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Hen's teeth with enamel cap: from dream to impossibility
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Abstract
Background: The ability to form teeth was lost in an ancestor of all modern birds, approximately
100-80 million years ago. However, experiments in chicken have revealed that the oral epithelium
can respond to inductive signals from mouse mesenchyme, leading to reactivation of the
odontogenic pathway. Recently, tooth germs similar to crocodile rudimentary teeth were found in
a chicken mutant. These "chicken teeth" did not develop further, but the question remains whether
functional teeth with enamel cap would have been obtained if the experiments had been carried
out over a longer time period or if the chicken mutants had survived. The next odontogenetic step
would have been tooth differentiation, involving deposition of dental proteins.

Results: Using bioinformatics, we assessed the fate of the four dental proteins thought to be
specific to enamel (amelogenin, AMEL; ameloblastin, AMBN; enamelin, ENAM) and to dentin
(dentin sialophosphoprotein, DSPP) in the chicken genome. Conservation of gene synteny in
amniotes allowed definition of target DNA regions in which we searched for sequence similarity.
We found the full-length chicken AMEL and the only N-terminal region of DSPP, and both are
invalidated genes. AMBN and ENAM disappeared after chromosomal rearrangements occurred in
the candidate region in a bird ancestor.

Conclusion: These findings not only imply that functional teeth with enamel covering, as present
in ancestral Aves, will never be obtained in birds, but they also indicate that these four protein
genes were dental specific, at least in the last toothed ancestor of modern birds, a specificity which
has been questioned in recent years.

Background
Modern birds derive from theropod dinosaurs. The most
ancient Avialae [1] is the well-known "dinobird" Archae-
opteryx lithographica, which lived some 150 million years
ago (mya) and possessed teeth. The most recent toothed
Avialae in the fossil record, the ornithurine birds Hesper-
ornis regalis and Ichthyornis dispar, are known from the late
Cretaceous. To date, Ichthyornis is the closest Avialae to the

common ancestor of modern birds (Aves) [2]Ichthyornis
specimens trace from the late Cenomanian, 95 mya, to
early Campanian, 80 mya, but we do not know whether
fossil taxa closer than Ichthyornis to the most recent com-
mon ancestor of Aves have teeth. Therefore, we can esti-
mate that tooth loss in crown Aves arose maximally on the
stem lineage between Ichthyornis and Aves and minimally
in the most recent common ancestor of Aves, the origin of
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modern birds (Neornithes). Neornithine fossils are found
near the end of the Cretaceous period (Campanian, 80
mya) [3], and the recent discovery of a close relative to
ducks (Anseriformes) in the Maastrichtian of Antarctica
(70 mya) indicates that Aves originated long before the
Cretaceous/Tertiary boundary [4]; they probably arose
even earlier than 80 mya, although they may have diversi-
fied later, during the early Cenozoic [5]. The deep Creta-
ceous origination inferred from molecular studies (120–
130 mya) [6] is, however, still earlier, but establishing
accurate calibration times for molecular phylogenies on
the basis of fossil data is difficult [7].

Would birds be able to rebuild teeth with reactivation of
the odontogenic pathway under appropriate conditions?
In other words, are all genes required for complete odon-
togenesis still active 100-80 million years (at least) after
tooth loss in a bird ancestor? A positive answer would
mean that these genes serve functions other than building
teeth [8]. Otherwise, no-longer-useful dental-specific
genes might have been invalidated through random accu-
mulation of mutations.

