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Objectives: To assess a new application of artificial intelligence for real-time detection of laryngeal squamous cell carci-
noma (LSCC) in both white light (WL) and narrow-band imaging (NBI) videolaryngoscopies based on the You-Only-Look-Once
(YOLO) deep learning convolutional neural network (CNN).

Study Design: Experimental study with retrospective data.
Methods: Recorded videos of LSCC were retrospectively collected from in-office transnasal videoendoscopies and

intraoperative rigid endoscopies. LSCC videoframes were extracted for training, validation, and testing of various YOLO models.
Different techniques were used to enhance the image analysis: contrast limited adaptive histogram equalization, data augmen-
tation techniques, and test time augmentation (TTA). The best-performing model was used to assess the automatic detection of
LSCC in six videolaryngoscopies.

Results: Two hundred and nineteen patients were retrospectively enrolled. A total of 624 LSCC videoframes were
extracted. The YOLO models were trained after random distribution of images into a training set (82.6%), validation set
(8.2%), and testing set (9.2%). Among the various models, the ensemble algorithm (YOLOv5s with YOLOv5m—TTA) achieved
the best LSCC detection results, with performance metrics in par with the results reported by other state-of-the-art detection
models: 0.66 Precision (positive predicted value), 0.62 Recall (sensitivity), and 0.63 mean Average Precision at 0.5 intersection
over union. Tests on the six videolaryngoscopies demonstrated an average computation time per videoframe of 0.026 seconds.
Three demonstration videos are provided.

Conclusion: This study identified a suitable CNN model for LSCC detection in WL and NBI videolaryngoscopies. Detection
performances are highly promising. The limited complexity and quick computational times for LSCC detection make this model
ideal for real-time processing.

Key Words: Larynx cancer, deep learning, narrow band imaging, computer-assisted image interpretation,
videolaryngoscopy.
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INTRODUCTION
Laryngeal squamous cell carcinoma (LSCC) is an

epithelial cancer arising from the respiratory mucosal lin-
ing of the larynx. Early detection of LSCC is mandatory
to increase survival rates and reduce the morbidity cau-
sed by treatments that are needed for advanced-stage dis-
ease. Identification of LSCC usually starts in the
otolaryngologist’s office by flexible transnasal fiberoptic
endoscopy. High-definition (HD) videolaryngoscopy has
recently replaced standard fiberoptic endoscopy, as it
offers better accuracy in detection and videorecording of
laryngeal lesions.1 Nevertheless, the white light (WL)
endoscopic appearance of LSCCs may be nonspecific, and
preoperative clinical assessment is not always in agree-
ment with the final histopathologic diagnosis.2

Bioendoscopy can overcome such limitations, by aiding in
the identification of tumoral neoangiogenesis associated
with the development of malignant lesions.3 In particular,
narrow-band imaging (NBI) is an established optical tech-
nique that improves diagnosis of malignant lesions by
enhancing submucosal neoangiogenic changes, designing
thick dark spots that can be observed within and sur-
rounding the malignant lesion itself.4 Consequently, the
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use of HD videolaryngoscopy in combination with NBI
allows more effective and earlier detection of LSCC.5

However, the current exploitation of this technology in
less experienced centers is burdened by its operator-
dependent nature, being influenced by the frequency of
its use and related expertise in endoscopy. Moreover, this
technique suffers from a relatively long learning curve6

and is hampered by intrinsic limitations such as subjec-
tivity in interpretation, attention, and visual inspection
capabilities.

Computer-aided systems can exploit artificial intelli-
gence (AI) through machine and deep learning (DL) tech-
niques such as convolutional neural networks (CNNs) for
automatic disease detection and diagnoses. In CNNs, a
progression of network layers is trained to learn a hierar-
chy of features from data (input images), from which spe-
cific patterns are recognized and correlated with defined
outcomes or parameters (output detection or diagnosis).
Notably, CNNs have been demonstrated to be particu-
larly suitable for computer vision, especially in image
interpretation.7 Consequently, computer-aided detection
(CADe) and diagnosis (CADx) of diseases powered by
trustworthy CNNs could increase the future impact of
videolaryngoscopy coupled with NBI in large-scale LSCC
screenings performed on populations living even at a dis-
tance from tertiary academic centers. In this article, we
explore the possibility of applying DL for real-time detec-
tion of LSCC on WL and NBI videolaryngoscopies. Specif-
ically, we focused on evaluating the performance of
trained CADe DL models, identifying an appropriate con-
figuration, and assessing its feasibility in real-time auto-
matic detection of LSCC in videoendoscopy.

