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A B S T R A C T

Juvenile myoclonic epilepsy (JME) has been repeatedly revealed to be associated with brain dysconnectivity in
the default mode network (DMN). However, the implicit assumption of stationary and nondirectional functional
connectivity (FC) in most previous resting-state fMRI studies raises an open question of JME-related aberrations
in dynamic causal properties of FC. Here, we introduces an empirical method incorporating sliding-window
approach and a multivariate Granger causality analysis to investigate, for the first time, the reorganization of
dynamic effective connectivity (DEC) in DMN for patients with JME. DEC was obtained from resting-state fMRI
of 34 patients with newly diagnosed and drug-naïve JME and 34 matched controls. Through clustering analysis,
we found two distinct states that characterize the DEC patterns (i.e., a less frequent, strongly connected state
(State 1) and a more frequent, weakly connected state (State 2)). Patients showed altered ECs within DMN
subnetworks in the State 2, whereas abnormal ECs between DMN subnetworks were found in the State 1.
Furthermore, we observed that the causal influence flows of the medial prefrontal cortex and angular gyrus were
altered in a manner of state specificity, and associated with disease severity of patients. Overall, our findings
extend the dysconnectivity hypothesis in JME from static to dynamic causal FC and demonstrate that aberrant
DEC may underlie abnormal brain function in JME at early phase of illness.

1. Introduction

Juvenile myoclonic epilepsy (JME), characterized by myoclonic
jerks of upper limbs after awakening, is the most common idiopathic
generalized epilepsy (IGE) syndrome in adults, accounting for up to
10% of all epilepsy cases (Inanaga et al., 1985; Panayiotopoulos et al.,
1994; Scheffer et al., 2017). Although response to appropriate anti-
epileptic drugs (AEDs) is good, more patients seem to relapse after
stopping AEDs than in any other epilepsy syndrome (Koepp et al.,
2014). Patients with JME typically show various cognitive impair-
ments, such as deficits in working memory, attention, and executive
functions (Carvalho et al., 2016; Pascalicchio et al., 2007;
Wandschneider et al., 2012), and these cognitive impairments severely
affect patients’ quality of life and to some extent increase social and
economic burden. Because of these apparent cognitive comorbidities,
continuous efforts have been made to understand the fundamental

mechanisms underlying the neuropsychology of JME (Caciagli et al.,
2019; Jiang et al., 2018; Wandschneider et al., 2019).

With advances in functional magnetic resonance imaging (fMRI)
techniques, researchers have made significant progress in under-
standing the pathogenesis of JME (Baykan and Wolf, 2017; Wolf et al.,
2015). There has been ample evidence of disrupted brain networks,
including thalamo-cortical, fronto-insula, default modal, basal ganglia,
sensorimotor networks, etc., in JME patients (Dong et al., 2016;
Gleichgerrcht et al., 2015; Lee and Park, 2019; O'Muircheartaigh et al.,
2012; Paulus et al., 2015; Wang et al., 2019; Zhong et al., 2018).
However, studying the dysfunctions of brain networks in patients who
have been treated with AEDs makes it difficult to differentiate brain
changes caused by the disease itself from a potential prominent changes
caused by AEDs. Thus, it is extremely essential to identify the changes
of brain networks at early phase of the disease without the confounding
effects of pharmacological treatment.
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The default mode network (DMN) that is activated in a task-free
state and suppressed during passive tasks, plays a pivotal role in many
cognitive processes, such as remembering, envisioning the future and
making social inferences (Akansha et al., 2016; Buckner and DiNicola,
2019). The main cortical regions within the DMN include the medial
prefrontal cortex (MPFC), posterior cingulate gyrus (PCC), precuneus
(PCU), inferior parietal cortex, and hippocampus (Mason et al., 2007).
Functional disruption of the DMN have been recently revealed in pa-
tients with JME. For example, patients with JME showed decreased
functional interactions between the PCC and MPFC (McGill et al.,
2012); the coupling of spontaneous fluctuation and functional con-
nectivity (FC) in posterior regions of the DMN was altered in patients
and associated with clinical symptoms during seizures (Jia et al., 2018);
aberrant FC in hippocampus was also involved in the cognitive dysre-
gulation of JME (Zhong et al., 2018). Taken together, these findings
suggested that the DMN is prominently affected in patients with JME
(Parsons et al., 2020), and a specific investigation targeting DMN may
lead new insights to revealing the pathogenesis of JME at the early
phase of this disorder. It is noteworthy mentioning that the above-
mentioned studies have measured FC by estimating the full time courses
over the entire scan, and thus blurred the dynamic properties of brain
activity over time.