There are two justifications for asking this question: the
first is the growing evidence in mammals that some dental
proteins, believed to be specific to enamel or dentin
matrix, are expressed in other organs and therefore are
suspected of having other functions [9-12]; The second
reason is that several recombination experiments and the
observations made on a chicken mutant strongly suggest
that resurrecting teeth in birds could be possible. In 1980,
Kollar and Fischer [13] recombined chick dental epithe-
lium with mouse mesenchyme and obtained teeth with
an enamel cover, the famous "hen's teeth." However, a
possible contamination of the mouse mesenchyme by
mouse epithelium makes the interpretation uncertain.
Chen et al. [14] have shown that the early odontogenic
pathway remains inducible in chicken. They suggested
that the loss of odontogenic Bmp4 expression (i.e., inacti-
vation of the genetic pathway leading to tooth formation)
may be responsible for the early arrest of tooth develop-
ment in birds. Performing transplantations of mouse neu-
ral crest cells into the chick embryo, Mitsiadis et al. [15]
showed that avian dental epithelium can still induce a
nonavian developmental program in mouse neural crest-
derived mesenchyme, resulting in tooth germ formation.
These last two experiments indicate that under appropri-
ate conditions, the odontogenic capacity of chicken dental
epithelium can be reactivated. However, if the re-activa-
tion of such an odontogenic pathway is a prerequisite to
initiating tooth development and to reaching an advanced
stage of tooth morphogenesis, it is insufficient for forming
functional teeth with a dentin cone covered with enamel.
At the end of the pathway, structural genes might have
been activated, but it seems they have not. Unfortunately,

the duration of these experiments was too short for deter-
mining whether or not tooth differentiation would have
eventually occurred. Also interesting are recent observa-
tions made in talpid2 (ta2), a mutant chicken in which the
development of several organ systems is affected. ta2 was
shown to develop rudimentary teeth reminiscent of first-
generation teeth in crocodiles [16]. Unfortunately again,
the oldest ta2 died at stages E16, before hatching, and fur-
ther tooth development was not assessable.

An alternative approach for determining whether or not
obtaining hen's teeth similar to crocodile and lepidosau-
rian teeth is not an impossible dream was to look for the
fate of the dental protein genes, 100 million years (my)
after tooth loss. Four structural proteins are considered
specific to dental tissues: one dentin matrix protein, den-
tin sialophosphoprotein (DSPP), and three enamel
matrix proteins (EMPs) – amelogenin (AMEL, the major
protein of the enamel matrix), ameloblastin (AMBN), and
enamelin (ENAM). AMEL and AMBN genes have been
sequenced in reptiles and they were shown to share con-
served regions with their mammalian orthologs [17,18].
In addition, during reptilian amelogenesis both genes are
similarly expressed as described in mammals, and amel-
oblasts are similarly differentiated [19,20]. Therefore,
there is no doubt that they played a similar function and
were necessary for proper enamel formation not only in
the ancestral theropod dinosaurs, but also in archeopteryx
and in the last common toothed Aves ancestor to modern
birds. For what concerns ENAM and DSPP, the two other
tooth-specific genes, we recently found that they are also
present in a lizard genome http://pre.ensembl.org/
Anolis_carolinensis/index.html and expressed (Sire et al.,
unpublished data). All of this supports the idea that these
four dental proteins were present and functional when the
teeth were lost in the last common ancestor to modern
birds.

Previous molecular attempts to localize AMEL in chicken
DNA have been unsuccessful [21]. Even when the chicken
genome sequence became available http://
www.ensembl.org/Gallus_gallus/index.html, the genes
encoding the four dental proteins were not found using
either computer prediction or bioinformatics [22,23].
Here, using software designed to screen large DNA regions
for weak sequence similarity (UniDPlot, Girondot and
Sire, unpublished), we have found that AMEL and DSPP
are invalidated genes and that ENAM and AMBN have
probably disappeared from the chicken genome through
chromosomal rearrangement.

Methods
Blast search
AMEL, AMBN, ENAM, DSPP were searched (BLASTN) in
the most recent chicken assembly genome (WASHUC2)
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using either full-length amniote sequences or various e-
primers defined from conserved regions. In addition to
various mammalian sequences available for these four
genes in databanks (see NCBI and Ensembl websites), we
used crocodile AMEL and AMBN sequences (GenBank
accession: AF095568 and AY043290, respectively). For
ENAM and DSPP, only mammalian sequences were avail-
able in the databanks.

Search of target genes usingUniDPlot
Gene synteny in mammals and chicken was established
using the NCBI website (mapviewer).

We searched for sequence similarity with UniDPlot soft-
ware (Girondot and Sire, unpublished), using crocodile
AMEL exon 2 (54 bp), which is well conserved [17]. Basi-
cally, UniDPlot uses a projection of the maximum of the
matrix of similarity from a 2D dot-plot along the largest
axis.