MATERIALS AND METHODS

Data Acquisition
A retrospective study was conducted under the approval of

the IRCCS Ospedale Policlinico San Martino institutional ethics
committee (CER Liguria: 230/2019) following the principles of
the Declaration of Helsinki. It included patients treated between
2014 and 2019 at the Unit of Otorhinolaryngology–Head and
Neck Surgery at the IRCSS Ospedale Policlinico San Martino,
Genoa, Italy. Selection criteria included histologically proven
diagnosis of LSCC and the presence of at least one recorded
video of the original laryngoscopy at the time of diagnosis. All
patients were first examined through transnasal video-
laryngoscopy (HD Video Rhino-laryngoscope Olympus ENF-
VH—Olympus Medical System Corporation, Tokyo, Japan) in
the office before treatment. For those submitted to transoral
laryngeal microsurgery, an adjunctive intraoperative evaluation
by rigid endoscopy was performed using 0�, 30�, and 70� tele-
scopes coupled to a CCD Camera Head connected to a Visera
Elite CLV-S190 light source (Olympus Medical System Corpora-
tion). In both settings, a thorough examination was conducted
under HD WL videoendoscopy and then switching to NBI. For
each patient enrolled, the available videolaryngoscopies were
reviewed, and several frames were extracted. If accessible, one
WL frame and one NBI frame were selected from the videos of
each patient. These frames were carefully chosen to ensure the
selection of good-quality and steady images that provided a clear
visualization of the tumor. Afterward, expert physicians seg-
mented and labeled each frame using the VGG Image Annotator

(VIA) 2.0 (https://www.robots.ox.ac.uk/�vgg/software/via/), an
open-source web-based software. Each tumor image was marked
with a bounding box (BB) encompassing the entire cancer visible
surface extension and labeled as LSCC according to the histol-
ogy: if multiple lesions were present, multiple BB were added.
Lastly, six unedited preoperative videolaryngoscopies were
selected for testing the real-time LSCC detection performance of
the trained model.

Preprocessing
Since the contrast under WL and NBI is sometimes sub-

optimal, in order to improve the texture detail of input images
(and consequently the information given to the DL algorithm
during the training phase) contrast limited adaptive histogram
equalization (CLAHE)8 methodology was applied to the original
dataset of images. Figure 1 shows the output WL and NBI
images obtained after CLAHE enhancement.

Data Augmentation
Data augmentation is a standard methodology used in DL.

It consists in modifying or mixing already existing images to arti-
ficially create new training data, which can help increasing the
reliability of the model. The data augmentation techniques used
include image contrast, hue, brightness, saturation, and noise
adjustments, geometric transformation such as rotation, random-
ized scaling, cropping, and flipping of images. Finally, mosaic
data augmentation, which superimposes different images to cre-
ate a new one allowing the model to recognize objects in a variety
of settings and sizes, was implemented. Data augmentation was
directly performed with the selected DL architecture.

DL Model Development and Testing
The state-of-the-art You Only Look Once (YOLO) DL detec-

tion model,9 an open-source software based on CNNs, was chosen
as it offers optimal detection accuracy coupled with acceptable
computational complexity. YOLO is a single-stage DL object
detector, which is capable of identifying objects by framing them
in a BB and, at the same time, classifying them according to the
probability to belong to a given class. The software architecture
is summarized in Figure 2. The most recent release of YOLO, at
the time of our analysis, was version 5.0 (YOLOv5).10 The fea-
ture extractor that characterizes the backbone of YOLOv5 is
CSP Darknet,11 which is a reduced-size CNN possessing high
accuracy and superior inference speed. These characteristics led
us to choose YOLOv5 over other DL approaches.