The functional interaction in the brain is known to be highly dy-
namic rather than static (Calhoun et al., 2014; Lurie et al., 2020). The
dynamic FC therefore is considered to be a more efficient way for un-
covering specific functional integration properties in healthy and dis-
ease (Allen et al., 2014; Damaraju et al., 2014; Fu et al., 2019; Kim
et al., 2017; Malhi et al., 2019; Tu et al., 2019). The dynamic FC ana-
lysis have been utilized to explore time-varying abnormalities of
resting-state networks (RSNs) in different subtypes of IGE as well as
JME. For example, children with absence seizure (AS) showed altered
dynamic connectivity maps in the thalamic network and the DMN
across three different seizure intervals (Liao et al., 2014); state-specific
connectivity disruptions that mainly related to DMN were observed in
patients with generalized tonic-clonic seizures (GTCS) (Liu et al., 2017).
For patients with JME, hyper dynamic characteristics in temporally
fluctuating functional networks have been found (Wang et al., 2019).
Our previous study also demonstrated altered FC dynamics within and
between RSNs, which were associated with the disease severity of JME
patients (Zhang et al., 2018). These studies suggested aberrant dynamic
connectivity patterns of RSNs, particularly the DMN, are remarkable
characteristics in patients with IGE. However, previous dynamic studies
only characterized FC based on the temporal correlation between brain
signals, ignoring the causal influences among brain regions (e.g., the
influence of one brain regions on another (Friston, 2011)) that may
provide more reasonable evidence for diagnosis, prognosis, and as-
sessment of treatment responses of neurological and psychiatric dis-
orders (Dobryakova et al., 2017; Hamilton et al., 2011; Mastrovito
et al., 2018; Park et al., 2018a; Sladky et al., 2015). To the best of our
knowledge, no study has explored dynamic effective connectivity (DEC)
in patients with JME, and the time-varying aspect of the causal influ-
ences among DMN regions for this disorder remains unclear.

The primary aim of this study is to investigate the differences in DEC
within the DMN between healthy controls and patients with newly di-
agnosed and drug-naïve JME. To achieve this goal, we identified the
default mode (DM) components by using a group independent com-
ponent analysis (gICA), and then characterized DEC among the DM
components by combining a sliding window approach with multi-
variate Granger causality analysis (mGCA). We further evaluated causal
influence flows of DM components as well as temporal properties of
dynamic states after clustering all DEC matrices into two EC states. Our
DEC approach offers a practical way of examining the temporal patterns
of the DMN connectivity in JME. Based upon the previous literature
describing dysconnectivity of DMN and abnormalities of dynamic FC in
JME, we hypothesized that patients with JME would exhibit atypical
dynamic causal influence and temporal properties in the DMN vs.

healthy controls, and these abnormal DEC patterns would be linked to
clinical severity of JME.

2. Materials and methods

2.1. Participants

The study sample consisted of 38 patients with newly diagnosed
JME recruited at the Epilepsy Center of Lanzhou University Second
Hospital between August 2016 and June 2018 and 37 matched healthy
controls recruited from the local community through advertisements.
The patients were diagnosed as JME based on the epilepsy classification
criteria of the International League Against Epilepsy (ILAE) guidelines
(Jr, 2001). Routine MRI scans were normal, and routine scalp EEG
showed 3–6 Hz generalized spike-wave or polyspike-wave discharges
(GSWDs). Patients were excluded if they had any of the following
characteristics: 1) a history of antiepileptic medication-intake, 2) had
other neurological or psychiatric illness, 3) had other developmental
disabilities, such as autism and intellectual impairment, and 4) had
acute physical illness that would affect the scanning. To assess seizure
severity, each patient was requested to perform the National Hospital
Seizure Severity Scale (NHS3) prior to the MRI scans. The NHS3 mea-
sures seizure severity in a manner compatible with the subjective im-
pression of people with epilepsy, focusing solely on the objective clin-
ical events of a seizure (O' Donoghue et al., 1996). It contains six
seizure-related factors and generates a total score from 1 to 23. Healthy
controls were additionally screened for history of febrile convulsions,
seizures, or family history for epilepsy. This study was approved by the
Ethics Committee of Lanzhou University Second Hospital. Written in-
formed consent was obtained from each participant or one of his/her
legal guardians after the explanation of the experimental protocol prior
to imaging.