Alignments were performed using Se-Al (v2.0a11 Carbon)
and checked by hand.

Results and discussion
Search for dental protein genes in the chicken genome 
using BLASTN
Searching for the four genes (AMEL, AMBN, ENAM,
DSPP) in the chicken genome failed to return any result.
Blast searching for these genes proved to be unfruitful,
even when low sensitivity (distant homology) was used.
The crocodile-bird divergence is estimated to have
occurred approximately 250 mya [24], and the mammal-
reptile (birds) divergence is estimated to have occurred
310 mya [25]. If AMEL and AMBN were not dental specific
in ancestral toothed birds and had other functions, they
might still be present in the chicken genome as functional
genes. We at least expected that conserved coding regions,
which are subjected to strong constraints, would have
been found. This negative result means that either the
sequences have strongly derived over 250 my (acquisition
of a new function or pseudogenization) or these genes
have disappeared. For ENAM and DSPP, the lack of posi-
tive hits could be (in addition to the two hypotheses
evoked above) the consequence of this evolutionary dis-
tance, which could have led to large differences between
mammalian and chicken sequences.

Whatever their fate, the complete deletion of all four
genes (e.g., as a consequence of chromosomal rearrange-
ments) in the chicken genome was unlikely because they
are not located in the same genomic regions in mammals.
Because gene synteny has been shown to be largely con-
served in comparisons of mammalian and chicken
genomes, we decided to use a synteny-based approach to
try to find the chicken dental protein genes.

Search of target genes using synteny
Amelogenin (AMEL)
In placental mammals, AMEL maps on the X chromo-
some (e.g., primates, rodents, cow, horse, and dog) and a
copy is located on the Y chromosome in some species. In
opossum (marsupials), AMEL is mapped on chromosome
7. In these species, AMEL is located close to the rhoGTPase
activating protein 6 gene (ARHGAP6). For instance, in
humans, AMELX is located at position Xp22.3, between
ARHGAP6 and HCCS (holocytochrome C synthetase)
gene. MID1 (midline 1) and MSL3L1 (male-specific lethal
3-like 1) mark out this region (Fig. 1A). AMELX codes in
antisense within the 200 kb large intron 1 of ARHGAP6,
and its 5' UTR is located at approximately 40 kb far from
the 5' region of ARHGAP6 exon 2. In the opossum, AMEL
is similarly located but 58 kb from ARHGAP6 exon 2.

In chicken, ARHGAP6 (LOC418642), MID1, and MSL3L1
(LOC418641) are found close one to another on chromo-
some 1 (Fig. 1B), but compared to their location in
humans, chicken MID1 and MSL3L1 are inverted, while
HCCS is located on chicken chromosome 8
(LOC424482). In the target region, i.e., between
ARHGAP6 and MID1, the GenBank prediction program
indicates neither the presence of a putative candidate gene
locus nor of a pseudogene, which might have been Ψ-
AMEL (Fig. 1B).

In the chicken, we localized exon 2 of ARHGAP6 and
selected a 200-kb DNA strand, running from the 5' region
of exon 2 to the 5' region of MID1, as the most probable
region for housing chicken AMEL. Searching for sequence
similarity using crocodile AMEL exon 2 led to a positive
hit, approximately 38 kb upstream of chicken ARHGAP6
exon 2 (Fig. 2). Such a distance from ARHGAP6 was
expected when considering the location of AMEL in mam-
mals (e.g., 40 kb in human, 58 kb in opossum). We
extracted and aligned this sequence with crocodile AMEL
exon 2 (Fig. 3). With the exception of four inserted nucle-
otides, the chicken sequence was unequivocally identified
as the ortholog of crocodile AMEL exon 2, with 68.8%
nucleotide identity. When the four inserted nucleotides
are removed, the deduced putative amino acid sequence
encoded by chicken AMEL exon 2 is similar to known
sequences. However, the insertion of four nucleotides
would lead to a shift in the reading frame, changing the
amino acid sequence and the chemical nature of chicken
AMEL (Fig. 3). Therefore, we conclude that the chicken
AMEL gene is invalidated and has become a pseudogene
(Ψ-AMEL).