YOLOv5 comprises four different models, differing in num-
ber of parameters, trainable weights size, and computation
times. The models range from small to extra-large versions
(YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x), and two
released variants are available (YOLOv5s6 and YOLOv5m6).
After the training phase with the image dataset, the models were
tested to identify the most efficient one in terms of LSCC detec-
tion performance and computational time. Finally, the best per-
forming model in this test phase was employed in six unseen and
unedited videolaryngoscopies to evaluate its automatic LSCC
detection performance and recording computation times.

The training, validation, and testing hardware environment
consisted of a single Tesla T4 GPU with 16 GB of RAM, as well
as an Intel(R) Xeon(R) CPU running at 2.20 GHz for DL.
YOLOv5 was implemented using a torch 1.8.1 + cu101 CUDA,
executed via 13 GB of memory. The hyperparameters used to
train all the YOLO models are the following: number of epochs
100; batch size ranging from 8 to 64; input image 640 � 640
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pixels and 1,280 � 1,280 pixels; initial and final learning rate
l0 = 0.01 and lf = 0.2, respectively; momentum 0.337; weight
decay 0.0005; threshold level to show BB on video validation
analysis 0.4.

Outcome Analysis
Statistics and metrics were calculated with the same soft-

ware environment mentioned above. Precision-Recall curves
were used to assess detection performances.12,13 As described in
the literature,14 a true positive (TP) was defined when the

Intersection over Union (IoU) of the BBs (Figure 3) was greater
or equal to 0.5:

TP¼BBdetected \ BBgroundTruth
BBdetected[BBgroundTruth

≥0:5

where BBgroundTruth is the BB surrounding the segmented
area provided by the expert physicians, and BBdetected is the
BB detected by the algorithm. Results with IoU < 0.5 or dupli-
cated BB were, therefore, classified as false positive (FP). False
negatives (FN) were defined when no detection occurred in pres-
ence of a ground truth classified object. A true negative (TN) can
be defined as every part of the image where there is no ground
truth object and no prediction happens, but this metrics is not
useful for the specific case of object detection. Therefore, TN
values were ignored.

The Recall of a given class, which corresponds to the sys-
tem’s sensitivity, is expressed as:

Recall¼ TP
TPþFN

The system’s Precision in detecting a given feature, which
corresponds to its positive predicted value, is calculated as:

Precision¼ TP
TPþFP

For object detection applications, mean Average Precision
(mAP) is a standard performance metric. The mAP is the area
under the Precision-Recall curve and is defined by the equation:

mAP¼ΣQ
q¼1AveP qð Þ

Q

where Q is the number of queries in the set, and AveP(q) is the
average precision for a given query, q. In our case, as we set the
model threshold as 0.5 (at IoU = 0.5), mAP@.5 denotes that this
value was achieved under the condition of IoU ≥ 0.5.

RESULTS
Two hundred and nineteen patients with a mean age

of 67.9 years (SD � 11.8 years) were enrolled. Among
these, 196 (89.4%) were males and 23 (10.6%) females. A
total of 657 frames representing LSCC were extracted
from videolaryngoscopies. Of those, 172 were WL in-office
images, 146 WL intraoperative, 178 NBI in-office, 128
NBI intraoperative, and 33 images not containing LSCC.

The YOLO CNNs models were trained after random
distribution of the images into a training set, a validation
set, and a test set. The training set consisted of 543
(82.6%) images, of which 256 were WL, 254 NBI, and 33
were from healthy tissues to help to reduce the false
detection rate of the model. The validation set consisted
of 54 (8.2%) images composed of 32 images in WL and 22
in NBI. Finally, the test set consisted of 60 randomly
selected images (9.2% of total images), 30 in WL and 30
in NBI. In addition, six unedited and unsubmitted videos
were used to simulate real-time LSCC detection.

The comparison of YOLO results during training-
validation and testing are shown in Table I, while the

Fig. 1. Laryngeal cancer dataset sample images. The left column
contains the original narrow-band imaging (NBI) and white light
(WL) laryngoscopy images, while in the right column the same
frames are shown after applying the contrast limited adaptive histo-
gram equalization. Case A is an in-office WL view of an infrahyoid
epiglottic cancer. Case B is an in-office NBI videoframe of a left
vocal fold cancer extending to the anterior commissure. Case C is
an intraoperative WL videoframe of a right vocal fold cancer. Case
D is an intraoperative NBI view of a left vocal fold cancer extending
to the bottom of the ventricle.
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evolution of their performance metrics during training
are represented in Figure 4. The lightest CNNs models
(with fewer parameters) performed very well on our
dataset. On the other hand, the more complex models
showed signs of overfitting the data, resulting in a higher
number of FP.

