0.58 (0.17) 0.81 (0.17) 3.32 0.045*
(a,b ns, a,c *,

b,c ns)

0.129

PNN50 0.71 (0.12) 0.96 (0.06) 1.10 (0.07) 3.87 0.028*
(a,b ns, a,c *,

b,c ns)

0.147

aGroup A, which rarely plays games; bGroup B, which enjoys and plays games regularly; cGroup C, which is classified as having Internet gaming disorder; VSM, vertical
saccadic movement; SDNN, standard deviation of NN intervals; PNN50 is the % of the total RR intervals in which the difference between two consecutive RR intervals
is greater than 50 ms; significant p-value for ANCOVA, false discovery rate (FDR) correction for ANCOVA, and Bonferroni’s multiple comparisons test for post hoc, ns,
non-significant, *p < 0.05; η2

P, effect size for ANCOVA (partial eta-squared).

(Park et al., 2011, 2014; Castaldo et al., 2019). Although these
EOG and PPG features were not highly significant, and they did
not satisfy FDR corrections, they showed a difference between
groups. Therefore, we used these indicators (VSM, SDNN, and
PNN50) as classification features.

To explain the combined EEG indicators that satisfied FDR
corrections, many previous studies on IGD, other addictions,
and emotional processes related to EEG features were reviewed.
Negative variations of RTPF and TBRPF (a numerator: decreased
prefrontal theta, a denominator: increased prefrontal beta) were
the highest and positive variation of TGRO (a numerator:
increased occipital theta, a denominator: decreased occipital
gamma) was the highest in Group C. These results could be
attributed to the characteristics of IGD as recent studies have
shown that these responses are associated with other addictions
or IGD. HajiHosseini and Holroyd (2015) and Marco-Pallarés
et al. (2015) speculated that increased prefrontal beta power
follows a reward-related response. Minguillon et al. (2016)

proposed that lower gamma power means low-level stress.
Correas et al. (2019) demonstrated that young binge drinkers
exhibited lower prefrontal theta power (desynchronization)
than light drinkers when they were exposed to visual targets.
Ha et al. (2020) demonstrated that participants with IGD
exhibited higher variation in parieto-occipital theta power
when exposed to game-related cues and neutral cues than in
healthy controls. Positive variations in ABRPF and ABRF (a
numerator: increased prefrontal/frontal alpha, a denominator:
decreased prefrontal/frontal beta) were the highest in Group
A. Conversely, negative variations of these features appeared
in Groups B and C (a numerator: decreased prefrontal/frontal
alpha, a denominator: increased prefrontal/frontal beta). Liu
et al. (1998) reported that increased arousal accompanied alpha
desynchronization in cocaine addiction, and Ieong et al. (2019)
demonstrated that lower prefrontal alpha in opiate addiction is
associated with prefrontal desynchronization in their EEG and
functional near-infrared spectrogram studies. Previous studies
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FIGURE 6 | Symbols and lines plot for analysis of covariance with significant results of electroencephalogram features. (A) Prefrontal relative theta power (RTPF).
(B) Prefrontal relative alpha power (RAPF). (C) Prefrontal delta/gamma ratio (DGRPF). (D) Prefrontal delta/beta ratio (DBRPF). (E) Prefrontal theta/beta ratio (TBRPF).
(F) Prefrontal alpha/beta ratio (ABRPF). (G) Frontal alpha/beta ratio (ABRF). (H) Parietal delta/gamma ratio (DGRP). (I) Occipital delta/gamma ratio (DGRO).
(J) Occipital theta/gamma ratio (TGRO). *p < 0.05, **p < 0.01 (post-hoc of analysis of covariance with Bonferroni correction). And FDR **p < 0.05 with FDR
correction for analysis of covariance.

have shown that lower frontal midline beta power is associated
with reward-related responses (HajiHosseini and Holroyd, 2015;
Marco-Pallarés et al., 2015). Positive variation in DGRO was
the highest in Group B, and the delta power of Group B was
the highest. However, the interpretation for Group B is difficult
because there are no EEG-based studies for participants who
do not have IGD but who still enjoy and play games regularly.
Explanations of delta power also vary; therefore, these results
could be complex. Several studies have shown that a higher

delta indicates a craving state (Phillips et al., 1994; Reid et al.,
2003, 2006) and arousal (Sforza et al., 2000; Clarke et al., 2013;
Reuderink et al., 2013). Although the increased features of Group
B are difficult to interpret, our results show that these features
are statistically significant and the classification results including
these features are satisfactory. Notably, Group B indicators
significantly differ from that of Groups A and C.

If a participant is interested in the game, focusing on gameplay
videos can induce cravings. However, such evidence is insufficient
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TABLE 3 | Mean and standard deviation (S.D.) of slope, F, and p-value of analysis of covariance (ANCOVA) on electroencephalogram (EEG) features.

