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Abstract 

Background:  Despite using prognostic algorithms and standard surveillance guidelines, 17% of patients initially 
diagnosed with low risk clear cell renal cell carcinoma (ccRCC) ultimately relapse and die of recurrent disease, indicat‑
ing additional molecular parameters are needed for improved prognosis.

Results:  To address the gap in ccRCC prognostication in the lower risk population, we performed a genome-wide 
analysis for methylation signatures capable of distinguishing recurrent and non-recurrent ccRCCs within the subgroup 
classified as ‘low risk’ by the Mayo Clinic Stage, Size, Grade, and Necrosis score (SSIGN 0–3). This approach revealed 
that recurrent patients have globally hypermethylated tumors and differ in methylation significantly at 5929 CpGs. 
Differentially methylated CpGs (DMCpGs) were enriched in regulatory regions and genes modulating cell growth and 
invasion. A subset of DMCpGs stratified low SSIGN groups into high and low risk of recurrence in independent data 
sets, indicating that DNA methylation enhances the prognostic power of the SSIGN score.

Conclusions:  This study reports a global DNA hypermethylation in tumors of recurrent ccRCC patients. Furthermore, 
DMCpGs were capable of discriminating between aggressive and less aggressive tumors, in addition to SSIGN score. 
Therefore, DNA methylation presents itself as a potentially strong biomarker to further improve prognostic power in 
patients with low risk SSIGN score (0–3).
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Introduction
Cancers of the kidney and renal pelvis affect > 65,000 
patients annually and rank 8th in causes of cancer-related 
death in the United States. Renal cell carcinoma (RCC) 
accounts for > 90% of kidney cancers, and the vast major-
ity of RCC tumors (> 80%) are histologically classified as 
clear cell (ccRCC). Surgical excision by partial or radical 
nephrectomy remains the standard of care for patients 
with early stage tumors, however even if surveillance 
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guidelines are followed, ~ 17% of patients with good prog-
nosis still progress to distant metastases after surgery for 
localized disease [1]. Despite some advances in systemic 
therapy (e.g. VEGF-targeting treatments), median sur-
vival drops to < 19  months after development of meta-
static disease [2].

Dysregulation of the von Hippel-Lindau tumor sup-
pressor (VHL) gene is nearly universal in ccRCC and 
typically the initiating event. Subsequent loss of PBRM1, 
SETD2, KDM5C, and BAP1 are common secondary 
events that drive disease progression [3, 4]. CcRCCs 
manifest among the lowest frequency of structural and 
copy number variants [5–8]. Additionally, they are on the 
low end of the frequency spectrum for all types of genetic 
variation, including many of the classical cancer-associ-
ated driver pathways (e.g. RAS, BRAF, TP53, and RB) [4, 
9]. These observations, along with the frequent mutation 
of epigenetic regulators [dominated by SETD2 (2–16%), 
PBRM1 (1–43%), KDM5C (18%), and BAP1 (1–17%)] [4], 
emphasize the importance of epigenetic deregulation to 
the initiation and progression of ccRCC. This is especially 
true when coupled with the loss of the VHL gene [10], 
and our previous study showing that SETD2 mutations 
drive a DNA hypermethylator phenotype linked to more 
aggressive clinical features [11]. In addition to the impor-
tance of elucidating roles for epigenetic deregulation in 
understanding the molecular underpinnings of ccRCC, 
other studies highlight the significant potential of epige-
netic modifications as ccRCC prognostic and diagnostic 
signatures [12, 13]. Our group and others have published 
how these epigenetic mutations may improve upon prog-
nostic algorithms based on clinicopathological variables 
[14, 15].