This study also included an assessment of the test
time augmentation (TTA) technique. This is a popular
strategy used with DL models to increase detection per-
formance.15 TTA consists in performing inference on mul-
tiple altered versions of the same image, so that the
predictions are subsequently aggregated to obtain higher
detection performances. Here, this method was applied
only on YOLOv5s and YOLOv5m as these models out-
performed the others during training and validation.
Finally, to further increase detection rates during testing,
an ensemble model was implemented combining the two
best-performing models along with the TTA technique

(YOLOv5s with YOLOv5m—TTA). As reported in Table I,
this ensemble model increased the overall performances
in testing compared to the other models, as it localized
LSCC very close to the ground truth images: in particu-
lar, 82.0% of the predicted BB resulted to be TP, while
only 18.0% were FN. Examples of BB indicating the loca-
tion of LSCC according to the ground-truth labeled
images and the ensemble model predictions are shown in
Figure 5.

For the testing on video streams, the study focused
only on computation times to understand if the DL model
could be implemented for real-time detection. The only
CNN model used here was the TTA-ensemble model, as it
was the best performing model based on the results pres-
ented above. The model ran with an average processing
time per frame of 0.026 seconds. The characteristics of
each video and the respective DL model computation
times are reported in Table II. For illustration purposes,

Fig. 2. YOLOv5 architecture representation.

Fig. 3. Graphical representation of the Intersection over Union (IoU) calculation on a narrow-band imaging videoframe. The light blue rectangle
represents the ground truth bounding box, while the red rectangle represents the model prediction. The IoU is calculated by dividing the over-
lap area by the total area of union.
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selected frames from the original videos and the
corresponding frames processed by the DL model are
shown in Figure 6. In addition, the supplementary online
material includes three examples of video streams
processed by this model (Supporting Videos 1–3).

DISCUSSION
In recent years, the use of AI in medicine has been

rising exponentially. In particular, the application of
CADe and CADx systems to videoendoscopy has been
explored in the field of gastroenterology to detect areas
of mucosal inflammation, polyps, precancerous, and can-
cerous lesions.16 Conversely, to our knowledge, there are
only a few reports in the present literature regarding
cancers of the upper aerodigestive tract (UADT), making
it an emerging field of research.17–22 Among these, the
most large reports regarding LSCC are those from Xiong
et al.21 and Ren et al.,22 who applied CADx to classify
precancerous and cancerous laryngeal lesions, with both
reporting very high values of sensitivity and specificity.
Nevertheless, these studies investigate the use of DL
models only with WL endoscopy. It is our belief, how-
ever, that modern laryngological workup should not be
performed without a bioendoscopic approach such as
that allowed by the use of NBI. This technology, in fact,
has demonstrated a tremendous impact on LSCC diag-
nosis, intraoperative definition of excisional margins,
and post-treatment follow-up.23,24 In this context, our
models were trained and tested with a mixed dataset of

WL and NBI images to obtain a reliable algorithm
that is capable of providing a fluid experience while
switching between WL and NBI during real-time
videolaryngoscopy.

In this regard, to our knowledge, only three studies
have explored NBI imaging applied to AI in the UADT. A
promising pilot study by Mascharak et al. aimed to investi-
gate if NBI imaging evaluation was feasible for machine
learning CADx in oropharyngeal carcinoma.17 Even with a
very limited cohort (30 patients), they demonstrated the
superiority of NBI compared to WL in detecting this type of
neoplasm, reporting a specificity of 70.0% versus 52.4%,
and a sensibility of 70.9% versus 47.0%, respectively.
Paderno et al. more recently applied different CNNs to the
automated segmentation of WL and NBI frames of the oral
cavity and oropharyngeal neoplastic lesions, obtaining
accuracy rates similar to those reported herein.18 Finally,
Inaba and colleagues reported rates of sensitivity, specific-
ity, and accuracy of 95.5%, 98.4%, and 97.3%, respectively,
in the diagnosis of very small cancerous lesions arising
from the mucosa of the UADT while performing
esophagogastroduodenoscopy.25 However, they focused
mainly on hypopharyngeal carcinoma using only NBI
images, while the only laryngeal subsite examined (epiglot-
tis) was the worst-performing in terms of sensitivity
(85.7%). Nevertheless, as stated, the implementation of
NBI in the development of the DL algorithm led to an
enhancement of tumor visibility, thus helping their model
to better recognize neoplasms. This also explains the prom-
ising detection performance reached by our pilot CADe