2.2. Data acquisition

MRI data were acquired on a Siemens Verio 3.0 T scanner (Siemens,
Erlangen, Germany) with 16 head-coil at the Department of Magnetic
Resonance of Lanzhou University Second Hospital. Participants were
instructed to keep still and remain as motionless as possible before the
scanning. Participants were additionally required to stay awake with
their eyes closed and not to think systematically during the scan. In
order to further minimize the head motion, form pads provided by the
scanner manufacturer were used to fix the head. Resting-state func-
tional images were acquired for each participant using an echo-planar
imaging sequence with the following settings: repetition time
[RT] = 2000 ms; echo time [TE] = 30 ms; flip angle = 90°; slice
thickness = 4 mm; in-plane matrix resolution = 64 × 64; field of view
[FOV] = 240 × 240 mm2; slices = 33; number of total vo-
lumes = 200. For anatomical localization and normalization, high-re-
solution structural 3D T1-weighted images were obtained using a
magnetization-prepared rapid gradient-echo sequence (TR = 1900 ms;
TE = 2.99 ms; flip angle = 90°; slice thickness = 0.9 mm; acquisition
matrix = 256 × 256; FOV = 230 × 230 mm2; in-plane resolu-
tion = 0.9 × 0.9 mm2; slices = 192).

2.3. Data preprocessing

Resting-state functional images were preprocessed using DPARSF
software (http://www.restfmri.net) based on SPM12 (http://www.fil.
ion.ucl.ac.uk/spm). The main procedures included discard of the first
10 functional images, realignment, time-slicing and head motion cor-
rection, spatial normalization into the Montreal Neurological Institute
(MNI) space, and spatial smoothing using a Gaussian kernel of 6 mm
full width at half maximum. To minimize the effects of head motion on
the estimation of dynamic EC, participants were excluded if they had:
(1) head movement over than 2 mm translation or 2° rotation and (2)
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mean frame-wise displacement (FD) over than 0.3 mm. Seven partici-
pants (4 patients and 3 controls) failed to pass these criteria were ex-
cluded due to excessive head motion during MRI scanning. The detailed
demographic and clinical characteristics of the included participants
are shown in Table 1 and Supplementary Table S1.

2.4. Overview of dynamic effective connectivity analysis

A schematic diagram of the analysis framework to investigate aty-
pical dynamic EC of the DMN in JME was presented in Fig. 1. Specifi-
cally, there were four major analysis steps in this framework. First, a
group independent component analysis (ICA) was performed to

decompose the preprocessed functional data into multiple independent
components (ICs) and the DM components were identified according to
their spatial activation maps. Second, to measure DEC among DM
components, the time courses of DM components were divided into a
set of windows by using a sliding window approach, and then the causal
influence matrix in each window was constructed by using a multi-
variate Granger causality analysis (mGCA). Third, a k-means clustering
method was implemented to cluster all DEC matrices into discrete EC
states, which represented transient causal influences patterns during
data acquisition time. Finally, state-specific causal influence flows
among DM components and temporal properties of dynamic states were
evaluated for each participant and their group differences between
patients and controls were further compared. The detailed methods
used for DEC analysis were provided in the following subsections.

2.5. Group independent component analysis

After data preprocessing, resting-sate data of all participants were
decomposed into multiple ICs using spatial GICA with GIFT software
(http://icatb.sourceforge.net/). The principal component analysis was
first applied to reduce subject-specific data into 120 principal compo-
nents, and then all participant-reduced data across time was con-
catenated and decomposed into 100 ICs using the infomax algorithm
(Bell and Sejnowski, 1995). The infomax ICA algorithm was repeated
20 times in ICASSO to ensure the reliability and stability. After esti-
mating the group spatial maps, a back reconstruction approach was
used to obtain subject-specific spatial maps and corresponding time
courses. We then applied a combination of spatial template-matching
and visual inspection to identify DM components. Templates were de-
rived from the ICA analyses as described in previous studies (Allen
et al., 2014; Liu et al., 2017). Components were further evaluated ac-
cording to the following criteria: 1) peak activation coordinates were
located primarily in gray matter; 2) low spatial overlap with known

Table 1
Demographic and clinical characteristics of all participants.