The epigenome is profoundly disrupted in cancer. Epi-
genetic marks on the DNA, including 5-methylcytosine 
(5mC) and 5-hydroxymethylcytosine (5hmC), play key 
roles in development and normal cellular homeostasis 
[16]. Alterations in 5mC and 5hmC are common events 
across all cancers, and typically manifest as genome-wide 
reduction and regional increases in 5mC and 5hmC lev-
els. In particular, losses of 5hmC at active enhancers and 
gains of 5mC at both enhancers and promoters is linked 
to downregulation of tumor and metastasis suppressor 
loci [17, 18]. 5mC is a potent transcriptional repressive 
signal when present in promoters and enhancers, but is 
associated positively with transcription when found in 
gene bodies [19]. In the context of RCC, studies by The 
Cancer Genome Atlas (TCGA) revealed distinct DNA 
hypermethylation events linked to poor patient survival 
and advanced disease stage [17, 20]. Loss of 5hmC and 
gain in 5mC at kidney enhancers is associated with gene 
deregulation and poor patient outcome [18, 21]. Col-
lectively, these findings emphasize the importance of 

epigenetic deregulation in the development of ccRCC. 
However, much remains to be understood regarding the 
specific gene targets of epigenetic deregulation that drive 
the disease process.

The Mayo Clinic Stage, Size, Grade, and Necrosis 
(SSIGN) scoring system was developed in 2002 due to the 
poor performance of TNM staging alone to prognosticate 
risk of death from ccRCC [22]. This algorithm was inde-
pendently validated [23] and has continued to be useful 
in the clinical management of ccRCC patients by increas-
ing prognostic accuracy [1]. Even if national guidelines 
from the NCCN (National Comprehensive Cancer Net-
work) or AUA (American Urological Association) are 
followed, ~ 17% of patients with “low risk” tumors expe-
rience recurrence [1, 24]. Such figures indicate that the 
SSIGN scoring algorithm would benefit from the addi-
tion of novel molecular parameters to further stratify 
risk and capture patients for which the SSIGN score fails. 
A number of studies, including those of TCGA, clearly 
demonstrate the value of integrating molecular param-
eters like mutational and epigenetic information into tra-
ditional histologic methods [3, 17, 25, 26]. In particular 
there is a need to focus discovery efforts on those ccRCC 
patients with “low risk” tumors that end up, deceptively, 
having a greater risk of poor outcome. To address this 
gap we identified a cohort of ccRCC patients with SSIGN 
values between 0 and 3 (i.e. predicted median survival 
of > 25 years [22]), yet died of disease recurrence within 
a median period of 2.5 years. To identify epigenetic sig-
natures distinguishing the recurrent from the non-recur-
rent group, we analyzed genome-wide DNA methylation 
patterns by reduced representation bisulfite sequencing 
(RRBS) [27] using archival FFPE tissue. We show that 
recurrent (but low SSIGN score) patients have glob-
ally hypermethylated tumors. Furthermore, we discov-
ered 5929 CpGs with significantly different 5mC levels 
between recurrent and non-recurrent groups (p < 0.01 
and methylation change |Δβ|≥ 10%) that span a number 
of putative growth regulatory genes including SLC12A7, 
PRDM16, and PTPRN2. We also identified a set of 43 
CpGs that not only distinguish the low SSIGN recurrent 
from non-recurrent groups, but also segregate aggres-
sive ccRCCs regardless of SSIGN score in TCGA ccRCC 
datasets. Taken together, our findings suggest that DNA 
methylation from archival FFPE tissue may not only serve 
as a robust marker to further stratify SSIGN score, but 
also point toward key genes and pathways relevant to 
ccRCC disease severity.

Results
Cohort characteristics
Seventeen percent of patients with favorable ccRCC 
prognosis (SSIGN 0–3) will experience recurrence even 
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if national surveillance guidelines are followed [24]. Thus, 
we set out to identify a DNA methylation signature that 
further stratifies long and short term survivors among 
patients with low SSIGN scores (0–3 range) in two inde-
pendent cohorts (cohort 1 for marker discovery; cohort 
2 for replication). The clinical characteristics of the two 
cohorts are summarized in Table 1, with detailed clinico-
pathologic information on each patient listed in Addi-
tional file 1: Table S1. By design, there is no statistically 
significant difference in age, sex distribution, SSIGN 
score, tumor size or grade between short term survivors 
(STS; median survival of 2.5 and 3 years for cohorts 1 and 
2, respectively) and long term survivors (LTS; median 
survival of 9.5 and 13 years for cohorts 1 and 2, respec-
tively). Genomic DNA was isolated from FFPE blocks 
that represented the highest grade portion of the tumors, 
and subjected to genome-wide DNA methylation analy-
sis using reduced representation bisulfite sequencing 
(RRBS).