Mean slope (SD) F P η2
P

Group Aa

(n = 15)
Group Bb

(n = 18)
Group Cc

(n = 18)
F(2, 45)
(n = 51)

RTPF 0.98 (0.10) 0.94 (0.10) 0.47 (0.13) 5.47 0.008 (FDR)**
(a,b ns, a,c *, b,c *)

0.196

RAPF 1.06 (0.16) 0.65 (0.12) 0.58 (0.10) 3.22 0.049*
(a,b ns, a,c *, b,c ns)

0.125

DGRPF 0.80 (0.20) 1.39 (0.10) 1.07 (0.17) 3.97 0.026*
(a,b *, a,c ns, b,c ns)

0.150

DBRPF 0.84 (0.21) 1.34 (0.11) 0.83 (0.14) 4.77 0.013*
(a,b ns, a,c ns, b,c *)

0.175

TBRPF 0.97 (0.12) 1.05 (0.08) 0.54 (0.13) 5.89 0.005 (FDR)**
(a,b ns, a,c *, b,c **)

0.207

ABRPF 1.24 (0.17) 0.78 (0.10) 0.57 (0.08) 7.15 0.002 (FDR)**
(a,b ns, a,c **, b,c

ns)

0.241

ABRF 1.52 (0.17) 0.79 (0.11) 0.82 (0.11) 7.12 0.002 (FDR)**
(a,b **, a,c **, b,c ns)

0.240

DGRP 1.03 (0.27) 1.47 (0.17) 0.85 (0.15) 4.00 0.025*
(a,b ns, a,c ns, b,c *)

0.151

DGRO 0.89 (0.09) 1.35 (0.09) 1.20 (0.08) 6.82 0.003 (FDR)**
(a,b **, a,c *, b,c ns)

0.233

TGRO 0.92 (0.11) 0.88 (0.07) 1.34 (0.06) 12.36 <0.001 (FDR)**
(a,b ns, a,c **, b,c

***)

0.355

aGroup A, which rarely plays games; bGroup B, which enjoys and plays games regularly; cGroup C, which is classified as having Internet gaming disorder; RTPF ,
prefrontal relative theta; RAPF , prefrontal relative alpha; DGRPF , prefrontal delta/gamma ratio; DBRPF , prefrontal delta/beta ratio; TBRPF , prefrontal theta/beta ratio;
ABRPF , prefrontal alpha/beta ratio; ABRF , frontal alpha/beta ratio; DGRP, parietal delta/gamma ratio; DGRO, occipital delta/gamma ratio; TGRO, occipital theta gamma
ratio; significant p-value for ANCOVA, false discovery rate (FDR) correction for ANCOVA, and Bonferroni’s multiple comparisons test for post hoc, ns, non-significant,
*p < 0.05, **p < 0.01, ***p<0.001, (FDR) **p < 0.05 with FDR correction; η2

P, effect size for ANCOVA (partial eta squared).

to diagnose it as an IGD. Comparing participants with IGD
(Group C) to the traditional control group (Group A) could result
in misjudgment of IGD by applying these criteria to Group B.
In this study, the statistically significant indicators given above
were used as features to classify the three groups. Both autonomic
and central nervous system signals were classified with a high

TABLE 4 | Performance (Accuracy, Recall, Precision, F-1 Score) of classification
using feed-forward neural network.

Accuracy Recall Precision F-1 score

EOG and PPG

Group A 0.67 0.91 0.77

Group B 0.86 0.89 0.76 0.82

Group C 0.83 0.79 0.81

EEG

Group A 0.87 0.81 0.83

Group B 0.87 1 0.86 0.92

Group C 0.72 0.93 0.81

Fusion of features

Group AGroup BGroup C 0.93 0.93 0.93

0.90 0.94 0.85 0.89

0.83 0.94 0.88

EOG and PPG, statistically significant features (electrooculogram
and photoplethysmogram); EEG, statistically significant features
(electroencephalogram); fusion of features, fusion of three (EOG, PPG, and
EEG) physiological features; Group A, who rarely play games; Group B, who enjoy
and play games regularly; Group C, who is classified as having Internet gaming
disorder.

accuracy of over 0.90. In the field of game addiction, there is no
study that classifies gamers as having IGD or not having IGD, by
directly using physiological signals. However, in studies on other
addictions, those with addiction and those without addiction
were classified using EEG or fMRI data. Saddam et al. (2017)
reported 0.94 accuracy on 260 samples (130 alcohol use disorders
and 130 control groups) using EEG. Mumtaz et al. (2018)
reported 0.98 accuracy on 60 samples (30 alcohol use disorders
and 30 control groups) using EEG. Kamarajan et al. (2020)
reported 0.77 accuracy in 60 samples (30 alcohol use disorders
and 30 control groups). Thus, to the best of our knowledge, this
study is the first to conduct a three-class classification exceeding
0.90 accuracy, similar to previous addiction studies.