JME (n = 34) HC (n = 34) P value

Age (years) 17.38 ± 4.73 19.15 ± 3.46 0.21a

Gender (males/females) 17/17 11/23 0.14b

Handedness (right/left) 34/0 34/0 –
Seizure semiology MS (34), GTCS (24) – –
Age at seizure onset (year) 15.29 ± 3.44 – –
Duration of epilepsy (months) 23.76 ± 18.99 – –
NHS3 total score 8.65 ± 3.92 – –
Generalized convulsions 2.82 ± 1.85 – –
Falls 1.50 ± 1.39 – –
Incontinence 0.32 ± 0.81 – –
Loss of consciousness 1.41 ± 0.82 – –
Duration of recovery time 0.97 ± 0.67 – –
Automatisms 0.68 ± 1.06 – –
Mean FD 0.12 ± 0.05 0.11 ± 0.04 0.45a

Note: a two sample t-test, b chi-square t test; Values are mean ± SD.
Abbreviations: MS, myoclonic seizure; GTCS, generalized tonic-clonic seizure;
NHS3, national hospital seizure severity scale; FD, frame-wise displacement;
JME, juvenile myoclonic epilepsy; HC, healthy control.

Fig. 1. Analysis flowchart to study dynamic effective connectivity of the default mode network in patients with juvenile myoclonic epilepsy.
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vascular, ventricular, motion, and susceptibility artifacts; and 3) time
courses were dominated by low-frequency fluctuations (Allen et al.,
2011). Moreover, to remove remaining noise sources, a post-processing
was performed on the time courses of selected DM components, in-
cluding detrended linear, quadratic and cubic trends, regressed out six
realignment parameters and their temporal derivatives, despiked de-
tected outliers using 3DDESPIKE algorithm, and low-pass filtered with a
cutoff frequency of 0.15 Hz.

2.6. Dynamic effective connectivity estimation

2.6.1. Multivariate Granger causality analysis
As a popular method for predicting causal influence of one system

exerts over another, the Granger causality analysis (GCA) has been
widely used to explore EC between brain regions in resting-state fMRI
data (David et al., 2008; Deshpande and Hu, 2012). Different from
other measures of EC, GCA quantified the causal influence among
multiple brain regions in a data-driven way without requiring any
predefined model (Deshpande and Hu, 2012). The idea of GCA can be
simply depicted as, for two time signals s1(t) and s2(t), if knowing the
past information of s1(t) could help to predict the future of s2(t), s1(t)
has a causal influence on s2(t). In this study, the causal influences
among the time courses of DM components were evaluated using the
mGCA method (Liao et al., 2011). For each participant, the time courses
set was defined as S(t) = (s1(t), s2(t), …, sn(t)), where n denotes the
number of DM components. The influence from all other seed compo-
nents to target component k was evaluated by the multivariate auto-
regressive model as follow:

= +
=

s t C m S t m R t( ) ( ) ( ) ( )k
m

p

k k
1

where p, Ck, S and R denote the auto-regressive model order, model
coefficient matrix, time courses matrix of different components and
residual error matrix, respectively. The model order p was determined
using Akaike’s information criterion and the model coefficient matrix
Ck was calculated using a standard least squares optimization. To assess
the statistical significance of Granger causality results, random-effect
Granger causality maps were further calculated for each participant.
The statistical thresholds for these maps were corrected with false
discovery rate (P < 0.05).

2.6.2. Sliding window approach
The DEC among DM components was estimated using the sliding

window approach, which is the most common way to investigate dy-
namics of brain connectivity in previous studies. A tapered window was
created by convolving a rectangle window of 22 TRs (44 s) size with a
Gaussian (σ = 3), and then slid it along time in steps of 1 TR, resulting
in total 169 windows for each participant across the entire scan (190
TRs). Particularly, the window size of 22 TRs was selected because it
has been demonstrated to provide a good cutoff between the ability of
dynamics detection and the quality of correlation matrix estimation
(Allen et al., 2014). Using the time courses of all DM components within
each window, 169 EC matrices with n × n size were obtained for each
participant, representing the dynamic changes of EC within DMN
during resting-state data acquisition time. Since previous studies sug-
gested that dynamic connectivity patterns could be captured stably in
the range of 30 to 60 s, DEC was also estimated in other window sizes,
such as 15, 18, 20, 25, 28, and 30 TRs to validate our main results.