Discovery of differentially methylated CpGs between STS 
and LTS groups
We obtained DNA methylation data with ≥ 5X cover-
age on autosomes and present in ≥ 90% of samples for 
cohorts 1 and 2 for 2,392,937 and 1,153,661, CpGs, 
respectively. A summary of RRBS data parameters and 
quality control measures are provided in Additional 
file  1: Table  S1. Overall, the STS patient group trended 
toward global hypermethylation relative to the LTS group 
in both cohorts (Fig. 1a, Additional file 2: Fig. S1a). Using 
a 10% change in methylation (|Δβ|≥ 0.1) and p < 0.01 
between STS and LTS groups in cohort 1 we identified 
5929 differentially methylated CpGs (DMCpG) with 4570 
sites hypermethylated in STS and 1359 sites hypomethyl-
ated in STS, relative to LTS (Fig.  1b). A preponderance 

of hypermethylated sites in the STS group (4570; 77% 
of the 5929 DMCpGs), was consistent with the global 
trends in methylation we observed, and was highly sig-
nificant overall for this subset of sites (Additional file 2: 
Fig. S1b). The 5929 DMCpGs segregated the two ccRCC 
groups using either PCA or supervised hierarchical 
clustering (Fig.  1c, d). The latter emphasizes the robust 
hypermethylation that typifies the STS group of low 
SSIGN score ccRCC patients (Fig.  1d). Unsupervised 
hierarchical clustering also segregated STS from LTS 
groups (Additional file  2: Fig. S2). Closer examination 
of genomic features associated with the 5929 DMCpGs 
revealed they were significantly over-represented in gene 
bodies, normal kidney enhancers, and intergenic regions, 
and under-represented in promoters (Fig.  1e). Further-
more, the majority (n = 5231) of DMCpGs overlap with 
one or more of three histone marks characteristic of 
gene regulatory regions based on ENCODE data from 
normal adult kidney, including H3K4me3 ± H3K27ac 
(active promoter), H3K4me1 only (poised enhancer), and 
H3K4me1 + H3K27ac (no H3K4me3, active enhancers, 
Fig.  1f ). Many of the identified DMCpGs reside within 
large, consistently differentially methylated regions of 
the genome (> 5 DMCpGs within a locus), and pinpoint 
several high-confidence target genes including PRDM16, 
PTPRN2, SLC12A7, MOB2, IRX2, and MN1 (Fig.  2a–c, 
Additional file 2: Fig. S3 and Additional file 1: Table S2). 
Several of these genes are linked to epithelial-to-mes-
enchymal transition (EMT), which is central to ccRCC 
pathogenicity [28], including PRDM16, PTPRN2, and 
SLC12A7. The full list of genes, CpGs, and feature(s) they 
reside in is summarized in Additional file  1: Table  S2. 
Taken together, RRBS analysis reveals distinct DNA 
methylation differences between STS and LTS patients, 
dominated by hypermethylation at gene regulatory 

Table 1  Summary of patient clinical and pathologic information for cohorts 1 and 2 from Mayo Clinic

Values of continuous variables are displayed as median

Inter-cohort section shows the P values of the analysis of LTScohort 1 versus LTScohort 2, and STScohort 1 versus STScohort 2
*  P value of the non-parametric Wilcoxon rank test for continuous data and χ2 for categorical data
**  P value resulting from using a Yates χ2 test
***  P value resulting from using a 2 × 2 Fisher’s test

Cohort 1 Cohort 2 Inter-cohort

LTS (n = 22) STS (n = 14) P value* LTS (n = 30) STS (n = 27) P value* LTS STS

Age (years) 68.5 68.1 0.779 67 64 0.728 0.334 0.401

Sex (males) 15 (68.18%) 12 (86%) 0.236 21 (70%) 14 (51.85%) 0.160 0.887 0.033

SSIGN score (0/1/2/3) 2/2/4/14 3/4/2/5 0.567** 6/7/2/15 8/4/2/13 0.905** 0.567** 0.924**

Stage (1/2/3/4) 20/0/2/0 12/0/2/0 0.999** 20/8/1/1 20/7/0/0 0.994** 0.169** 0.284

Tumor size (cm) 5 4.5 0.373 4.75 4.3 0.711 0.911 0.507

Grade (1/2/3/4) 0/6/16/0 0/5/9/0 0.962 2/14/14/0 3/14/10/0 0.985** 0.550 0.663

Necrosis (yes) 3 (13.64%) 1 (7.14%) 0.999*** 1 (3.33%) 3 (11.11%) 0.336*** 0.299*** 1.000***
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regions in STS patient samples that impact genes linked 
to EMT and cell migration.