This study makes important contributions to the literature.
One such contribution is that the classification was done using
features that can be interpreted by using statistically significant
indicators of IGD. Another contribution is that the participants
were divided into three groups, and not merely into simple
categories such as those with addiction and those without
addiction. This study suggests that IGD can also be distinguished
through the fusion of physiological signals like previous studies
based on fMRI or EEG. The concept of a group that merely
enjoys an activity and is non-addictive (like Group B) should be
interpreted differently from addiction as one of the key topics
for game addiction and for the new addictive disorder. This
study can also be used directly in CET for IGD treatment.
Since we used responses based on gameplay and neutral videos
in our experiment, we showed that subjective indicators (self-
reported craving scores) could not distinguish between the IGD
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(Group C) and non-IGD groups (Groups A and B). Thus, we
demonstrated that more objective indicators of the autonomous
and central nervous systems could distinguish between IGD
and non-IGD groups. These objective indicators can supplement
conventional assessments, such as Young’s internet addiction test.

This study has some limitations. First, the experiment was
conducted on men and teenagers, based on reports and studies
that indicated IGD mostly as a problem among men and
adolescents. Hence, caution should be taken in applying the
results of this study on women. Second, our sample size was
relatively small. Therefore, we will repeat the study with a
larger sample size in the future. We used statistically significant
features for reliability of results, unlike classifications using
several uninterpretable features in existing studies. If this study
is conducted again in the future, we believe that the results
can provide greater confidence. Among features satisfying
no multiple comparison correction and expected effect size,
caution should be taken in applying them to the classifier.
Third, emphasizing practicality, the experiments used PPG
and EEG, although there are more efficient ways to clearly
identify autonomous and central nervous system functions, such
as ECG and fMRI.

In summary, statistically significant physiological signals were
extracted by presenting game-related cues. Using these extracted
indicators, three groups were distinguished: those who did not
play well (Group A), those who enjoyed and played games
regularly (Group B), and those who overused games, classified
as having IGD (Group C). The classification accuracy was 0.90.
Considering the scarcity of studies on IGD and evidence of
objective indicators such as physiological signals we found can
contribute to research, treatment, and prevention of IGD.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by the Institutional Review Board (IRB)
(Approval number: 2017-013) of the Korea Institute of
Science and Technology (KIST). Written informed consent to
participate in this study was provided by the participants’ legal
guardian/next of kin.

AUTHOR CONTRIBUTIONS

JH contributed to performing the experiments, analyzing the
data, and writing the manuscript. JH and LK conceived
and designed the experiment. SP, C-HI, and LK revised
the manuscript. LK supervised the experiments and overall
study. All authors contributed to the article and approved the
submitted version.

FUNDING

This research was supported in part by the Institute of
Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korean government
(MSIT) (2017-0-00432, Development of non-invasive integrated
BCI SW platform to control home appliances and external
devices by user’s thought via AR/VR interface).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyg.
2021.714333/full#supplementary-material

REFERENCES
American Psychiatric Association (2013). Diagnostic and Statistical Manual of

Mental Disorders, 5th Edn. Arlington, VA: American Psychiatric Publishing.
Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in

multiple testing under dependency. Ann. Stat. 29, 1165–1188. doi: 10.1214/aos/
1013699998

Castaldo, R., Montesinos, L., Melillo, P., James, C., and Pecchia, L. (2019). Ultra-
short term HRV features as surrogates of short term HRV: a case study on
mental stress detection in real life. BMC Med. Inform. Decis. Mak. 19:12. doi:
10.1186/s12911-019-0742-y

Chang, W.-D., Cha, H.-S., Kim, S. H., and Im, C.-H. (2017). Development
of an electrooculogram-based eye-computer interface for communication of
individuals with amyotrophic lateral sclerosis. J. Neuroeng. Rehabil. 14:89.

Choi, J.-S., Park, S. M., Lee, J., Hwang, J. Y., Jung, H. Y., Choi, S.-W., et al.
(2013). Resting-state beta and gamma activity in Internet addiction. Int. J.
Psychophysiol. 89, 328–333. doi: 10.1016/j.ijpsycho.2013.06.007

Clarke, A. R., Barry, R. J., Dupuy, F. E., McCarthy, R., Selikowitz, M.,
and Johnstone, S. J. (2013). Excess beta activity in the EEG of children
with attention-deficit/hyperactivity disorder: a disorder of arousal? Int. J.
Psychophysiol. 89, 314–319. doi: 10.1016/j.ijpsycho.2013.04.009

Clarke, A. R., Barry, R. J., Karamacoska, D., and Johnstone, S. J. (2019). The EEG
theta/beta ratio: a marker of arousal or cognitive processing capacity? Appl.
Psychophysiol. Biofeedback 44, 123–129. doi: 10.1007/s10484-018-09428-6

Correas, Á, López-Caneda, E., Beaton, L., Rodríguez Holguín, S., García-Moreno,
L. M., Antón-Toro, L. F., et al. (2019). Decreased event-related theta power
and phase-synchrony in young binge drinkers during target detection: an
anatomically-constrained MEG approach. J. Psychopharmacol. 33, 335–346.
doi: 10.1177/0269881118805498