TABLE I.
Performance Evaluation of Various YOLO Models During Training-Validation and the Testing Phase.

Training and Validation

Model Batch Size (N� of Samples) Image Resolution (Pixel) Parameters of the Model (Millions) Precision Recall mAP@.5

YOLOv5s 64 640 � 640 7.06 0.712 0.538 0.576

YOLOv5m 32 640 � 640 21.0 0.561 0.590 0.576

YOLOv5l 16 640 � 640 46.6 0.585 0.615 0.545

YOLOv5x 16 640 � 640 87.3 0.55 0.628 0.571

YOLOv5s6 16 1280 � 1280 12.4 0.697 0.474 0.492

YOLOv5m6 8 1280 � 1280 35.5 0.66 0.474 0.506

Testing

Model Trained Weight (Mbs) TP% FP% Precision Recall mAP@.5

YOLOv5s 14.4 56 44 0.582 0.609 0.592

YOLOv5m 42.5 59 41 0.580 0.621 0.554

YOLOv5l 93.7 56 44 0.555 0.621 0.564

YOLOv5x 175 54 46 0.542 0.586 0.502

YOLOv5s6 25.2 63 33 0.608 0.609 0.581

YOLOv5m6 71.5 57 43 0.452 0.598 0.527

YOLOv5s—TTA 14.4 78 22 0.662 0.586 0.630

YOLOv5m—TTA 42.5 76 24 0.677 0.563 0.610

Ensemble YOLOv5s with YOLOv5m—TTA 14.4, 42.5 82 18 0.664 0.621 0.627

Values in bold denote the best results during testing.
mAP@.5 = mean Average Precision with an Intersection over Union threshold of 0.5; TP% = rate of true positive predicted bounding boxes among the total

number of bounding boxes predicted; FP% = rate of false-positive predicted bounding boxes among the total number of bounding boxes predicted; TTA = test
time augmentation.
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models, which will likely improve as our training dataset
grows.

One of the main focuses of this work was to explore
the feasibility of the CADe in real-time video-
laryngoscopy, a topic rarely investigated in the literature
so far. Actually, the validation performed on video
streams was possible, thanks to the low computational
time required by the YOLO ensemble model, requiring
only 26 milliseconds to analyze one videoframe. Consider-
ing that videolaryngoscopies typically range from 25 to 30
frame-per-second, with its average computing time of
38.5 frames-per-second, the model was capable of achiev-
ing real-time processing performances. Differing from
UADT, real-time CADe technology has already been

implemented in the detection of mucosal abnormalities in
gastroenterology with similar computing times.26,27 Of
note, algorithms that are able to perform in real-time nec-
essarily require a reduction in terms of complexity. In
fact, as shown by Cho et al., models characterized by a
high number of parameters, even if performing remark-
ably (reported accuracy of 99.7%), failed to perform in
real-time, therefore, needing to limit the inference pro-
cess to one image every five frames.20

On the other hand, our model, even if it success-
fully identified LSCC in videos with good inference and
reduced computation time, occasionally detected FP
objects. This happened since LSCC comes in a variety
of forms, colors, textures, and sizes, making the