We linked the 5929 DMCpGs to their associated 
gene(s) using the Genomic Regions Enrichment of Anno-
tation Tool (GREAT), which yielded 5744 genes (4046 

genes linked to hypermethylated CpGs, 1698 genes 
linked to hypomethylated CpGs). The full list of ontology 
and biological processes associated with these genes is 
listed in Additional file 1: Table S3. This analysis revealed 
that genes linked to differentially methylated CpGs are 

Fig. 1  Discovery and characterization of differential methylation characteristic of short term survivors. a Boxplot showing the global distribution 
of methylation for LTS (n = 22) and STS (n = 14) samples in cohort 1. Y-axis—mean methylation β value for each sample. Each dot represents the 
mean methylation per sample. The non-parametric Wilcoxon test P value shows no significant difference between groups, although there is a trend 
toward hypermethylation in STS tumors. b Volcano plot showing differential STS/LTS methylation. X-axis: mean change in methylation (Δβ(STS—

LTS)) for each CpG, y-axis: − log10 (P value) using a t test. The dotted horizontal line represents the P value cutoff of 0.01; two dotted vertical lines 
delineate the Δβ(STS–LTS) cutoff set at − 0.1 and 0.1. Each dot represents a CpG: sites in red (n = 5929) meet the P value and Δβ cutoffs, and are thus 
referred to as differentially methylated CpGs (DMCpGs). c PCA plot using the 5929 DMCpG shows separation of pathologic groups into distinct 
clusters. LTS-red dots, STS-blue dots. The percentage variation between groups explained by each of the principal components is indicated. d 
Heatmap showing supervised hierarchical clustering of LTS and STS using the 5929 DMCpGs reveals two distinct clusters marked by red rectangles: 
one is hypermethylated (n = 4570) and the other hypomethylated (n = 1359) in STS. Color bars underneath the column dendrogram represent, 
from top to bottom: sex, SSIGN score, and disease status. The color bar next to the row dendrogram indicates genomic feature. e Barplot showing 
the relative distribution of 4570 hypermethylated and 1359 hypomethylated DMCpGs normalized to the distribution of all 2.4 M CpGs in cohort 
1 over four genomic features (intergenic, enhancer, promoter, and body). The distribution of all features is significantly different between the sites 
in cohort 1 and the total DMCpGs. Y-axis—fold change (log10) of each feature. f Venn diagram showing the number of DMCpGs overlapping a 
selection of three histone marks characteristic of regulatory regions: H3K27ac, H3K4me1, and H3K4me3. N = 698 are not represented as they do not 
overlap with any of the three marks



Page 5 of 16El Khoury et al. Clin Epigenet           (2021) 13:12 	

associated with phenotypes related to kidney develop-
ment, including nephron development and tubule for-
mation (Additional file  1: Table  S4). Interestingly, these 
processes have in common regulation by the Iroquois 
(IRX1/2/3) family of homeo-domain transcription fac-
tors, critical players in early kidney specification and 
development [29, 30]. IRX1 and IRX2 are differentially 
methylated between STS and LTS groups (Additional 
file 1: Table S2). Consistent with identification of individ-
ual targeted methylation changes in the STS group, Inge-
nuity Pathway Analysis (IPA) of the 5744 genes revealed 
significant enrichment for EMT, while also highlighting 
type II diabetes mellitus signaling, and renin-angiotensin 
signaling (Fig.  2d, Additional file  1: Tables S3 and S5). 
Taken together, these data reveal that the DMCpGs that 
distinguish STS and LTS patients are enriched in genes 
relevant to nephrogenic development and tumorigenic 
pathways, including EMT, which is linked to poor cancer 
outcome for many tumor types [31].

