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Abstract

Background: Alzheimer’s disease (AD) is the most common type of dementia, and patients with advanced AD
frequently lose the ability to identify family members. The fusiform gyrus (FUS) of the brain is critical in facial
recognition. However, AD etiology in the FUS of AD patients is poorly understood. New analytical strategies are
needed to reveal the genetic and epigenetic basis of AD in FUS.

Results: A complex of new analytical paradigms that integrates an array of transcriptomes and methylomes of
normal controls, AD patients, and “AD-in-dish” models were used to identify genetic and epigenetic signatures of
AD in FUS. Here we identified changes in gene expression that are specific to the FUS in brains of AD patients.
These changes are closely linked to key genes in the AD network. Profiling of the methylome (5mC/5hmC/5fC/
5caC) at base resolution identified 5 signature genes (COL2A1, CAPN3, COL14A1, STAT5A, SPOCK3) that exhibit
perturbed expression, specifically in the FUS and display altered DNA methylome profiles that are common across
AD-associated brain regions. Moreover, we demonstrate proof-of-principle that AD-associated methylome changes
in these genes effectively predict the disease prognosis with enhanced sensitivity compared to presently used
clinical criteria.

Conclusions: This study identified a set of previously unexplored FUS-specific AD genes and their epigenetic
characteristics, which may provide new insights into the molecular pathology of AD, attributing the genetic and
epigenetic basis of FUS to AD development.
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Background
Alzheimer’s disease (AD) is a progressive neurodegen-
erative disorder with no cure or reliable methods for
early detection [1–4]. Genetic studies show that early-
onset AD (EOAD) (< 65 years old), accounting for
only 5% of the AD population, is associated with

mutations in the APP, PSEN1, and PSEN2 genes.
Meanwhile, ~ 50% of late-onset AD (LOAD) cases
are attributed to homozygous APOE4 [5]. However,
the majority of AD cases are sporadic and cannot be
explained by genetic variations, suggesting the exist-
ence of yet unknown etiology [5].
The symptoms and severity of AD vary in patients

[6–8], which may be associated with the affected brain
areas and lesion invasion rate. The fusiform gyrus (FUS) is
a structure that lies on the basal surface of the temporal
and occipital lobes in Brodmann’s area 37. It contains the
critical fusiform face area (FFA) responsible for facial rec-
ognition [9]. Patients with advanced AD frequently lose
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the ability to identify family members. Likewise, subjects
with mild cognitive impairment (MCI), who experience a
higher risk of conversion to AD, possess distinct changes
in functional connectivity of the FUS [10]. Therefore, AD-
linked genes in the FUS may be critical in AD onset and
progression and are thus promising targets for early diag-
nosis and therapy. However, compared with well-studied
and documented brain areas such as the hippocampus
(HPC) [11], prefrontal cortex (PFC) [12], and temporal
lobe (TPL) [13], the gene expression characteristics and
molecular mechanisms of action involved in AD path-
ology in the FUS [14] remain unexplored. The identifica-
tion of AD-related expression and epigenetic signatures in
different brain regions can provide support of inherent
molecular mechanisms for the heterogeneous symptoms
and improve the individualized early detection, preven-
tion, and treatment of AD patients [15].
Growing lines of evidence suggest that epigenetic

mechanisms play a crucial role in AD onset and devel-
opment [13, 16, 17]. DNA methylation at the 5th pos-
ition of cytosine (5mC) can be oxidized into 5-
hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC),
and 5-carboxylcytosine (5caC) (hereafter referred to as
5mC, 5hmC, 5fC, and 5caC) by the family of ten-eleven
translocation enzymes (TET1/TET2/TET3) in a stepwise
manner [18]. Previous studies have indicated that AD
onset and progression are linked to specific changes in
DNA methylation in affected brain regions [19–21]. Our
recent genome-wide DNA methylome analysis of post-
mortem brains and iPSC-derived neurons at base
resolution identified a roadmap of AD-specific epigen-
etic signatures [17]. Moreover, the DNA methylome can
be changed before the accumulation of pathological le-
sions and clinical manifestation [22–27]. In-depth study
of mechanisms of gene expression and DNA methylation
regulation in different brain regions of AD have shed
new light on molecular markers of AD. Once verified in
future, these specific sets of markers will have valuable
implications for the early diagnosis of AD.
In this study, using a new analytical strategy, we un-

covered an unprecedented FUS-specific AD gene expres-
sion profile and described an epigenetic basis for how
AD-related changes extend to other brain regions be-
yond the FUS. Using independent methylation datasets
from AD patients, we identified 5 genes (COL2A1,
CAPN3, COL14A1, STAT5A, and SPOCK3) with a
methylome signature that was significantly associated
with AD prognosis.