2.6.3. Clustering analysis
To identify the reoccurring DEC states (depicting transient EC pat-

terns over time), a k-means clustering method was performed on the
windowed EC matrices for all participants. These matrices were cate-
gorized into a set of distinct clusters (corresponding different states)
based on the similarity between matrices and cluster centroids. Here,

the similarity was measured using the L1 distance (Manhattan distance)
function, which is a practical method for high dimensional data
(Aggarwal et al., 2001). The k-means clustering algorithm was repeated
100 times to reduce the random selection bias of initialized centroid
position. The optimal number of clusters was estimated using the sil-
houette statistic (defined as the ratio of similarity between windows in
the same cluster to similarity with windows in a different cluster) and
the gap statistic (defined as the standardized pooled within-cluster sum
of squares in within-cluster dispersion that is expected under a re-
ference null distribution). In addition, the state was considered as a
reliable state when it covered at least 10 windows in this study.

2.7. Causal influence flows analysis and temporal properties analysis

We performed a causal influence flows analysis to investigate state-
specific directed interactions among DM components and compared it
between patients and controls. Two weighted degree measures in-
cluding in-weighted degree and out-weighted degree, the most common
used measures of causal influence flows (Stevens et al., 2009), were
calculated in each state. Here, we defined in-weighted degree of a
component (or node) as the sum of influence strength from any other
component to it, while defined out-weighted degree of a component as
the sum of influence strength from it to any other component. In gen-
eral, the component with high in-weighted degree (out-weighted de-
gree) was considered to be a hub receptor (hub generator) of the net-
work and often played an important role in functional integration. To
assess net influence for each component, we further calculated the in-
out-weighted degree on DEC matrices, which is defined as the sub-
traction of in-weighted degree and out-weighted degree.

In line with previous studies (Kim et al., 2017; Yao et al., 2019), we
computed three different variables including fractional windows,
number of transitions, and mean dwell time to evaluate the temporal
properties of DEC states for each participant. Specifically, the fractional
windows was defined as the proportion of windows belonging to each
state, the number of transitions was defined as the transition times
between states and represented the stability over time, and the mean
dwell time was defined as the average number of consecutive windows
belonging to each state and represented the staying time in a certain
state.

2.8. Statistical analysis

The group differences in DEC parameters, including state-specific
EC patterns, causal influence flows among DM components, and tem-
poral properties of DEC states, were explored using two-sample t-test.
Furthermore, Spearman’s correlation analyses were applied to in-
vestigate the relationships between altered DEC parameters and clinical
features in JME patients, with age, gender, and mean FD regressed out.
Statistical analyses were performed using SPSS 21.0 and results were
corrected for multiple comparisons using false discovery rate (FDR;
P < 0.05).

3. Results

3.1. Default mode components

Eleven ICs were identified as DM components, located in multiple
brain regions including the medial frontal gyrus (MFG; IC19, IC51, and
IC87), hippocampus (Hip; IC41), anterior cingulate cortex (ACC; IC42),
precuneus (PCU; IC48 and IC50), angular gyrus (Ang; IC66 and IC81),
posterior cingulate cortex (PCC; IC73), and inferior parietal lobule (IPL;
IC91). According to their spatial locations, these components can be
further divided into two subnetworks such as anterior DMN (IC19,
IC42, IC51, and IC87) and posterior DMN (IC41, IC48, IC50, IC66, IC81,
IC 73, and IC91). The spatial maps of the DM components are shown in
Fig. 2A. We also computed the group averaged static causal influences

Z. Zhang, et al. NeuroImage: Clinical 28 (2020) 102431

4



among DM components over the entire scan and the corresponding EC
matrix is shown in Fig. 2B. The detailed information of these DM
components is provided in Supplementary Table S2.

3.2. Effective connectivity patterns in dynamic states

Two structured EC states across all participants were identified
using the k-means clustering method. As shown in Fig. 3, the DEC
patterns (cluster centroids) among DM components are very different
between the two states. Specifically, in State 1, the DEC pattern showed
stronger inter-influence but lower percentages of total occurrences
(31.03%), whereas in State 2, the DEC pattern showed weaker inter-
influence but more frequently total occurrences (68.97%). We also es-
timated and clustered DEC matrices with other sliding window sizes,
and found that the DEC patterns were consistent across different sliding
window sizes (see details in Supplementary Figure S1).