De Pascalis, V., Vecchio, A., and Cirillo, G. (2020). Resting anxiety increases EEG
delta–beta correlation: relationships with the reinforcement sensitivity theory
personality traits. Pers. Individ. Differ. 156:109796. doi: 10.1016/j.paid.2019.
109796

Dehghani-Arani, F., Rostami, R., and Nadali, H. (2013). Neurofeedback training for
opiate addiction: improvement of mental health and craving [OriginalPaper].
Appl. Psychophysiol. Biofeedback 38, 133–141. doi: 10.1007/s10484-013-9
218-5

Doborjeh, M. G., Wang, G. Y., Kasabov, N., Kydd, R., and Russell, B. (2016). A
Spiking neural network methodology and system for learning and comparative
analysis of EEG data from healthy versus addiction treated versus addiction not
treated subjects. IEEE Trans. Biomed. Eng. 63, 1830–1841. doi: 10.1109/TBME.
2015.2503400

Frontiers in Psychology | www.frontiersin.org 11 September 2021 | Volume 12 | Article 714333

https://www.frontiersin.org/articles/10.3389/fpsyg.2021.714333/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.714333/full#supplementary-material
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1186/s12911-019-0742-y
https://doi.org/10.1186/s12911-019-0742-y
https://doi.org/10.1016/j.ijpsycho.2013.06.007
https://doi.org/10.1016/j.ijpsycho.2013.04.009
https://doi.org/10.1007/s10484-018-09428-6
https://doi.org/10.1177/0269881118805498
https://doi.org/10.1016/j.paid.2019.109796
https://doi.org/10.1016/j.paid.2019.109796
https://doi.org/10.1007/s10484-013-9218-5
https://doi.org/10.1007/s10484-013-9218-5
https://doi.org/10.1109/TBME.2015.2503400
https://doi.org/10.1109/TBME.2015.2503400
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-714333 September 20, 2021 Time: 13:1 # 12

Ha et al. Classifying Users With Gaming Disorder

Dong, G., Huang, J., and Du, X. (2011). Enhanced reward sensitivity and decreased
loss sensitivity in internet addicts: an fMRI study during a guessing task.
J. Psychiatr. Res. 45, 1525–1529. doi: 10.1016/j.jpsychires.2011.06.017

Dong, G., Wu, L., Wang, Z., Wang, Y., Du, X., and Potenza, M. N. (2018).
Diffusion-weighted MRI measures suggest increased white-matter integrity in
Internet gaming disorder: evidence from the comparison with recreational
internet game users. Addict. Behav. 81, 32–38. doi: 10.1016/j.addbeh.2018.01.
030

Du, J., Fan, C., Jiang, H., Sun, H., Li, X., and Zhao, M. (2014). Biofeedback
combined with cue-exposure as a treatment for heroin addicts. Physiol. Behav.
130, 34–39. doi: 10.1016/j.physbeh.2014.02.055

Evans, J. R., and Abarbanel, A. (1999). Introduction to Quantitative EEG and
Neurofeedback. Available online at: https://books.google.com/books?hl=en&lr=
&id=nIPyKjhY6ngC&oi=fnd&pg=PP2&dq=Neurofeedback+EEG+addiction&
ots=5WvBO3wp1y&sig=zRlTn6AwvtgEEXU-3V7iiJo59FU (accessed April 12,
2021).

Faul, F., Erdfelder, E., Buchner, A., and Lang, A.-G. (2009). Statistical power
analyses using G∗ Power 3.1: tests for correlation and regression analyses.
Behav. Res. Methods 41, 1149–1160. doi: 10.3758/brm.41.4.1149

Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007). G∗ Power 3: a flexible
statistical power analysis program for the social, behavioral, and biomedical
sciences. Behav. Res. Methods 39, 175–191. doi: 10.3758/bf03193146

Gametrics (2016). Weekly Game Trends for Week 2 of Feburary 2016.
Available online at: http://www.gametrics.com/news/news02_view.aspx?seqid=
26850 (accessed March 01, 2016).

Ghi̧tã, A., Hernández-Serrano, O., Fernández-Ruiz, Y., Monras, M., Ortega, L.,
Mondon, S., et al. (2019). Cue-elicited anxiety and alcohol craving as indicators
of the validity of ALCO-VR software: a virtual reality study. J. Clin. Med. 8:1153.
doi: 10.3390/jcm8081153

Ha, J., Park, W., Park, S. I., Im, C.-H., and Kim, L. (2020). EEG response to game-
craving according to personal preference for games. Soc. Cogn. Affect. Neurosci.
15:nsaa131.

HajiHosseini, A., and Holroyd, C. B. (2015). Reward feedback stimuli elicit high-
beta EEG oscillations in human dorsolateral prefrontal cortex. Sci. Rep.
5:13021.