Results
Changes in AD-specific gene networks are linked to
specific brain regions
By comparing transcriptomes of AD patients with nor-
mal controls (n = 108) in 4 different brain regions, we

identified 2861 differentially expressed (DE) genes in
the fusiform gyrus (FUS), 716 in the hippocampus
(HPC), 375 in the prefrontal cortex (PFC), and 2166
in the temporal lobe (TPL) (Fig. 1a, Table S1). The
top 3 enriched Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathways associated with the DE
genes were distinct across brain regions, while shar-
ing some similarities (Fig. 1a). DE genes in the HPC,
the first affected area during AD onset, were
enriched in cytokine-cytokine receptor interactions
and the IL-17 signaling pathway, which are involved
in acute and chronic inflammatory responses. In con-
trast, in the FUS, which is presumed to be a later-
affected area in AD progression, the top-enriched
pathways were neuroactive ligand-receptor interaction
and the cAMP signaling pathway. Furthermore, DE
gene overlap analysis among the four brain regions
revealed that very few genes were consistently differ-
entially expressed in more than two brain regions,
and most genes were specifically affected in one
unique brain region (Fig. 1b). We should note that
comparing the DE analysis between brain regions
only in controls, we found 4315 overlapping DE
genes were differentially expressed in FUS, while
there were 865, 1993, and 1512 overlapping DE genes
in HPC, TPL, and PFC, respectively (Figure S1a-d).
The apparent difference between DE genes among
brain regions only in control and in AD samples sug-
gests the unique gene expression regulation pattern
in the context of AD.
Some of the KEGG pathways were significantly

enriched in more than one brain region. We found
that DE genes in both the FUS and TPL were signifi-
cantly associated with neuroactive ligand-receptor in-
teractions, while the HPC and PFC DE genes were
associated with cytokine-cytokine receptor interaction.
In addition, DE genes in the FUS and HPC were
closely associated with the PI3K-Akt signaling path-
way. Intriguingly, although DE genes in both the FUS
and HPC were enriched in the PI3K/AKT/GSK-3β
pathway, which is likely activated by neurotrophins
and plays critical roles in AD onset and progression
[28, 29], 84% (21 of 25) of the DE genes associated
with this pathway in the FUS were upregulated in AD
patients compared to controls (Fig. 1c). In contrast,
the majority of these genes were downregulated or
unchanged in the HPC. These gene expression pat-
terns were also found in pathways related to neuroac-
tive ligand-receptor interactions and cytokine-cytokine
receptor interactions (Figure S1e-f). For example, we
observed downregulation of GABA receptor genes in
the FUS and TPL of AD brains (labeled with an
arrow in Figure S1a). Interestingly, it was recently re-
ported that secreted APP may modulate synaptic
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transmission via GABA receptors. Downregulation of
the GABA receptor gene in the FUS and TPL is pos-
sibly linked to aberrant synaptic transmission in AD-
affected neurons [30]. Together, these findings
strongly suggest that the gene expression pattern in
these specific cellular pathways, while similarly af-
fected, may act differently, or perhaps even in oppos-
ite, in different brain regions during AD progression.
Critically, through AD-linkage analysis of the top 20

DE genes specific to each region, identified based on an
absolute log2 (fold-change) (Fig. 1d), we found that 45%

(36/80) of these DE genes have been previously reported
as AD risk factors (Table S2). The definition of the list
of AD risk factors was composed by taking into account
the genetic testing or variation resources. Of these DE
genes, 17/20 were associated with the FUS, 4/20 were as-
sociated with the HPC and PFC, and 11/20 were associ-
ated with the TPL. In addition, in order to ensure that
the genes did appear in the AD GWAS results, we care-
fully compared the AD genetic datasets of the Inter-
national Genomics of Alzheimer's Project (IGAP) [31]
and ALZGENE [32]. 47.5% (38/80) of the top 20 DEGs

Fig. 1 Differential gene expression analyses of four brain regions. a Illustration of the 4 studied brain areas, the numbers of differentially
expressed (DE) genes in each region (fold-change > 1.5, P value < 0.05), and the top 3 involved KEGG pathways for each group of DE genes.
Brain anatomy figures were modified from cases provided courtesy of A.Prof Frank Gaillard (Radiopaedia.org, rID: 47208, 46670). b Venn diagrams
showing the overlap of the DE genes in a. c PathView plot shows the PI3K-AKT signaling pathway (KEGG: hsa04151) and relevant genes involved
in the FUS (left of gene-box) and HPC (right of gene-box). Color key represents log2 (fold-change) of expression in AD compared to normal
controls. d Heatmaps show log2 (fold-changes) of representative brain-region-specific DE genes. The absolute log2 (fold-changes) were sorted
from high to low. The top 20 genes were selected. The number in each box is the log2 (fold-change)
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were identified in AD GWAS results (Table S2). We also
performed the gene enrichment analysis using the
hypergeometric distribution for MalaCards and IGAP,
respectively, resulting in significant P values (PMalaCards =
0.00061, PIGAP = 0.03764). Taken together, these data
suggest that specific genetic components are involved in
different brain regions linked to AD onset and
progression.