We proceeded similarly using crocodile AMEL exons 3, 5,
and 6, focusing on the chicken DNA region adjacent to
AMEL exon 2. The full-length sequence of chicken Ψ-
AMEL was retrieved (Fig. 4); GenBank accession number;
Page 3 of 11
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF095568
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY043290


BMC Evolutionary Biology 2008, 8:246 http://www.biomedcentral.com/1471-2148/8/246
EU340348). In tetrapods, exons 2, 3, and 5 and the 5' and
3' regions of exon 6 encode the well-conserved N- and C-
terminal AMEL regions, while most of exon 6 encodes the
largest and variable region [26,27]. Chicken Ψ-AMEL
exon 3 (indels), exon 5 (no indel), 5' exon 6 (indels), and
3' exon 6 (indels) show a high percentage of nucleotide
identity with crocodile AMEL sequences (63.2, 73.3, 54.8,
and 64.0%, respectively), while the central region of exon
6 shows less than 50% nucleotide identity (Fig. 5). Such a
low percentage in this variable region is not surprising if
we consider that mutations have accumulated in this
region during the long period from the divergence of the
crocodile-bird lineages to the last common ancestor of
modern birds. In addition to point substitutions, Ψ-AMEL
exon 6 shows numerous indels. Nevertheless, when
included in a phylogenetic analysis (using PAUP 4.0) with
currently available AMEL sequences in amniotes, chicken
Ψ-AMEL locates, as expected, as the sister gene of croco-
dile AMEL (Fig. 6). In addition to confirm that chicken Ψ
AMEL is really an AMEL gene, this finding indicates that
the mutations that have occurred at random during
approximately 100 my have not blurred the phylogenetic
signal contained in the AMEL sequence [28,29].

Ameloblastin (AMBN) and enamelin (ENAM)
AMBN and ENAM are located adjacent one another on
autosomal chromosomes: chr. 4 in human and chimpan-
zee, chr. 5 in rhesus macaque, mouse, and opossum, chr.
14 in rat, chr. 6 in cow, chr. 3 in horse, and chr. 13 in dog.
Because gene synteny is conserved in these regions, we
searched for AMBN and ENAM using the same approach
as described for AMEL.

In humans and in the other mammals in which they have
been mapped, AMBN and ENAM are flanked on the one
side by the immunoglobulin J peptide gene (IGJ) and on
the other side by the other members of the secretory cal-
cium-binding phosphoprotein (SCPP) family, which
comprises ameloblast-secreted protein genes (amelotin,
or AMTN, and odontogenic ameloblast associated, or
ODAM) and several salivary and milk protein genes
[30,31]. The SCPPs are flanked by SULT1E1, a member of
the sulfotransferase family 1E (Fig. 7A). In chicken, IGJ is
located on chr. 4, but no members of the SCPPs (i.e.,
enamel, salivary, and milk protein genes) adjacent to it on
mammalian chromosomes were predicted by computer
analysis to reside in this region (Fig. 7B). Moreover, in a

(A) Location of amelogenin (AMEL) on human chromosome XFigure 1
(A) Location of amelogenin (AMEL) on human chromosome X. (B) Homologous region on chicken chromo-
some 1 and the putative location of AMEL. In chicken, HCCS is located on chromosome 8 (LOC424482). ARHGAP6 
exon 2 is indicated by the numeral 2. Gene descriptions corresponding to the symbols can be found at the NCBI web site: 
http://www.ncbi.nlm.nih.gov/.
Page 4 of 11
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU340348
http://www.ncbi.nlm.nih.gov/


BMC Evolutionary Biology 2008, 8:246 http://www.biomedcentral.com/1471-2148/8/246

Page 5 of 11
(page number not for citation purposes)

Result of sequence similarity search for AMEL in the target region of the chicken genomeFigure 2
Result of sequence similarity search for AMEL in the target region of the chicken genome. This region is delimited 
by two flanking genes, ARHGAP6 (exon 2) and MID1. This region (200 kb) was extracted, and a similarity search was per-
formed using crocodile AMEL exon 2, then exons 3 and 5 and the beginning of exon 6 (Figure 5). We used UniDPlot software 
(Girondot and Sire, unpublished), an extension of the dot-plot method, in which the maximum similarity index between both 
sequences is shown on the axis of the largest sequence. Significant identity was tested by calculating the distribution under H0 
limits obtained by random sampling of sequences. Top: Candidate region of chicken DNA showing the hits. Bottom: Detail of 
the chicken AMEL gene region found 38 kb from the 5' region of ARHGAP6 exon 2.