Han, D. H., Kim, Y. S., Lee, Y. S., Min, K. J., and Renshaw, P. F. (2010). Changes
in cue-induced, prefrontal cortex activity with video-game play. Cyberpsychol.
Behav. Soc. Netw. 13, 655–661. doi: 10.1089/cyber.2009.0327

Han, J. W., Han, D. H., Bolo, N., Kim, B., Kim, B. N., and Renshaw, P. F. (2015).
Differences in functional connectivity between alcohol dependence and internet
gaming disorder. Addict. Behav. 41, 12–19. doi: 10.1016/j.addbeh.2014.09.006

Hernández-Serrano, O., Ghi̧tã, A., Figueras-Puigderrajols, N., Fernández-Ruiz, J.,
Monras, M., Ortega, L., et al. (2020). Predictors of changes in alcohol craving
levels during a virtual reality cue exposure treatment among patients with
alcohol use disorder. J. Clin. Med. 9:3018. doi: 10.3390/jcm9093018

Hoffman, J. E., and Subramaniam, B. (1995). The role of visual attention in saccadic
eye movements. Percept. Psychophys. 57, 787–795. doi: 10.3758/bf03206794

Ieong, H. F., Gao, F., and Yuan, Z. (2019). Machine learning: assessing
neurovascular signals in the prefrontal cortex with non-invasive bimodal
electro-optical neuroimaging in opiate addiction. Sci. Rep. 9:18262.

Ji, H.-M., Chen, L.-Y., and Hsiao, T.-C. (2019). “Real-time detection of internet
addiction using reinforcement learning system,” in Proceedings of the Genetic
and Evolutionary Computation Conference Companion, Prague.

Jiang, M., Mieronkoski, R., Rahmani, A. M., Hagelberg, N., Salanterä, S., and
Liljeberg, P. (2017). “Ultra-short-term analysis of heart rate variability for real-
time acute pain monitoring with wearable electronics,” in Proceedings of the
2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
Kansas City, MO.

Jin, C., Zhang, T., Cai, C., Bi, Y., Li, Y., Yu, D., et al. (2016). Abnormal prefrontal
cortex resting state functional connectivity and severity of internet gaming
disorder [OriginalPaper]. Brain Imaging Behav. 10, 719–729. doi: 10.1007/
s11682-015-9439-8

Kamarajan, C., Ardekani, B. A., Pandey, A. K., Kinreich, S., Pandey, G., Chorlian,
D. B., et al. (2020). Random forest classification of alcohol use disorder using
fMRI functional connectivity, neuropsychological functioning, and impulsivity
measures. Brain Sci. 10:115. doi: 10.3390/brainsci10020115

Keselman, H., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue,
B., et al. (1998). Statistical practices of educational researchers: an analysis of

their ANOVA, MANOVA, and ANCOVA analyses. Rev. Educ. Res. 68, 350–386.
doi: 10.3102/00346543068003350

Kim, D.-J., Bolbecker, A. R., Howell, J., Rass, O., Sporns, O., Hetrick, W. P.,
et al. (2013). Disturbed resting state EEG synchronization in bipolar disorder: a
graph-theoretic analysis. Neuroimage Clin. 2, 414–423.

Kim, H., Ha, J., Chang, W.-D., Park, W., Kim, L., and Im, C.-H. (2018). Detection
of craving for gaming in adolescents with internet gaming disorder using
multimodal biosignals [Article]. Sensors 18:102. doi: 10.3390/s18010102

Kim, H., Kim, L., and Im, C.-H. (2019). Machine-learning-based detection of
craving for gaming using multimodal physiological signals: validation of test-
retest reliability for practical use [Article]. Sensors 19:3475. doi: 10.3390/
s19163475

Kim, Y. J., Lee, J.-Y., Oh, S., Park, M., Jung, H. Y., Sohn, B. K., et al. (2017).
Associations between prospective symptom changes and slow-wave activity in
patients with internet gaming disorder: a resting-state EEG study. Medicine
96:e6178. doi: 10.1097/MD.0000000000006178

Kuss, D. J., and Lopez-Fernandez, O. (2016). Internet addiction and problematic
internet use: a systematic review of clinical research. World J. Psychiatry 6,
143–176. doi: 10.5498/wjp.v6.i1.143

Kuss, D. J., Pontes, H. M., and Griffiths, M. D. (2018). Neurobiological correlates in
internet gaming disorder: a systematic literature review. Front. Psychiatry 9:166.
doi: 10.3389/fpsyt.2018.00166

Lee, J.-Y., and Kang, H.-B. (2014). EEG and ERP based degree of internet game
addiction analysis. J. Korea Multimed. Soc. 17, 1325–1334.

Lee, K., Lee, H.-K., Gyeong, H., Yu, B., Song, Y.-M., and Kim, D. (2013). Reliability
and validity of the Korean version of the internet addiction test among college
students. J. Korean Med. Sci. 28, 763–768.

Lee, K.-R., Chang, W.-D., Kim, S., and Im, C.-H. (2016). Real-time “eye-writing”
recognition using electrooculogram. IEEE Trans. Neural Syst. Rehabil. Eng. 25,
37–48.