iPSC-derived neurons recapitulate the transcription
profiles of the fusiform gyrus
We sought to further characterize possible molecular
changes relating to the region-specific genetic
changes found in AD patients. Induced pluripotent
stem cells (iPSCs) derived from AD patients allowed
us to accurately recapitulate neurogenesis, providing
suitable models to study AD [33]. We employed four
types of iPSCs: WT, PSEN1mut, PSEN2mut, and
APOEε4/ε4, derived from normal individuals and AD
patients carrying a PSEN1 mutation, PSEN2 muta-
tion, and homozygous APOE-ε4, respectively. These
iPSCs were then subjected to directed differentiation
into neurons using a commonly available protocol
[17, 34] (Fig. 2a). Unexpectedly, bioinformatic ana-
lysis showed the transcriptome profiles of WT neu-
rons (WT-N), APOE4-N, PSEN1-N, and PSEN2-N
were all strongly correlated with those of the FUS,
with higher correlation coefficients than those of the
HPC, PFC, and TPL (Fig. 2b). This indicated that
the transcriptional features of iPSC-derived neurons
were more similar to the FUS than other brain re-
gions. PSEN2-N showed the strongest correlation
with the FUS (r = 0.73, P value < 0.01, Pearson’s
correlation), suggesting that these AD neurons, par-
ticularly PSEN2-N, may recapitulate the transcription
profiles of AD in the FUS.
The similarity of the transcriptional profiles between

the FUS and iPSC-derived cortical neurons may be
due to the specific differentiation protocol used. To
systematically evaluate the protocol bias-resultant
similarity, we analyzed 13 up-to-date available public
datasets of differentiated brain cell transcriptomes
[34–48] (detailed information is summarized in Table
S5) and surprisingly found that iPSC-derived cortical
neurons generated following the same protocol [34]
also had a stronger correlation with the FUS than
other brain regions (Fig. 2d). In contrast, neurons dif-
ferentiated through different protocols, such as DG-
granule, forebrain, and dopamine neurons (last 6 rows
in Fig. 2d), were more transcriptionally similar to the
HPC, PFC, and TPL. These data again suggest that
iPSC-derived cortical neurons possess similar tran-
scriptional patterns to the FUS.

Next, we asked how many DE genes were shared
between iPSC-derived AD neurons and the FUS
when compared to their respective controls. Ap-
proximately 50% of DE genes in the FUS overlapped
with those in iPSC-derived cortical neurons (Fig. 2c,
Figure S2a-b). There were 1372 DE genes shared be-
tween the FUS and PSEN2-N (Fig. 2c), 1388 between
the FUS and PSEN1-N, and 1475 between the FUS
and APOE4-N (Figure S2a-b, Table S3). We also
compared the overlap of DE genes between all cell
lines tested: PSEN1-N, PSEN2-N, and APOE4-N
(Figure S2c). Gene ontology analysis showed that the
1372 common DE genes between the FUS and
PSEN2-N were significantly enriched in extracellular
matrix organization, chemical synaptic transmission,
cell differentiation, and axon genesis (Figure S2d).
Importantly, the top-enriched KEGG pathways in
these 1372 common DE genes were also significantly
enriched in the FUS DE genes (Fig. 2e). There are
292 genes that are upregulated and 262 genes that
are downregulated in both the FUS and PSEN2-N
(Fig. 2f, Table S4). Interestingly, these 554 (292 + 262)
DE genes were distributed in extracellular and
membrane areas in the PI3K/AKT/GSK-3β pathway
(Figure S2e), implying a relationship to signal trans-
duction and neuronal cell survival [49]. Collectively,
iPSC-derived neurons recapitulate the transcription
profiles of the diseased FUS, suggesting that the
molecular pathology of AD in PSEN2-N significantly
mirrors that in the FUS.

Protein-protein interaction networks reveal FUS-specific
key AD-associated genes
To determine if these 554 DE genes shared by the FUS
and PSEN2-N have a clear association with well-defined
AD genes, we used the STRING [50] analytical tool to re-
veal the protein-protein interaction (PPI) networks (Fig.
3). Only interaction edges with a high confidence (inter-
action score ≥ 0.9, PPI enrichment P value < 1e−11) were
selected. STRING analysis identified 114 DE genes as be-
ing clustered to well-defined key AD genes in a hierarch-
ical fashion (Table S6). For example, with the ε4 allele
being an AD risk factor [51], APOE was the primary nod-
ule connecting to APP (red line), which encodes peptides
that form amyloid plaques in AD brains (Fig. 3). The sec-
ondary nodule linked to APP is the highly expressed
LRP2, in which a SNP associated with AD susceptibility
was found [52]. The nodule downstream of LRP2 is
SH3GL2, which is implicated in synaptic vesicle endo-
cytosis and AD protein homeostasis [53]. The last
nodule is PTPN3, which is a diabetes-related gene
[54]. These connections imply that LRP2, SH3GL2,
and PTPN3 are possible novel AD-linked genes which
play critical roles that are closely associated with the
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APOE4 functional network in AD pathology. Using
the same approach, we performed PPI enrichment for
PSEN1-N and APOE4-N and identified 112 and 116

enriched DE genes associated with the functional
realm of the other well-defined key AD genes, re-
spectively (Figure S3-4, Table S6).