Chicken Ψ-AMEL exon 2 analysisFigure 3
Chicken Ψ-AMEL exon 2 analysis. Top: Alignment of chicken and crocodile AMEL exon 2 sequences. Four nucleotides are 
inserted (red) in chicken Ψ-AMEL exon 2 (signal peptide), leading to a shift in the reading frame. Middle: Putative deduced 
amino acid sequence from chicken Ψ-AMEL exon 2. Bottom: The four inserted codons were removed from the Ψ-AMEL 
sequence, which was translated and aligned to the crocodile sequence; both amino acid sequences are highly similar.

Crocodile  ATGGAGGGCTGG--ATG--TTGATCACTTGCCTACTAGGTGCAACATTTGCTATACCA
�-Chicken  ATGGAGGACAGACTATTTATTGACTGCTTGCCTCCTAGGAGCACTGTTTGCTATGCCA
           ******* * *   ** *  ***   ******* ***** ***   ******** ***

�-Chicken   MEDRLFIDCLPPRSTVCYA

Crocodile   MEGWMLITCLLGATFAIP
"Chicken"   MEDRILTACLLGALFAMP
            **   *  ***** ** *
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comparison of the chicken and human chromosomal
regions adjacent to IGJ, it appears that intrachromosomal
rearrangements have occurred. In the chicken chromo-
some, we identified two inversions in the candidate
region adjacent to IGJ.

Two regions (14 and 700 kb) were designated as possibly
housing AMBN and ENAM (Fig. 7B). We performed a
sequence similarity search using the well-conserved exon
2 sequences (54 bp) of crocodile AMBN and human
ENAM [32]. No positive hit was obtained in these regions.

Chicken Ψ-amelogenin mRNA and deduced amino acid sequenceFigure 4
Chicken Ψ-amelogenin mRNA and deduced amino acid sequence. Insertion of four nucleotides (in red) in exon 2 
leads to a reading frameshift, which changes the amino acids in the N-terminal region and results in a premature stop codon in 
exon 6 (in red). The intron-exon boundary and the intron size are also indicated.

Chicken  -AMEL mRNA

ex2�ATGGAGGACAGACTATTTATTGACTGCTTGCCTCCTAGGAGCACTGTTTGCTATGCCA
ex3�CTACCCCTTCCCCCTCCTATCTAACACACCCTGGTTTCATCAACTTGAGTTGAG
ex5�GCACAAACACCTTTGAAAAGGCATCAGAGCATGATGACACCCCAG
ex6�TTCCCATTTAATGGTTACAACTAGACAGAAGCTGACAAGAACACCAACCAGTTACAAGCAACATCTACAAA
TGGAGAGCTTACTATCACCCCAGCACACCCCCTTGGTGGCACTCCAGCACCAGCTGATGTAAATTCCCAGGCTAT
TTCCAGTTCTACCACTAGCGCAGCACCTACCAAGCCTGCCAATGCCAGCTCAAACCACACAGCTGCACACAACAA
AAGAGGCCTCAGCATCCTGCAAATCCCAACCCACCGTTGCACCCCAGTGGCTGGGGAGTCCCCATATGCACATGT
GCCCCCTGTCAGGGACTCCTCTGGAGCCAAGGCAGCCAGACAACAAAGCAAAGGAAAACA
ex7�TAT