Ling, Z., Yue, C., Wenjie, L., and Fan, J. (2015). Electroencephalogram feature
detection and classification in people with internet addiction disorder with
visual oddball paradigm. J. Med. Imaging Health Inform. 5, 1499–1503. doi:
10.1166/jmihi.2015.1570

Liu, N.-H., Chiang, C.-Y., and Chu, H.-C. (2013). Recognizing the degree of human
attention using EEG signals from mobile sensors. Sensors 13, 10273–10286.
doi: 10.3390/s130810273

Liu, X., Vaupel, D. B., Grant, S., and London, E. D. (1998). Effect of cocaine-related
environmental stimuli on the spontaneous electroencephalogram in polydrug
abusers. Neuropsychopharmacology 19, 10–17.

Marco-Pallarés, J., Münte, T. F., and Rodríguez-Fornells, A. (2015). The role of
high-frequency oscillatory activity in reward processing and learning. Neurosci.
Biobehav. Rev. 49, 1–7.

Mete, M., Sakoglu, U., Spence, J. S., Devous, M. D., Harris, T. S., and Adinoff, B.
(2016). Successful classification of cocaine dependence using brain imaging:
a generalizable machine learning approach. BMC Bioinformatics 17(Suppl.
13):357. doi: 10.1186/s12859-016-1218-z

Minguillon, J., Lopez-Gordo, M. A., and Pelayo, F. (2016). Stress assessment
by prefrontal relative gamma. Front. Comput. Neurosci. 10:101. doi: 10.3389/
fncom.2016.00101

Missonnier, P., Prévot, A., Herrmann, F. R., Ventura, J., Padée, A., and Merlo, M. C.
(2020). Disruption of gamma–delta relationship related to working memory
deficits in first-episode psychosis. J. Neural Transm. 127, 103–115. doi: 10.1007/
s00702-019-02126-5

Mogg, K., Bradley, B. P., Field, M., and De Houwer, J. (2003). Eye movements to
smoking-related pictures in smokers: relationship between attentional biases
and implicit and explicit measures of stimulus valence. Addiction 98, 825–836.
doi: 10.1046/j.1360-0443.2003.00392.x

Monti, P. M., and Rohsenow, D. J. (1999). Coping-skills training and cue-exposure
therapy in the treatment of alcoholism. Alcohol Res. Health 23, 107–115.

Moretti, D., Fracassi, C., Pievani, M., Geroldi, C., Binetti, G., Zanetti, O., et al.
(2009). Increase of theta/gamma ratio is associated with memory impairment.
Clin. Neurophysiol. 120, 295–303. doi: 10.1016/j.clinph.2008.11.012

Mullen, T., Kothe, C., Chi, Y. M., Ojeda, A., Kerth, T., Makeig, S., et al. (2013).
“Real-time modeling and 3D visualization of source dynamics and connectivity
using wearable EEG,” in Proceedings of the 2013 35th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Osaka.

Frontiers in Psychology | www.frontiersin.org 12 September 2021 | Volume 12 | Article 714333

https://doi.org/10.1016/j.jpsychires.2011.06.017
https://doi.org/10.1016/j.addbeh.2018.01.030
https://doi.org/10.1016/j.addbeh.2018.01.030
https://doi.org/10.1016/j.physbeh.2014.02.055
https://books.google.com/books?hl=en&lr=&id=nIPyKjhY6ngC&oi=fnd&pg=PP2&dq=Neurofeedback+EEG+addiction&ots=5WvBO3wp1y&sig=zRlTn6AwvtgEEXU-3V7iiJo59FU
https://books.google.com/books?hl=en&lr=&id=nIPyKjhY6ngC&oi=fnd&pg=PP2&dq=Neurofeedback+EEG+addiction&ots=5WvBO3wp1y&sig=zRlTn6AwvtgEEXU-3V7iiJo59FU
https://books.google.com/books?hl=en&lr=&id=nIPyKjhY6ngC&oi=fnd&pg=PP2&dq=Neurofeedback+EEG+addiction&ots=5WvBO3wp1y&sig=zRlTn6AwvtgEEXU-3V7iiJo59FU
https://doi.org/10.3758/brm.41.4.1149
https://doi.org/10.3758/bf03193146
http://www.gametrics.com/news/news02_view.aspx?seqid=26850
http://www.gametrics.com/news/news02_view.aspx?seqid=26850
https://doi.org/10.3390/jcm8081153
https://doi.org/10.1089/cyber.2009.0327
https://doi.org/10.1016/j.addbeh.2014.09.006
https://doi.org/10.3390/jcm9093018
https://doi.org/10.3758/bf03206794
https://doi.org/10.1007/s11682-015-9439-8
https://doi.org/10.1007/s11682-015-9439-8
https://doi.org/10.3390/brainsci10020115
https://doi.org/10.3102/00346543068003350
https://doi.org/10.3390/s18010102
https://doi.org/10.3390/s19163475
https://doi.org/10.3390/s19163475
https://doi.org/10.1097/MD.0000000000006178
https://doi.org/10.5498/wjp.v6.i1.143
https://doi.org/10.3389/fpsyt.2018.00166
https://doi.org/10.1166/jmihi.2015.1570
https://doi.org/10.1166/jmihi.2015.1570
https://doi.org/10.3390/s130810273
https://doi.org/10.1186/s12859-016-1218-z
https://doi.org/10.3389/fncom.2016.00101
https://doi.org/10.3389/fncom.2016.00101
https://doi.org/10.1007/s00702-019-02126-5
https://doi.org/10.1007/s00702-019-02126-5
https://doi.org/10.1046/j.1360-0443.2003.00392.x
https://doi.org/10.1016/j.clinph.2008.11.012
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-714333 September 20, 2021 Time: 13:1 # 13