Fig. 2 iPSC-derived neurons recapitulate the transcription profiles of the fusiform gyrus. a Schematic diagrams show the iPS cell differentiation
process. b Heatmap shows expression correlation between iPSC-derived neurons and the 4 brain regions. Color scale represents Pearson’s correlation
coefficient (r). P values in each cell line were < 0.01. Genes with FPKM > 1 were used to analyze correlation. WT_N: WT neuron, PSEN1_N: PSEN1mut

neuron, PSEN2_N: PSEN2mut neuron, APOE4_N: APOEε4/ε4 neuron. c Venn diagram of DE genes in PSEN2-N/WT-N at cutoff of fold-change > 2 and AD-
FUS/normal at both fold-change > 1.5 and P value < 0.05. d Heatmap shows expression correlation between iPSC-derived neurons and 4 brain
regions. Color scale represents Pearson’s correlation coefficient (r). P values in each cell line were < 0.01. Genes with FPKM > 1 were used to analyze
correlation. Each row represents neurons derived from iPSCs using various differentiation protocols listed in Table S5. e KEGG enrichment comparison
of the 1372 common DE genes and the FUS-specific DE genes. The number at the right of each bar is the corresponding −log10 (P value). f Scatter
plot of log2 (fold-change) of the 1372 commonly DE genes in c. Representative AD risk factors are labeled
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We found common and unique sub-networks among
these PPI networks. The APP-centered sub-network ap-
peared in each network (Fig. 3, Figure S3-4), indicating
that APP plays a critical role in AD progression and that
the DE genes associated with the APP functional nodule
may be deeply involved in amyloid plaque formation.
Compared to APOE4-N, PSEN1-N and PSEN2-N had a
unique PIK3R1-centered sub-network (Fig. 3 and Figure
S3). PIK3R1 is implicated in the metabolic actions of in-
sulin, in which insulin receptor-activated genes play crit-
ical roles in vesicle transport and RNA splicing in
neuronal cells [55, 56]. Interestingly, the APOE4-N PPI
network had distinct patterns. The NMU-centered sub-
network is connected to APP and was not observed in
PSEN1-N and PSEN2-N (Figure S4). NMU encodes a
member of the neuromedin family of neuropeptides,
which play important roles in inflammation-mediated

memory impairment and neuronal cell-death [57].
Taken together, these data revealed that the AD-specific
gene expression signature shared by the FUS and
in vitro differentiated cortical neurons is functionally
linked to well-defined AD risk factors.

AD-specific methylation patterns in the newly identified
AD-specific gene expression signatures
We identified AD-specific methylome patterns and
signatures in the newly identified AD-specific gene
expression signatures (Fig. 4a). Using oxBS- and
MAB-seq, we profiled whole-genome 5mC, 5hmC,
and 5fC/caC signals at base resolution in WT-N,
PSEN1-N, PSEN2-N, and APOE4-N (Figure S5a-f).
The global methylation patterns in the gene bodies
varied between AD and WT iPSC-derived neurons,
suggesting that aberrant DNA methylomes may

Fig. 3 Protein-protein interaction networks reveal FUS-specific key AD-associated genes. Protein-protein interactions (PPI) between known AD risk
factors and 554 shared DE genes in PSEN2-N and AD-FUS. Blue dots represent known AD risk factors, red and green dots stand for up- and
downregulated DE genes in AD, respectively
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contribute to transcriptional regulation in AD
progression.
Next, we examined the correlation between the AD-

specific gene expression signatures (Table S6) and the
methylome. Genes were separated into two groups,
gain or loss of methylation, according to the average
methylation levels on their gene bodies, and then
stratified by their expression fold-changes (Fig. 4b).

Compared to all Refseq genes (Figure S5g), we ob-
served unusual perturbation of the DNA methylomes
in the AD-specific expression signature genes. Con-
sistently in PSEN2, PSEN1, and APOE4 neurons, loss
of 5mC on the gene bodies of the signature genes
correlated with lower expression in AD neurons com-
pared to WT (Fig. 4b, left panel). On the contrary,
the genes with a loss of 5hmC showed higher

Fig. 4 AD-specific methylation patterns in the newly identified AD-specific gene expression signatures. a Schematic diagram of the analysis
workflow to identify AD-specific methylome patterns and AD-methylome signatures. b, c Boxplots show expression fold-changes in methylation-
gain or loss on gene bodies of PPI-enriched key AD-associated genes (b), and 5mC/5hmC/5fC/caC fold-changes on the gene bodies of up- and
downregulated DE genes (c). P values were calculated by the Wilcoxon rank-sum test (P < 0.05 (*); P < 0.01 (**); P < 0.001 (***); ns, not significant)
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expression in AD neurons than those with a gain of
5hmC (Fig. 4b, right panel).
We next investigated the gene body methylation differ-

ences in the up- or downregulated signature genes (Fig.
4c). The upregulated genes tended to gain more 5mC on
their gene bodies than the downregulated genes in
PSEN2-N compared to WT-N (Fig. 4c, top panel). This
trend was also found in PSEN1 and APOE4 neurons
(Fig. 4c, top panel). In contrast, downregulated genes
tended to gain more 5hmC than the upregulated genes.
Collectively, AD-specific methylome changes are signifi-
cantly correlated with perturbed expression of the newly
identified AD-specific signature genes.