Chicken  -AMEL protein

MEDRLFIDCLPPRSTVCYAIPLLSNTPWFHQLELRCTNTFEKASEHDDTPVFLFSSHLMVTTRQKTSYKQHLQME
SLLSPQHTPLLTRTPVALQHQLMZ

Chicken  -AMEL : exon-intron boundaries and intron size

gaagtactttctcctcttacttcag�ex2�gtgagtattacggtcatcttgcaac

intron 2 = 1163 bp

tatataccagttttgttttttctag�ex3�gtaaaatgttttgatctttttgaca

intron 3 = 1319

tttctccttttcttccctttagaag�ex5�gtatcacacttcagttttcttcagc

intron 5 = 702 bp

tggatggctttctcttcctctttag�ex6�gtaagaaagctttggttcttccccc

intron 6 = 735 bp

ttattttctgagttaaatagaacag�ex7�
Page 6 of 11
(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:246 http://www.biomedcentral.com/1471-2148/8/246
These genes have been likely deleted from the chicken
genome as a consequence of intrachromosomal rear-
rangements, which have probably occurred in the lineage
that led to the last common ancestor of modern birds. The
recently sequenced lizard genome (Anolis carolinensis) in
which we found the enamel protein genes (Sire et al.,
unpublished data) will be useful for determining whether
or not the synteny observed in this region in mammals
was conserved until the divergence of the lepidosaurian
and archosaurian lineages, 255 mya [24].

Dentin sialophosphoprotein (DSPP)
In human and other sequenced mammalian genomes,
DSPP belongs to the so-called SIBLING cluster, which
consists of five genes coding for dentin and bone proteins.
It is located on the same autosomal chromosome as
AMBN and ENAM (i.e., chr. 4 in humans), except in the
dog in which the SIBLINGs are mapped on chr. 14 instead
of chr. 13. These five genes are arranged side to side on the
chromosome and flanked on the one side by SPARC-like
1 (SPARCL1) and on the other side by polycystic kidney

Comparison of chicken and crocodile amelogenin mRNA, with percentage of nucleotide identity (in brackets)Figure 5
Comparison of chicken and crocodile amelogenin mRNA, with percentage of nucleotide identity (in brackets). 
Start and stop of translation, and polyadenylation sites are underlined. Crocodile = Paleosuchus palpebrosus (accession no: 
AF095568).

Exon 2
Crocodile   GTACTATATTTCGAGAAAGATGGAGGGCTGG--ATG--TTGATCACTTGCCTACTAGGTGCAACATTTGCTATACCA
Chicken     ATACTGTAATTATAGAACGATGGAGGACAGACTATTTATTGACTGCTTGCCTCCTAGGAGCACTGTTTGCTATGCCA
(68.8%)      ++++ ++ ++  ++++ +++++++  + ++   +   ++++   +++++++ +++++ +++   ++++++++ +++

Exon 3
Crocodile   TTGCC---TCCCCATCCA------CATCATCCTGGTTATGTCAACTTCAGTTATGAG
Chicken     CTACCCCTTCCCCCTCCTATCTAACA-CACCCTGGTTTCATCAACTTGAGT--TGAG
(63.2%)      * **   ***** ***       ** ** *******   ******* ***  ****

Exon 5
Crocodile   GTGTTAACACCTTTGAAATGGTACCAGAGCCTGATGAGACAACCG
Chicken     GCACAAACACCTTTGAAAAGGCATCAGAGCATGATGACACCCCAG
(73.3%)     +    +++++++++++++ ++ + ++++++ ++++++ ++  + +

Exon 6 (5' region well conserved)
Crocodile   TATTCATCCTATGGGTATGAACCAATGGGAGGATGGCT-ACA--CCAGCCAA--TGTTACCAATAGCCCAACA
Chicken     TTCCCATTTAATGGTTAC-AAC---TAGACAGAA-GCTGACAAGAACACCAACCAGTTA-CAA--GC--AACA
(54.8%)     +   +++   ++++ ++  +++   + +   ++  +++ +++      ++++   ++++ +++  ++  ++++

Exon 6 (variable) < 50.0%

Exon 6 (3' region well conserved)
Crocodile   CATTGCCACCACTGCTGCCGGACATGCCACTAGAACCATGGCGGCCAATGGACAAGACCAAGCAAGAGGAAA-TA
Chicken     CAT-GTGCCCCCTGTCAG-GGAC--TCCTCTGGAGCCAAGGCAGCCA---GACAACA--AAGCAA-AGGAAAACA
(64.0%)     +++ +   ++ +++     ++++   ++ ++ ++ +++ +++ ++++   +++++ +  ++++++ ++++++  +