Fig. 4 shows state- and group-specific DEC patterns. Compared with

controls, patients with JME exhibited increased EC from IC50 to IC42
and decreased EC from IC81 to IC51 in State 1; and showed increased
EC from IC51 to IC42 and decreased EC from IC81 to IC66 as well as
from IC66 to IC48 in State 2 (Fig. 4B, P < 0.05 with FDR corrected).
We also observed that these changed ECs in State 1 were located be-
tween DMN subnetworks, while in State 2 were located within DMN
subnetworks.

3.3. Group differences of causal influence flows and temporal properties

The group differences of causal influence flows among DM com-
ponents in each state are shown in Fig. 5. In State 1, compared with
controls, patients exhibited significantly decreased in-weighted degree
from other DM components to IC51, decreased out-weighted degree
from IC81 to other DM components, and decreased in-out-weighted
degree of IC51 (P < 0.05, FDR corrected). In State 2, patients ex-
hibited significantly increased out-weighted degree from IC51 to other

Fig. 2. Default mode components identified by a group independent component analysis. (A) Eleven independent components (ICs) were defined as default mode
components according to their spatial activation maps. (B) Group averaged static effective connectivity (EC) between default mode component pairs was computed
using an entire scan. The color-coded legend located on the left and at the bottom side of the matrix in (B) matches the overlaid colors of the spatial maps in (A).

Fig. 3. Clustering analysis results for each state across the entire group. (A) Centroid matrices for two states. The total number of occurrences and the percentage of
total occurrences are listed above each centroid matrix. (B) The difference of the mean value of absolute EC between two states. Horizontal solid and dashed lines
indicate state means and interquartile range, respectively. **** represents P < 0.0001.
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DM components, but significantly decreased out-weighted degree from
IC81 to other DM components and in-out-weighted degree of IC51
(P < 0.05, FDR corrected). We further explored the temporal

properties (fractional windows, number of transitions, and dwell time)
in each group, but no significant between-group differences were found.
The statistical results of these temporal properties are provided in

Fig. 4. Dynamic effective connectivity patterns for two groups. (A) Group-specific centroid matrices for each state. (B) State-specific group differences in centroid
matrices (P < 0.05, FDR corrected). The arrows indicate the directions of causal influences. The lines with warm and cool colors indicate the increased and
decreased effective connectivity (EC) in JME patients compared with HCs respectively. JME, juvenile myoclonic epilepsy; HC, healthy control; IC, independent
component.

Fig. 5. Causal influence flows of dynamic effective connectivity. The in-weighted degree (A), out-weighted degree (B), and in-out weighted degree (C) in two states
are shown using violin plots for JME patients (red) and HCs (green). Horizontal solid and dashed lines indicate group means and interquartile range respectively. **
and * represent P < 0.01 and P < 0.05 with FDR corrected. JME, juvenile myoclonic epilepsy; HC, healthy control; IC, independent component. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Supplementary Figure S2.

3.4. Relationship with clinical disease severity

We first tested whether abnormal DEC patterns in patients with JME
were associated with their clinical features, but did not find any sig-
nificant correlations. We further explored the associations between
abnormal causal influence flows and clinical features. As shown in
Fig. 6, we found that the NHS3 total scores of patients were sig-
nificantly correlated with out-weighted degree from IC81 to other DM
components in State 1 (r = -0.41, P = 0.016, FDR corrected) and in-
out-weighted degree of IC51 in State 2 (r = -0.43, P = 0.011, FDR
corrected).

4. Discussion

In this study, we investigated the abnormalities of the dynamic
causal influences within the DMN in newly diagnosed, drug-naïve JME.
The primary findings are as follows: first, we found that the transient
patterns of causal influences within the DMN have two distinct con-
figurations, a less frequent, strongly-connected state (State 1) and a
more frequent, weakly-connected state (State 2), across the two groups;
second, compared with controls, patients with JME showed state-spe-
cific EC changes among several DMN regions, particularly exhibited
altered ECs between DMN subnetworks in State 1 as well as abnormal
ECs within DMN subnetworks in State 2; third, causal influence flows
among DMN regions were also altered across two states and associated
with the disease severity of JME assessed by the NHS3 score. All these
results provide a new account of neuropsychological mechanisms of
JME at the early phase of the disease.