We subsequently examined cohort 2 (Table 1), an inde-
pendent cohort which was sequenced separately from 
cohort 1, at more modest depth to maximize sample 
number. There were 1,143,262 total CpGs overlapping 
between cohort 1 and cohort 2. While not statistically 
significant, STS patients displayed elevated DNA meth-
ylation, consistent with results from cohort 1 (Additional 
file  2: Fig. S1). Applying the same criteria to cohort 2 
(|Δβ(STS-LTS)|≥ 0.1, p value < 0.01), yielded 2888 DMCpGs 
between STS and LTS patients (hypermethylated in STS, 
n = 2186; hypomethylated in STS, n = 702). DMCpGs 
from both cohorts 1 or 2 were enriched at chromosomal 
peripheries as observed for chromosomes 1, 9, 11, 16, 
and 17 (Additional file 2: Fig. S4). Overall, 58.9% of CpGs 
from both cohorts displayed consistent methylation 
changes between STS and LTS groups (Additional File 
2: Figs. S4b and S5). The full list of differentially methyl-
ated CpG sites and their associated gene(s) for cohort 2 is 
provided in Additional file 1: Table S6. Thus, in addition 

Fig. 2  Representative STS/LTS differentially methylated regions and ontology analysis. Browser views of the a PTPRN2, b PRDM16, and c SLC12A7 
genes. Gene structure is displayed in the first track. Yellow bars represent exons and the grey line introns. Vertical black arrows pointing to short 
purple bars denote the location of loci that underwent pyrosequencing. Direction of transcription is indicated by arrows on the grey line. The 
second track displays CpG islands (green bars). Track 3 represent the Δβ(STS—LTS) of all CpGs covered by RRBS 5000 bp upstream and downstream 
of the gene using data from cohort 1. Each grey circle represents a CpG, and the black circles represent the DMCpG meeting  p < 0.01 and |Δβ(STS–

LTS)|> 0.1 cutoff. Red lines represent the cutoff line at Δβ(STS–LTS) ± 0.1. The blue line is a smoothed distribution of the data. Tracks 4–6 display peaks 
of the histone marks H3K4me3, H3K27ac, and H3K4me1, respectively derived from normal kidney. d Heatmap of ontology enrichments for a top 
group of pathways derived from genes linked to the 5929 DMCpGs between STS and LTS ccRCCs
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to cohort 2 confirming the global trend toward hyper-
methylation of the STS group we showed for cohort 1, a 
number of loci targeted for hypermethylation in the STS 
ccRCCs were found consistently across both cohorts, 
including PTPRN2 and PRDM16 (Additional file  2: Fig. 
S3).

To confirm differential methylation among STS and 
LTS groups identified by RRBS, we utilized bisulfite 
pyrosequencing. Two regions each from the PTPRN2, 
PRDM16, and SLC12A7 genes were analyzed (Additional 
file  2: Fig. S6). DNA from 10 STS and 10 LTS samples 
(cohort 1) was independently bisulfite modified, ampli-
fied with locus-specific primers flanking DMCpGs dis-
covered by RRBS, and methylation levels at all CpGs in 
the amplicon quantified by pyrosequencing. Results for 
all six loci (ranging from 2 to 9 CpGs in each amplicon) 
showed that STS samples were overall more methylated 
than LTS samples, confirming the direction of meth-
ylation change identified in the RRBS assay, and further 
showed that many CpGs adjacent to significant DMCpGs 
(by RRBS) were also significantly different by pyrose-
quencing. This sets the stage for expanding the pool of 
DMCpGs that could be utilized in a screen for identifying 
STS patients within the low SSIGN score group (Addi-
tional file 2: Fig. S6). Taken together, results from an inde-
pendent Mayo Clinic low SSIGN ccRCC cohort (cohort 
2) confirmed overall findings from our discovery cohort 
(cohort 1) and furthermore, locus-specific pyrosequenc-
ing assays confirmed RRBS-based findings and yielded a 
promising set of DMCpGs that can distinguish STS from 
LTS ccRCC patients using archival FFPE material.