Exon 7
Crocodile   GAT--TAAAGAAACCAGGAAATCAGAAAAAA----GCGAAAGTATTCTAGGCATTCTCACTTGCTTTCAAGAATCCATCATTCC
Chicken     AAAAATAGAAAAAAAAAAAA-TAAGAAAAAAAAAAGCAGAAGTATTTTAGGCATTTTCACTTGCTTTCAAAAATCAATCTCCTG
(71.4%)      +   ++ ++++++ +  ++ + ++++++++    ++  +++++++ ++++++++ +++++++++++++++++++ +++

Exon 7
Crocodile   ACTGGAGTCAGTGGTATGTCCTTCCATTAACTCATTTTATTAGTGAACGCTATAGCTAAAGAAAAACAAA-AACAACTAGCA
Chicken     TAGTCAGCAGTGCATGCCTCCATTAACCCCACTTGTTAGTGAGCACTTCAAACGGAAAAAGAGAAGCGTGTAACTAGTAGAA
(36.6%)          ++       +   +++ +  +         ++  + ++        +  +  +++++ ++      +++ + +++ +

Exon 7
Crocodile   AATAAAAATGTTTAAAAAAAAAAAA
Chicken     AATAAAAACACTTGGAAAAAAGAGA
(72.O%)     ++++++++   ++  ++++++ + +
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disease 2 (PKD2) (Fig. 8A). DSPP is located between
SPARCL1 and DMP1 (dentin matrix protein 1).

In the chicken genome, the SIBLINGs are conserved in
synteny and are mapped on chromosome 4 (Fig. 8B). The
SIBLING cluster is more than 12 times denser in chicken
than in human genome (40 kb versus 510 kb, respec-
tively), with the genes oriented in the opposite direction
from that in mammals. However, between SPARCL1 and
DMP1, the GenBank computer prediction program indi-
cates the presence of neither a putative candidate gene
locus for DSPP, nor a pseudogene, although the 5' UTRs
of these two genes are separated by a DNA region of 10.9
kb, strongly suggesting the possible presence of DSPP
(Fig. 8B).

We extracted this candidate DNA region and performed a
sequence similarity search using human DSPP exon 2 (51
bp), the best conserved exon in mammals (Sire, unpub-
lished results). We obtained a positive hit, located in the
middle region of the intergenic sequence, approximately
5,800 bp from DMP1 (Fig. 8C). This sequence (50 bp)

was found to share 54% nucleotide identity with human
DSPP exon 2, indicating that we have identified the puta-
tive chicken DSPP exon 2 (Fig. 8D). In addition to numer-
ous substitutions of well-conserved residues in
mammalian DSPP, one nucleotide has been deleted, lead-
ing to a reading frame shift were this sequence to be trans-
lated. Therefore, in chicken, DSPP was invalidated
through pseudogenization. Using the other exons of
human DSPP (exons 3, 4, and 5), we screened the DNA
region located between Ψ-DSPP exon 2 and DMP1 but
did not identify regions having more than 50% nucleotide
identity. Nevertheless, on the one hand, these regions are
more variable than exon 2 in mammals and, on the other
hand, the evolutionary distance between chicken and
human is 310 my [24]. Additional DSPP sequences in rep-
tiles, and particularly in the lizard Anolis carolinensis (Sire
et al., unpublished data), would allow a better detection
of the other DSPP exons in this target region of chicken
chromosome 4. It is noteworthy, however, that this region
in the chicken genome is very short (10.9 kb), and we did
not find the numerous and typical SDSSD repeats charac-
terizing DSPP exon 5, which strongly suggests that this