Ha et al. Classifying Users With Gaming Disorder

Mumtaz, W., Kamel, N., Ali, S. S. A., and Malik, A. S. (2018). An EEG-
based functional connectivity measure for automatic detection of alcohol use
disorder. Artif. Intell. Med. 84, 79–89. doi: 10.1016/j.artmed.2017.11.002

Park, M., Choi, J.-S., Park, S. M., Lee, J. Y., Jung, H. Y., Sohn, B. K., et al.
(2016). Dysfunctional information processing during an auditory event-related
potential task in individuals with internet gaming disorder [OriginalPaper].
Transl. Psychiatry 6:e721. doi: 10.1038/tp.2015.215

Park, S., Won, M., Mun, S., Lee, E., and Whang, M. (2014). Does visual fatigue from
3D displays affect autonomic regulation and heart rhythm? Int. J. Psychophysiol.
92, 42–48. doi: 10.1016/j.ijpsycho.2014.02.003

Park, S.-I., Whang, M.-C., Kim, J.-W., Mun, S.-C., and Ahn, S.-M. (2011).
Autonomic nervous system response affected by 3D visual fatigue evoked
during watching 3D TV. Sci. Emot. Sensibility 14, 653–662.

Petry, N. M., and O’Brien, C. P. (2013). Internet gaming disorder and the DSM-5.
Addiction 108, 1186–1187. doi: 10.1111/add.12162

Phillips, R. L., Herning, R., and London, E. D. (1994). Morphine effects on
the spontaneous electroencephalogram in polydrug abusers: correlations with
subjective self-reports. Neuropsychopharmacology 10, 171–181. doi: 10.1038/
npp.1994.19

Poole, K. L., Anaya, B., and Pérez-Edgar, K. E. (2020). Behavioral inhibition
and EEG delta-beta correlation in early childhood: comparing a between-
subjects and within-subjects approach. Biol. Psychol. 149:107785. doi: 10.1016/
j.biopsycho.2019.107785

Pripfl, J., Tomova, L., Riecansky, I., and Lamm, C. (2014). Transcranial magnetic
stimulation of the left dorsolateral prefrontal cortex decreases cue-induced
nicotine craving and EEG delta power. Brain Stimul. 7, 226–233. doi: 10.1016/j.
brs.2013.11.003

Putman, P. (2011). Resting state EEG delta–beta coherence in relation
to anxiety, behavioral inhibition, and selective attentional processing of
threatening stimuli. Int. J. Psychophysiol. 80, 63–68. doi: 10.1016/j.ijpsycho.
2011.01.011

Reid, M. S., Flammino, F., Howard, B., Nilsen, D., and Prichep, L. S. (2006).
Topographic imaging of quantitative EEG in response to smoked cocaine self-
administration in humans. Neuropsychopharmacology 31, 872–884. doi: 10.
1038/sj.npp.1300888

Reid, M. S., Prichep, L. S., Ciplet, D., O’Leary, S., Tom, M., Howard, B., et al. (2003).
Quantitative electroencephalographic studies of cue-induced cocaine craving.
Clin. Electroencephalogr. 34, 110–123. doi: 10.1177/155005940303400305

Reuderink, B., Mühl, C., and Poel, M. (2013). Valence, arousal and dominance
in the EEG during game play. Int. J. Auton. Adapt. Commun. Syst. 6, 45–62.
doi: 10.1504/ijaacs.2013.050691

Roh, S.-C., Park, E.-J., Shim, M., and Lee, S.-H. (2016). EEG beta and low gamma
power correlates with inattention in patients with major depressive disorder.
J. Affect. Disord. 204, 124–130. doi: 10.1016/j.jad.2016.06.033

Saddam, M., Tjandrasa, H., and Navastara, D. A. (2017). “Classification of alcoholic
EEG using wavelet packet decomposition, principal component analysis, and
combination of genetic algorithm and neural network,” in Proceedings of
the 2017 11th International Conference on Information & Communication
Technology and System (ICTS), Surabaya.