The present work from the perspective of EC identified two distinct
dynamic state profiles, a less frequent state characterized by strongly-
connected inter-influence among DM components (State 1) and a more
frequent state characterized by weakly-connected inter-influence
among DM components (State 2). The identified states were in line with
the dynamic FC patterns presented in prior findings (Chen et al., 2017).
Indeed, dynamic FC analysis usually estimates and characterizes
windowed FC matrices into several distinct connectivity states that
represent the transient patterns of FC over time (Allen et al., 2014;
Thompson, 2017). Although the underlying cognitive processes remains
largely unknown, these diverse FC states are believed to reflect distinct
internal states of the brain (e.g. a state of alertness or drowsiness), in
terms of functional interactions (Calhoun and Adali, 2016; Lim et al.,
2018; Zhou et al., 2019). This can be supported by the evidence that
dynamic FC states derived from rs-fMRI are linked to discrete mental
states observed in EEG measurements (Allen et al., 2018). Our results

may extend to previous findings, suggesting that different causal in-
fluence patterns might also be related to discrete brain cognitive states
during resting-state. Furthermore, previous research suggested that the
DMN is in charge of both the internal thoughts and response to external
stimuli in resting-state, and these two aspects can be reflected by dis-
tinct connective patterns of the DMN (Zuo et al., 2016) and related to
the switches between different phases of attention (Scheibner et al.,
2017). Considering the role of the DMN in supporting the internal
mentation and monitoring the external environment, we can speculate
that the State 1 may be an internal-oriented state which supports in-
ternally constructed representations, and the State 2 may be an ex-
ternal-oriented state which supports externally constrained re-
presentations. Our speculation can be supported by the findings of
whole-brain dynamic network connectivity analyses that diverse dy-
namic FC states may reflect the forms of functional communication in
the brain networks and thus support different cognitive processes
(Fiorenzato et al., 2019; Kim et al., 2017). Future studies are needed to
disentangle the relationships between these different states of the DMN
and specific cognitive processing.

Patients in this study exhibited changed ECs among multiple DM
components, specifically between the PCU (IC48 and IC50), ACC
(IC42), MFG (IC51), and Ang (IC66 and IC81). The PCU is a key region
of the DMN and associated with emotion regulation (Fransson and
Marrelec, 2008). Previous studies have suggested that the PCU plays an
important role in onset of spike-and-wave discharge in JME (Lee et al.,
2014). Our altered ECs between PCU and other regions are in line with
previous studies, which have revealed PCU-related dysconnectivity in
JME (Jiang et al., 2018; Routley et al., 2020), suggesting a critical role
of emotional dysregulation in the development of JME. The ACC is
typically related to emotional processing (Etkin et al., 2011), and its
alterations in structure and function have been revealed in patients
with JME (Cao et al., 2013; Jiang et al., 2016). Our altered ECs of ACC
suggest that atypical emotional processing has been implicated in the
neuropsychology of JME. The MFG has been associated with internal
mentation and self-reference processing (Northoff et al., 2006;
Whitfield-Gabrieli et al., 2011). Previous studies have frequently re-
ported dysconnectivity of MFG with motor system in patients with JME
(Christian Vollmar et al., 2011, 2012). Consistently, our altered ECs of
MFG suggest that abnormal internal cognitive process may contribute
to myoclonic jerks in JME. In addition, the Ang is involved in social
cognition and language (Bzdok et al., 2016; Seghier, 2013), and its
dysconnectivity with other DMN regions has been reported in JME
(McGill et al., 2012). Overall, the altered ECs among these DMN com-
ponents may implicate neuropsychological impairments in patients
with JME. More importantly, we found that these changed ECs were
located between anterior (e.g. ACC and MFG) and posterior DMN (e.g.

Fig. 6. Relationships between clinical features and causal influence flows. The red and blue rectangular boxes in the centroid matrix indicate the in and out causal
influence flow of DM components. Ang, angular gyrus; MFG, medial frontal gyrus; JME, juvenile myoclonic epilepsy. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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PCU and Ang) regions in State 1, whereas within anterior and posterior
DMN regions in State 2, suggesting state-specific abnormalities in EC
patterns. Previous static FC studies have indicated that JME patients
had lower mean connective strength between anterior and posterior
DMN regions (Dong et al., 2016). The present study extends current
research to temporal dynamic domain and further suggests that dis-
rupted functional integration between DMN subnetworks may be
dominated by an internal-oriented state, whereas disrupted functional
segregation within DMN subnetworks may be dominated by an ex-
ternal-oriented state in patients.