Cross-validation of key AD genes in independent
methylation datasets
To validate that the identified methylation changes
existed in the brain tissues of AD patients, we examined
an independent cohort of 44 controls and AD patients
and used the methylation data of the temporal cortex to
verify the methylation sites we identified [58]. Our re-
sults showed that 65/114 (57%) of the newly identified
signature genes in PSEN2-N had a consistent trend of
methylation changes (Fig. 5a). Importantly, the top-
enriched pathways or Gene Ontology (GO) terms associ-
ated with these 65 validated signature genes suggested
critical roles in AD development, including the AD-
presenilin pathway, axon guidance mediated by netrin,
and nervous system development (Fig. 5b, c). Addition-
ally, 44/112 (39%) enriched DE genes in PSEN1-N (Fig-
ure S6a) and 54/116 (47%) enriched DE genes in
APOE4-N (Figure S6b) were validated to show a consist-
ent trend of methylation change. Furthermore, among
the validated genes, 38/65 (58%) in PSEN2-N, 27/44
(61%) in PSEN1-N, and 25/54 (46%) in APOE4-N were
previously reported as being closely associated with AD
(Table S7). Among all of these validated genes, 8 genes
(STAT5A, TWIST1, GBP3, GCNT1, SPOCK3, CAPN3,
COL14A1, and COL2A1) were altered in neurons de-
rived from patients with PSEN1, PSEN2, and APOE4
mutations (Fig. 5d, Table S7). Intriguingly, there were 9
genes (GLI1, CD3E, CRP, ANGPT1, ASS1, IGF2, INSL3,
PDE1A, and PIK3C2G) that were altered only in PSEN1
and PSEN2 neurons, suggesting they might be related to
EOAD-specific signatures.
Among the 8 validated common signature genes, two

are transcription factors (STAT5A, TWIST1), two are as-
sociated with immune response (GBP3, GCNT1), one is
a nervous system regulator (SPOCK3), and three are
intra- or extracellular components (CAPN3, COL2A1,
COL14A1) (Table S7). These genes are directly or indir-
ectly associated with AD pathophysiology. For example,
the JAK2-STAT5 signaling pathway plays a critical role
in mediating IL-3-induced activation of microglia during

AD pathogenesis [59]. TWIST1 is targeted by an AD-
specific miRNA in a set of AD patients and is an import-
ant upstream mediator of mutant Htt (huntingtin pro-
tein)-induced neuronal death [60]. COL14A1 is an
interactive gene in the gut-brain axis in AD [61]. Col-
lectively, these results indicate that the validated signa-
ture genes likely play important roles in AD progression
and suggest that accumulation of aberrant methylomes,
which may predate abnormal transcriptional changes,
may function as a new set of independent epigenetic
markers for early detection and prognostic evaluation of
AD.

Survival analysis of validated AD signatures using the
Religious Orders Study and Rush Memory and Aging
Project (ROS/MAP) cohort
To investigate whether the 8 commonly validated genes
are associated with the prognosis of AD, we evaluated
the effect of changes in the methylome on these poten-
tial risk factors on the survival time of AD patients. A
total of 174 AD patients in the ROS/MAP cohort [62]
were included with censored follow-up time from the
first diagnosis to the age of death. Other clinical charac-
teristics from medical records including sex, APOE
genotype, BRAAK-score, and CERAD-score were in-
cluded. Among the 8 genes, the methylation levels of 5
gene signatures (COL2A1, CAPN3, COL14A1, STAT5A,
and SPOCK3) were detected in the ROS/MAP cohort.
The Cox proportional hazards regression model was
used to find risk factors for AD patients’ deaths (Fig. 6).
Higher methylation levels on the gene bodies of CAPN3
(HR = 1.46, CI = 1.19–1.79, P < 0.001) and STAT5A
(HR = 1.59, CI = 1.29–1.97, P < 0.001) were associated
with significantly increased risk of death in AD patients,
while higher methylation levels on COL2A1 (HR = 0.80,
CI = 0.68–0.93, P = 0.003), COL14A1 (HR = 0.73, CI =
0.63–0.86, P < 0.001), and SPOCK3 (HR = 0.83, CI =
0.70–0.99, P = 0.036) were associated with significantly
decreased risk of death. Apart from the AD-specific
methylome changes, patients have lower death risk if
they are younger when first diagnosed with AD [63]. Pe-
culiarly, male AD patients seem to have greater risk of
death [63]. Although BRAAK and CERAD scores are im-
portant AD diagnosis criteria, they are barely correlated
with AD prognosis. Together, these data suggest that the
methylome signatures are more sensitive than traditional
clinical markers in determining AD prognosis.