Fig. 4. YOLO models performance metrics during training and validation. (A), (B), and (C), respectively, represent Recall, Precision, and
mAP@0.5 (mean Average Precision at 0.5 intersection over union) curves trained up to 100 epochs.
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building of a solid DL detection model very demanding.
This pilot study allowed us to identify a suitable detec-
tion model for real-time endoscopy implementation
while exploring several pre-processing strategies that
can enhance diagnostic performances. The shortcom-
ings of the present study comprise the relatively small
LSCC dataset and the exclusion of benign laryngeal
lesions. The next phase of this research will be directed
to build a solid and trustworthy algorithm by enriching
the training dataset with thousands of LSCC frames

and a comparable number of images from multiple and
heterogeneous benign lesions (vocal polyps, cysts, nod-
ules, papillomas, etc.) both sourced by a multicenter
collaboration. Finally, the comparison of this model’s
detection accuracy with expert physicians will be of
paramount importance for definitive validation. A com-
prehensive model suitable for clinical practice must be
validated by rigorous research. We believe these pre-
liminary findings will help other groups progress
research in this field.

Fig. 5. Examples of automatic laryngeal cancer prediction provided by the ensemble model (YOLOv5s with YOLOv5m—TTA). The first two col-
umns on the left contain images with ground truth bounding boxes, while the two columns on the right contain the same images with YOLO-
predicted bounding boxes. Case A is a carcinoma of the infrahyoid epiglottis; case B is a carcinoma of the infrahyoid epiglottis; case C is a
carcinoma of the left vocal fold; case D is a carcinoma of the right vocal fold involving the anterior commissure.

TABLE II.
Characteristics and Computation Times of the Testing Videos After Applying the Ensemble Model (YOLOv5s with YOLOv5m—TTA) for LSCC

Detection.

Video ID Size (Mb) Video Format Video Resolution Video Frame Rate (fps) Total Frame Count LSCC Average Computation Time Per Frame (s)

1 23.1 avi 768 � 576 30 1321 Yes 0.027

2 25.3 mp4 778 � 480 25 1448 Yes 0.034

3 34.9 avi 768 � 576 30 1529 Yes 0.025

4 20.6 mp4 778 � 480 25 1421 Yes 0.023

5 27.3 mp4 860 � 480 25 1519 Yes 0.024

6 39.1 mp4 1280 � 720 30 946 No 0.028

Average computation time 0.026

fps = frame per second; LSCC = laryngeal squamous cell carcinoma; Mb = megabytes; TTA = test time augmentation.
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To our knowledge, this is the first report of
AI-aided UADT cancer detection using YOLO. This DL
model proved to be suitable to detect LSCC on both
images and videos with adequate performance in real-
time applications. Our ensemble model demonstrated
the best LSCC detection performance in terms of preci-
sion, recall, and mAP@.5. From a technical point of
view, we underline that pre-processing techniques like
CLAHE can be critical in fields like endoscopy where
the quality of video images is often suboptimal. On
the other hand, data augmentation processes should
be used extensively to help the model to learn to
identify heterogeneous lesions such as LSCCs. Indeed,
implementing these techniques in the DL framework
leads to higher accuracy performances. In addition, the
TTA methodology assessed in this study also enhanced
the inference power of the original YOLO model,

leading to increased TP rate. Therefore, it represents
another promising strategy for future algorithms.

CONCLUSION
The YOLO ensemble model proved to be efficient in

detecting LSCC in videolaryngoscopies. The remarkable
computational times could represent the keystone in
employing the YOLO ensemble model for real-time LSCC
detection in the near future. The availability of NBI
images to feed the algorithm represented a pivotal point
to reach the detection performances observed, even con-
sidering the small training set used in this study. Our
model represents a promising algorithm that is expected
to reach even higher detection performances with the
same short computational time if trained on an expanded
image dataset.

Fig. 6. Panel of testing videoframes extracted from six videolaryngoscopies. Each row represents a different video: the first four pictures of
every row are extracted from the original video, while the last four images are the same frames extracted after the prediction of the ensemble
model (YOLOv5s with YOLOv5m—TTA). The first video (V1) shows a carcinoma of the left vocal fold; the second video (V2) shows a cancer of
the right vocal fold; images extracted from the third video (V3) show a carcinoma affecting the laryngeal surface of the suprahyoid epiglottis
and a severe dysplasia of the right vocal fold. Lastly, V4 shows a carcinoma of the right vocal fold extending to the anterior commissure, V5
shows a tumor of the left vocal fold, while V6 shows frames extracted from a healthy larynx.
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