Phylogenetic analysis of chicken Ψ-AMELFigure 6
Phylogenetic analysis of chicken Ψ-AMEL. GenBank accession number: chicken Ψ-AMEL, Gallus gallus, EU340348; Croc-
odile (Caiman), Paleosuchus palpebrosus, AF095568; Snake, Elaphe quadrivirgata, AF118568; Rhesus monkey, Macaca mulatta, 
EF537871; Chimpanzee, Pan troglodytes, AB091781; Human, Homo sapiens, M86932; Squirrel monkey, Saimiri sciureus, 
AB091783; Bushbaby, Otolemur garnettii, AB091787; Ring-tailed lemur, Lemur catta, AB091785; Rat, Rattus norvegicus, U67130; 
Mouse, Mus musculus, D31769; Horse, Equus caballus, AB032193; Dog, Canis familiaris, XM_548858; Pig, Sus scrofa, U43405; 
Cow, Bos taurus, M63499; Goat, Capra hircus, AF215889; Guinea pig, Cavia porcellus, AJ012200; Opossum, Monodelphis domes-
tica, U43407.
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exon has been deleted from the chicken genome. These
numerous mutations in chicken Ψ-DSPP exon 2 and the
disappearance of most of the sequence indicate that DSPP
was invalidated for a long evolutionary period, which
could correspond to the loss of teeth in the last ancestor
of modern birds.

Conclusion
Eliciting well-developed, reptilian teeth (i.e. with enamel
cap) in chicken will remain unachievable because all
genes encoding the structural proteins crucial for enamel
and dentine formation have been invalidated or have dis-
appeared from the chicken genome. The odontogenic
pathway remains inducible in chicken embryos because
the genes required for tooth morphogenesis remain active
in the chicken, involved in many developmental proc-
esses. We can speculate that the tooth germs that form

with experimental reactivation of this pathway or in ta2

chicken mutants could develop until an advanced stage of
predentin deposition because the process to this point
requires mainly collagen matrix deposition. However, the
next step of tooth development, during which enamel
matrix proteins are deposited, either could never be acti-
vated or if it was (in the lack of data on the promoter
sequence we cannot demonstrate that the AMEL gene is
not translated) the protein would not be functional, and
enamel will not form.

Another focus of this study is to demonstrate clearly that
the four dental protein genes were tooth specific, at least
in the last common toothed ancestor of modern birds.
After the loss of teeth 100-80 mya, the four dental proteins
became no longer useful; when the functional pressure
relaxed on the coding genes, they started to accumulate

(A) Location of ameloblastin (AMBN) and enamelin (ENAM) on human chromosome 4. (B) Homologous region on chicken chromosome 4Figure 7
(A) Location of ameloblastin (AMBN) and enamelin (ENAM) on human chromosome 4. (B) Homologous 
region on chicken chromosome 4. The position of several gene clusters is different in both chromosomes. Two gene 
inversions (curved arrows) have occurred in the candidate region putatively housing AMBN and ENAM leading to two likely 
locations for these genes on chicken chromosome: either adjacent to sulfotransferase 1E1 (SULT1E1) or to immunoglobulin J 
peptide. See the NCBI website for gene descriptions corresponding to the symbols.
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(A) Location of the dentin sialophosphoprotein (DSPP) and other SIBLING genes on human chromosome 4. Figure 8
(A) Location of the dentin sialophosphoprotein (DSPP) and other SIBLING genes on human chromosome 
4.(B) Homologous region on chicken chromosome 4 and putative location of DSPP. Note that the SIBLING cluster is more 
compact in chicken than in human. OC116 and MEPE are orthologs. (C) Result of the similarity search in the candidate region 
between DMP1 and SPARCL1 using human DSPP exon 2. Chicken Ψ-DSPP exon 2 was found 5,800 bp from DMP1. (D) Align-
ment of chicken and crocodile DSPP exon 2 showing 54% nucleotide identity. See the NCBI website for gene descriptions cor-
responding to the symbols.
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mutations at random. After a period of 100 my, it is not
surprising that they are now pseudogenes or have disap-
peared after chromosomal rearrangement events. In the
currently ongoing sequencing of the genome of the
zebrafinch, a passeriform, we have found AMEL exon 2,
with a deletion of 12 bases and a base substitution leading
to a premature stop codon. The AMEL gene mutations in
these two bird species indicate that this crucial gene for
enamel formation has lost its functional constrainsts long
before the split between Passeriformes and Galliformes
(Sire et al, unpublished data).
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