Discussion
Amyloid deposits and neurofibrillary tangles are well-
characterized and common pathological features of AD
brains. The aging-related temporal sequence of how
these pathological features unfold is well-documented
and studied. However, the spatial/regional events of AD
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pathogenesis and progression are currently poorly
understood, although it has been long noticed that dis-
parities in symptoms and severity of AD progression are
specifically associated with neurodegeneration and disor-
dered neurogenesis in different brain regions [64]. Using

the experimental strategy outlined in the Graphic Ab-
stract, we are just beginning to understand how different
cellular and molecular pathways in different brain re-
gions are linked and contribute to AD onset and
progression.

Fig. 5 Cross-validation of key AD genes in independent methylation datasets. a Heatmaps show expression fold-changes and methylation fold-
changes in PSEN2/WT. The methylation data are from GSE79144 (n = 44). FC, fold-change. b, c PANTHER pathway (b) and GO term (c)
enrichment analyses for genes identified from PSEN2/WT neurons and validated in the GSE79144 dataset. d Venn diagrams show the overlap of
genes identified from PSEN2/WT, PSEN1/WT, and APOE4/WT neurons and validated in the GSE79144 dataset with a similar methylation
change trend

Ma et al. Clinical Epigenetics          (2020) 12:129 Page 9 of 16



In the present study, we initially analyzed the tran-
scriptomes of 4 dissected brain sub-regions (FUS, HPC,
PFC, and TPL) of both AD patients and normal controls.
These analyses revealed novel and distinct gene expres-
sion signatures in the different brain areas of AD pa-
tients. For example, NEUROD1, a well-defined AD risk
factor activated by Wnt signaling, which promotes adult
neuron maturation [65], was ranked among the top DE
genes of the FUS. Concurrently, cytokine-cytokine re-
ceptor interaction was the top perturbed pathway in
both the HPC and PFC, implying that the immune re-
sponse is potentially impaired in these areas in AD pa-
tients. These findings suggest that there are distinct
molecular and cellular mechanisms by which a spatial-

specific occurrence of neurodegeneration and impair-
ment of neurogenesis in different brain regions is inde-
pendently triggered or coordinated to contribute to AD
symptoms.
Selective neuronal loss in vulnerable brain regions is the

neuropathological hallmark of AD. Currently, the epigen-
etic mechanisms of AD neuronal loss are poorly under-
stood and studied. Functional analysis of the differentially
methylated genes in AD showed that a large part of them
are associated with neurodevelopment and neurogenesis,
indicating that the abnormal DNA methylome in AD may
break the normal functional balance in the process of neu-
rodevelopment and neurogenesis, causing potential neur-
onal loss [66]. By further determining those differentially

Fig. 6 Survival analysis of validated AD signatures with the ROS/MAP cohort. Forest plots show the hazard ratios (HR) of identified 5mC
signatures and clinical features derived from Cox proportional hazards models in the ROS/MAP cohort (n = 174). HR > 1 indicates an increased
risk of death, while HR < 1 indicates a decreased risk. P values were calculated by the log-rank test
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methylated sites and regions, we found that they over-
lapped with vital regulatory elements in the genome, such
as CpG islands, poised promoters with bivalent histone
marks, and enhancers [19, 27, 66]. Enhancer hypomethyla-
tion in AD neurons could significantly affect the expres-
sion of genes involved in neurogenesis pathways [27].
Poised promoters are essential for neural development
and maintenance of lineage differentiation [67]. We
speculate that, under the influence of AD, abnormal fluc-
tuations in DNA methylation levels occur on important
genomic regulatory elements such as promoters and en-
hancers, resulting in aberrant expression of genes related
to neurodevelopment and neurogenesis. In addition, there
are evident epigenetic and transcriptional losses in cell
cycle control in AD neurons [27]. For example, hypome-
thylation of enhancers in AD neurons may upregulate cell
cycle genes and promote neuronal death and synapse loss.
Therefore, it is possible that hypomethylation of en-
hancers that affect neurogenesis genes may be the mo-
lecular basis and initial cause for a close relationship
between the burden of neurofibrillary tangles and neur-
onal loss in AD [27].
We discovered that the gene expression signature of

AD in the FUS had the closest similarity to that of
in vitro iPSC-derived AD neurons. STRING analysis of
the FUS/iPSC-N commonly shared gene expression sig-
nature identified a set of genes specifically linked to
well-documented key AD genes such as APP and APOE.
iPSC-derived neurons that resemble the fusiform gyrus
in their transcription profiles were generated using a
specific and common protocol [34]. Our transcriptional
correlation analysis further indicated that the similarity
of gene expression signatures between the iPSC-derived
neurons and distinct brain regions depends on the dif-
ferentiation protocols, and possibly the involved growth
factors (e.g., NGN2 and GRIN2B). The exact reasons for
this are currently unknown and warrant future investiga-
tion. The discovery that the iPSC-derived neurons in our
study [34] shared a gene expression signature with the
FUS provides an excellent and unique tool to study the
molecular pathology and mechanisms of action in the
FUS during AD onset and progression. These findings
also remind us to re-think the in vitro neuron differenti-
ation process. In particular, extra caution will need to be
taken to ensure proper application of a specific neuronal
differentiation protocol when establishing models to
study neurodegenerative diseases.
We should note that there are several challenges in

comparing in vitro data from homogeneous cultures of
iPSC-derived neurons with data obtained from highly
heterogeneous brain tissues [68–74]. First, the compos-
ition of cells in brain tissue is complex. The correlation
of expression profiles between FUS and iPSC neurons is
likely to be affected by other cell types, such as glia.