Our results also showed that the causal influence flows related to
MFG (IC51) and left Ang (IC81) have been altered across two states in
the patient cohort, suggesting a disrupted role of these regions as a hub
receptor and generator in functional interaction. Previous studies have
demonstrated that the causal influence flows among the DMN regions
were correlated with their neuronal activity levels (Jiao et al., 2011).
The abnormal activity in the MFG and Ang have been widely found in
JME (Bartolini et al., 2014; McGill et al., 2014), the altered causal in-
fluence flows of these regions may reflect disabilities in receiving and
generating influences with other DMN regions. Interestingly, the MFG
showed decreased in-weighted degree in Stated 1, whereas exhibited
increased out-weighted degree in State 2, indicating state-specific al-
terations of causal influence flows in patients with JME. The MFG has
been implicated in integrating the external environment with stored
internal representations (Buckner et al., 2008), and the abnormal MFG
connectivity is associated with abnormal internal representations on
specific cognitive processes, such as attention, memory, and con-
sciousness, for both chronic illness and newly diagnosed JME patients
(Lee and Park, 2019; Maneshi et al., 2012). Also, the MFG is involved
with the thalamo-cortical circuit, and its connectivity reduces with the
basal ganglia reflects the disruption of external interaction which is
related to executing voluntary movements in JME (O'Muircheartaigh
et al., 2012). Our state-specific results suggest that, for patients with
newly diagnosed drug-naïve JME, the MFG became less important in
supporting internally constructed representations when it served as a
hub receptor in the DMN; on the contrary, as a hub generator of the
DMN, the MFG played a more important role in supporting externally
constrained representations. This can be seen as a compensatory pro-
cess, where the functional interaction decreases in an internal-oriented
state while increases in an external-oriented state in patients with JME.

We also found that the altered causal influence flows were sig-
nificantly correlated with NHS3 scores in patients with JME, suggesting
the lower directed interactions are corresponding to the greater disease
severity. These results were consistent with previous observations of
associations between atypical brain dynamics and epileptic symptoms
(Li et al., 2019; H. Liu et al., 2019). A recent study reported that pa-
tients with GTCS showed enhanced temporal variability of FC in large-
scale brain functional networks, with these excessive variability anti-
correlated with the duration of disease (Jia et al., 2020). Our previous
study also suggested that reduced dynamics within and between RSNs
were linked to greater disease severity in JME (Zhang et al., 2018).
Taken together, the established associations in this study indicate that
the early identified abnormalities in brain networks may be implicated
in the progress of the disease, and can be an indication of disrupted
developmental processes in JME.

Our study was subject to various considerations and limitations.
First, although the GCA is considered to be an effective method for
evaluating EC in rs-fMRI data, it has been claimed that the changes in
directionality can be caused by the differences in hemodynamic cou-
pling among different brain regions (Pervaiz et al., 2020). Recently,
other models, particularly the dynamic causal model (DCM) - a hemo-
dynamic model (Friston et al., 2014), have been proposed to detect
dynamic EC among hidden neuronal states (Park et al., 2018b;
Zarghami and Friston, 2020). Therefore, it would be interesting to see
future attempts utilizing DCM to examine the reorganizations of dy-
namic EC in patients with ME. Second, previous studies have suggested

that the epileptic transients may have significant effect on the func-
tional connectivity (Bettus et al., 2011). However, in the present study,
the EEG data was not recorded during rs-fMRI scanning since it is dif-
ficult for participants to continue to not move their head during scan-
ning. In the future, it would be important to evaluate the influence of
the interictal epileptic discharges on dynamic brain networks by using a
simultaneous EEG-fMRI analysis. Third, in order to investigate the in-
trinsic disease process on reorganization of dynamic EC rather than the
effect of direct pharmacological treatment, we opted for a homo-
geneous cohort of newly diagnosed drug-naïve JME. Although this is an
advantage of the study, our sample size is subsequently small. Our
sample size was comparable with other recent studies that examined
patients with newly diagnosed JME (Lee an Park, 2019) and dynamic
FC (Wang et al., 2019). Nonetheless, further study with a larger sample
set is needed to investigate the replicability of our findings.

5. Conclusion

The current study adopts a novel DEC method that combined a
sliding window approach with a multivariate Granger causality analysis
to study the dynamic alterations of causal influence within the DMN in
patients with newly diagnosed and drug-naïve JME. Our results showed
that temporal patterns of causal influences within the DMN are altered
in patients, and were associated with clinical symptoms in patients. Our
findings extend current research regarding the DMN disruption in JME
patients and suggest that dynamic effective connectivity could be a
potential way to uncover the pathophysiology of JME at the early phase
of illness.
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