Sakoglu, U., Mete, M., Esquivel, J., Rubia, K., Briggs, R., and Adinoff, B. (2019).
Classification of cocaine-dependent participants with dynamic functional
connectivity from functional magnetic resonance imaging data. J. Neurosci. Res.
97, 790–803. doi: 10.1002/jnr.24421

Sforza, E., Jouny, C., and Ibanez, V. (2000). Cardiac activation during arousal
in humans: further evidence for hierarchy in the arousal response. Clin.
Neurophysiol. 111, 1611–1619. doi: 10.1016/s1388-2457(00)00363-1

Smith, A.-L., Owen, H., and Reynolds, K. J. (2013). Heart rate variability indices
for very short-term (30 beat) analysis. Part 1: survey and toolbox. J. Clin. Monit.
Comput. 27, 569–576. doi: 10.1007/s10877-013-9471-4

Stoica, P., and Moses, R. L. (2005). Spectral Analysis of Signals. Upper Saddle River,
NJ: Prentice Hall.

Wang, L., Wu, L., Wang, Y., Li, H., Liu, X., Du, X., et al. (2017). Altered brain
activities associated with craving and cue reactivity in people with internet
gaming disorder: evidence from the comparison with recreational Internet
game users. Front. Psychol. 8:1150. doi: 10.3389/fpsyg.2017.01150

World Health Organization (2018). 6C51 Gaming Disorder. Geneva: World Health
Organization.

Yao, Y.-W., Wang, L.-J., Yip, S. W., Chen, P.-R., Li, S., Xu, J., et al. (2015). Impaired
decision-making under risk is associated with gaming-specific inhibition
deficits among college students with Internet gaming disorder. Psychiatry Res.
229, 302–309. doi: 10.1016/j.psychres.2015.07.004

Yi Wen, T., and Mohd Aris, S. (2020). Electroencephalogram (EEG) stress analysis
on alpha/beta ratio and theta/beta ratio. Ind. J. Elect. Eng. Comp. Sci. 17,
175–182. doi: 10.11591/ijeecs.v17.i1.pp175-182

Young, K. S. (1998a). Caught in the Net: How to Recognize the Signs of Internet
Addiction–and a Winning Strategy for Recovery. New York, NY: John Wiley &
Sons.

Young, K. S. (1998b). Internet Addiction Test (IAT) Manual. Available online at:
http://netaddiction.com/assessments/ (accessed August 13, 1998).

Young, K. S. (1998c). Internet addiction: the emergence of a new clinical disorder.
Cyberpsychol. Behav. 1, 237–244. doi: 10.1089/cpb.1998.1.237

Zhang, Y., Ndasauka, Y., Hou, J., Chen, J., Wang, Y., Han, L., et al. (2016). Cue-
induced behavioral and neural changes among excessive internet gamers and
possible application of cue exposure therapy to internet gaming disorder. Front.
Psychol. 7:675. doi: 10.3389/fpsyg.2016.00675

Zhou, W., Zhang, Z., Yang, B., Zheng, H., Du, X., and Dong, G. (2021). Sex
difference in neural responses to gaming cues in Internet gaming disorder:
implications for why males are more vulnerable to cue-induced cravings than
females. Neurosci. Lett. 760:136001. doi: 10.1016/j.neulet.2021.136001

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Ha, Park, Im and Kim. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 13 September 2021 | Volume 12 | Article 714333

https://doi.org/10.1016/j.artmed.2017.11.002
https://doi.org/10.1038/tp.2015.215
https://doi.org/10.1016/j.ijpsycho.2014.02.003
https://doi.org/10.1111/add.12162
https://doi.org/10.1038/npp.1994.19
https://doi.org/10.1038/npp.1994.19
https://doi.org/10.1016/j.biopsycho.2019.107785
https://doi.org/10.1016/j.biopsycho.2019.107785
https://doi.org/10.1016/j.brs.2013.11.003
https://doi.org/10.1016/j.brs.2013.11.003
https://doi.org/10.1016/j.ijpsycho.2011.01.011
https://doi.org/10.1016/j.ijpsycho.2011.01.011
https://doi.org/10.1038/sj.npp.1300888
https://doi.org/10.1038/sj.npp.1300888
https://doi.org/10.1177/155005940303400305
https://doi.org/10.1504/ijaacs.2013.050691
https://doi.org/10.1016/j.jad.2016.06.033
https://doi.org/10.1002/jnr.24421
https://doi.org/10.1016/s1388-2457(00)00363-1
https://doi.org/10.1007/s10877-013-9471-4
https://doi.org/10.3389/fpsyg.2017.01150
https://doi.org/10.1016/j.psychres.2015.07.004
https://doi.org/10.11591/ijeecs.v17.i1.pp175-182
http://netaddiction.com/assessments/
https://doi.org/10.1089/cpb.1998.1.237
https://doi.org/10.3389/fpsyg.2016.00675
https://doi.org/10.1016/j.neulet.2021.136001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Classification of Gamers Using Multiple Physiological Signals: Distinguishing Features of Internet Gaming Disorder
	Introduction
	Materials and Methods
	Experimental Design
	Stimuli Selection
	Protocol

	Participants and Procedures
	Data Measurements and Processing
	EOG Processing
	PPG Processing
	EEG Processing

	Feature Extraction
	Statistical Method
	Classification Method

	Results
	Demographic Data and Self-Reported Craving Score
	Statistical Analysis
	Classification
	Feature Selection
	Classification Performances


	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