Second, when iPSCs are reprogrammed, it is necessary
to select appropriate clones to continue the cultivation.
This process is not only difficult to standardize, but also
merely reflects the nature of a single cell colony. Third,
compared with the original neurons of the patient, neu-
rons differentiated in vitro lack the connection and
interaction between different brain cells. In future inves-
tigations, it is important and necessary to map the cell
type- and brain region-specific transcriptional and epi-
genetic landscapes to disease phenotypes [72]. Nonethe-
less, despite these potential limitations, it has been
reported that transcriptional signatures of schizophrenia
in iPSC-derived NPCs and neurons are concordant with
post-mortem brains [75]. We are confident that the
similarity of gene expression signatures between iPSC-
neurons and FUS observed in both normal controls and
AD may provide new clues to the molecular mechanisms
of AD in FUS.
Genetic and epigenetic risk factors can independently

affect the same diseased gene [76]. It is possible that the
DNA methylome alterations might be the functional
consequence of genetic variants associated with disease
susceptibility. On the other hand, epigenetic factors,
such as adverse environmental cues or aging, may dir-
ectly reprogram the epigenome, which, in turn, may alter
the expression-associated genes to result in neurodegen-
erative diseases [76]. In our previous study [17], we re-
ported the first genome-wide roadmap of epigenetic
signatures in AD based on the methylated DNA base
cytosine [17]. Significantly, in the present study, we de-
termined novel FUS-specific AD genes, whose transcrip-
tional alterations were significantly linked to key AD risk
factors. We identified five AD signature genes with a
methylome signature that was significantly associated
with AD prognosis in ROS/MAP cohorts. Moreover, the
methylome signature is not only restrained to the FUS,
but is also commonly shared among other brain regions.
We envision that these epigenetic signatures are more
generalized and likely to be epigenetic codes for AD ra-
ther than simply the consequence of AD progression.

Conclusions
Using a complex of new analytical paradigms that inte-
grates transcriptomes and methylomes of normal con-
trols, AD patients, and “AD-in-dish” models, we
identified a set of previously unexplored FUS-specific
AD genes (COL2A1, CAPN3, COL14A1, STAT5A, and
SPOCK3) and their epigenetic characteristics, which may
provide new insights into the molecular pathology of
AD. Moreover, this study first reports the molecular link
between FUS and AD, which uncovers the genetic/epi-
genetic basis of FUS contributing to the spatial/regional
events of AD pathogenesis, leading to new insights into
how molecular changes in different brain regions affect
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AD onset and progression. The FUS-specific genetic/epi-
genetic signatures may be potential biomarkers for AD
etiology.

Methods
Cell lines
iPSCs and iPSC-derived cortical neurons were ob-
tained from Axol Biosciences (Cambridge, UK). The
PSEN1mut cell line carries the PSEN1 gene mutation
L286V, and the PSEN2mut cell line carries the PSEN2
gene mutation N141I. Both types of mutations are
genetic risk factors for familial AD. The APOEε4/ε4

cell line carries a homozygote for the APOE ε4 allele,
which is a genetic risk factor for sporadic AD. iPSCs
were reprogrammed from skin fibroblasts of AD pa-
tients and normal controls. Skin fibroblasts used for
reprogramming PSEN1mut and PSEN2mut cell lines
were from 38-year-old female and 81-year-old male
AD patients, respectively. Fibroblasts for reprogram-
ming APOEε4/ε4 cell line were from an 87-year-old fe-
male patient with sporadic AD. Directed
differentiation of iPSCs to cortical neurons was per-
formed as described previously [77].

Oxidative and methylase-assisted bisulfite sequencing
Oxidative (oxBS-seq) and methylase-assisted bisulfite se-
quencing (MAB-seq) at single-base-pair resolution were
performed as previously described [17]. We performed
oxBS-seq and MAB-seq in all cell lines in the AD patient
samples reported in this study. All libraries were se-
quenced using Illumina HiSeq X Ten platform, generat-
ing at least 100 GB of data for each sample, allowing for
whole-genome methylation analysis at base resolution.

Identification of 5mC, 5hmC, and 5fC/5caC sites
We evaluated the data quality of oxBS-seq and MAB-seq
[17] and used the bsmap (v2.74) [78] software package
to align the reads to the human reference genome of
UCSC (hg19) and to identify the methylation signals.
We retained CpG sites with a sequencing depth of at
least 10× for downstream analysis. To accurately calcu-
late 5mC and 5hmC signals, we used home-made R
script to ensure that the chromosome coordinates of
these CpG sites are consistent between each pair of BS
and oxBS libraries. Then we used the “mlml” script in
methpipe package to identify the 5mC and 5hmC signals
at these CpG sites. To calculate 5fC/caC signals in the
binomial distribution model, we used M.SssI enzyme
and bisulfite conversion inefficiency of 1.64% (measured
in preliminary experiments) to correct the 5fC/caC sig-
nals. We only retained 5fC/caC sites with sequencing
depth ≥ 10, P value < 0.01, and FDR < 0.01 for down-
stream analysis. In addition, given that DNA samples
may carry sequence mutations different from the

reference genome, this may lead to false positives when
calculating the 5mC, 5hmC, and 5fC/caC signals. We
used Biscuit software package (https://github.com/
zwdzwd/biscuit) to identify and remove these potential
mutation sites with default parameters. The remaining
loci are used for downstream analysis.

Normalization of 5mC, 5hmC, and 5fC/5caC signals
In order to compare the 5mC, 5hmC, and 5fC/caC sig-
nals between different samples and exclude the effect of
the difference in sequencing depth, we scanned the en-
tire genome in non-overlapping 1000 bp bins to
normalize the signals. The 5mC and 5hmC signals were
represented by TNC / (TNC + TNT), where TNT and
TNC, respectively, represent the total number of T and
the total number of C in the region. The 5fC/caC signal
was represented by the average value in this region, be-
cause the density of the 5fC/5caC sites in the genome is
much lower than 5mC or 5hmC.

mRNA-seq
The total mRNA was isolated using TRIzol according to
the manufacturer’s instructions (Invitrogen, CA, USA).
Libraries were generated and sequenced at WuxiNext-
Code (Shanghai, China). For each sample, > 40 million
paired-end reads with Q30 > 90% were generated. Reads
were then mapped onto the hg19 genome using TopHat
(v2.1.1) [79]. Quantification of gene expression was per-
formed using featureCounts in the Rsubread package
(v1.32.4) [80]. RPKM of genes was calculated using the
“rpkm” function in the edgeR package (v3.24.3) [81] and
gene annotations were determined through the built-in
annotation in the featureCounts package. Differentially
expressed genes were identified using the edgeR [81]
package with a cutoff RPKM-fold-change > 1.5 and P
value < 0.05 in AD samples versus normal controls.

Digital deconvolution of bulk tissues
Cell-type deconvolution was performed using CIBER-
SORTx (http://cibersortx.stanford.edu), which is an ana-
lytical tool developed by Newman et al. [27] to impute
gene expression profiles and provide an estimation of
the abundances of member cell types in a mixed cell
population, using gene expression data. We used a gene
signature matrix (involving 903 cell-specific marker
genes) derived from single-cell RNA-seq measures in
adult human brain cells (signature matrix [82]; source
[83]). CIBERSORTx was run with batch correction and
100 permutations.

Known AD risk factors
Known AD risk factors were obtained from the
MalaCards-HUMAN DISEASE DATABASE (https://
www.malacards.org/card/alzheimer_disease). Susceptible
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genes and risk factors were summarized according to
the “Genes” section. The gene list used in our analysis
was provided in Table S9.
International Genomics of Alzheimer’s Project (IGAP)

is a large two-stage study based upon genome-wide asso-
ciation studies (GWAS) on individuals of European an-
cestry. In stage 1, IGAP used genotyped and imputed
data on 7,055,881 single nucleotide polymorphisms
(SNPs) to meta-analyze four previously-published
GWAS datasets consisting of 17,008 Alzheimer’s disease
cases and 37,154 controls (The European Alzheimer’s
disease Initiative (EADI), the Alzheimer Disease Genet-
ics Consortium (ADGC), The Cohorts for Heart and
Aging Research in Genomic Epidemiology consortium
(CHARGE), The Genetic and Environmental Risk in AD
consortium (GERAD)). In stage 2, 11,632 SNPs were ge-
notyped and tested for association in an independent set
of 8572 Alzheimer’s disease cases and 11,312 controls.
Finally, a meta-analysis was performed combining results
from stages 1 and 2.

Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis
GO and KEGG enrichment analyses were performed
using the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) website [84, 85]. Visualization
of KEGG pathways was conducted using Pathview
(v1.22.3) [86].

Other statistical analyses
Continuous variables were descriptively summarized using
medians with 25th and 75th percentiles, and categorical
factors were reported using percentages. R package
“VennDiagram” was used to determine the groupings of
values that were presented in the Venn diagram. The
Pearson correlation coefficient was calculated to measure
the linear correlation of the gene expression between
iPSC-derived neurons and the four brain regions (P values
< 0.01). The STRING [50] analytical tool was used to re-
veal the protein-protein interaction (PPI) network, with
only high-confidence interaction edges kept for down-
stream analyses (interaction score ≥ 0.9, PPI enrichment P
value < 1e−11). Boxplots were used to describe the
distribution and patterns of methylation changes in key
AD-associated genes. The statistical significance of the
methylation changes between different groups was deter-
mined by the Wilcoxon rank-sum test using R package
“stats.” The multivariable Cox proportional hazards re-
gression model was used to find risk factors for AD pa-
tients’ deaths. The Kaplan-Meier survival analysis was
used to predict the survival probabilities at distinct methy-
lation level cutoffs. P values were calculated by the log-
rank test.
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