Relationship between STS/LTS tumor groups 
and the normal kidney
The analyses reported above were focused on identifying 
epigenetic differences that further stratify STS and LTS 
amongst patients predicted to be low risk from the Mayo 
SSIGN score. It is also of interest to examine the relation-
ship between each of these groups and normal kidney 
DNA methylation patterns to determine whether STS 
may evolve from LTS tumors or derive independently. 
RRBS from two normal adult kidneys from individu-
als without cancer was generated and yielded methyla-
tion data on 1,729,885 autosomal CpG sites between the 
two samples (Additional file  1: Table  S1). Of the 5929 
DMCpGs between STS and LTS, 4100 were covered in 
the two normal kidney RRBS samples. To examine meth-
ylation levels at these 4100 overlapping CpGs, we per-
formed a phyloepigenetic analysis, which showed that 
normal kidney occupied a space independent from STS 
and LTS, while the two low SSIGN groups diverged away 
from the branch of normal kidney (Fig. 3a). This suggests 
that short term survivors are not a progression from the 

LTS epigenome, but rather are independently evolved. 
In addition, it was observed that the STS tumors were 
more similar to each other (that is, more closely clustered 
together) compared to LTS tumors (Fig. 3b). This may be 
because events driving these clusters are targeted disrup-
tions of the epigenome (to key regulatory regions like 
promoters and enhancers) rather than the relatively non-
specific global hypomethylation observed across most 
cancer epigenomes.

We further analyzed these 4100 DMCpGs by interfac-
ing them with survival data using DNA methylation data 
generated by TCGA’s clear cell renal cell cancer pro-
ject (KIRC). Of the 4100 DMCpGs (3207 hypermethyl-
ated; 893 hypomethylated) used in the phyloepigenetic 
analysis, 132 overlap with TCGA KIRC 450k CpGs, and 
43 map to genes. Of these 43 CpGs, 12 from the STS 
hypermethylated and four from the STS hypomethylated 
showed significant associations (p < 0.05) with ccRCC 
patient survival and were correlated with expression of 
their associated gene (Fig. 3c, d). Notably, these included 
CpGs from PRDM16 and SLC12A7, which were among 
the highly STS-LTS differentially methylated loci dis-
cussed earlier. Taken together, these findings suggest that 
STS and LTS both evolve from normal kidney and then 
diverge, and that these differences in DNA methylation 
have a differential impact on progression at a gene level 
in STS versus LTS. In other words, the STS group is not 
evolved from LTS-like tumors, but rather STS represents 
a distinct epigenetic etiology.

Identifying CpGs at the extremes of differential 
methylation across STS and LTS tumor groups
In a parallel approach, we hypothesized that methyla-
tion changes at the extremes of the range, that is hyper-
methylation at CpGs in STS tumors that have no/low 
methylation in the LTS group (termed LTS fully unmeth-
ylated sites) and hypomethylation of CpGs in STS tumors 
that are highly methylated in LTS ccRCCs (termed LTS 
fully methylated sites, Fig. 4), might facilitate identifica-
tion of functionally relevant epigenetic alterations and 
changes that are robust markers of STS patients. We 
therefore plotted mean methylation of CpGs in the LTS 
group (cohort 1) against the Δβ(STS-LTS) at those sites. The 
LTS fully unmethylated category (≥ 10% gain in the STS 
tumors, upper left section of Fig. 4a) yielded 1204 CpGs, 
while the LTS fully methylated category yielded 821 CpG 
sites (≥ 10% loss of methylation in the STS tumors, lower 
right section of Fig.  4a). We sought to understand and 
define baseline methylation of the LTS unmethylated/
fully methylated CpG set in normal kidney. As shown 
in Fig. 4b, the majority of LTS unmethylated CpGs that 
become hypermethylated in STS patients are lowly meth-
ylated in normal kidney, indicating that these are true 
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de novo gains in methylation unique to STS patients. 
On the other hand, the LTS hypomethylated CpGs (red 
dots/circles) are more highly methylated in normal kid-
ney, and hypomethylated in both LTS and STS ccRCC, 
however this hypomethylation was more extensive in 
STS patients. As locus-specific hypermethylation and 
genome-wide stochastic hypomethylation events typi-
cally characterize cancer cell epigenomes, both of these 

trends are consistent with STS being epigenetically more 
‘progressed’ relative to LTS.

To examine relationships between these differential 
methylation events and patient survival in an independ-
ent cohort, we queried the overlap between our 1204/821 
most hyper-/hypomethylated sites among STS and LTS 
tumors, and TCGA-KIRC, which included 343 ccRCCs 
with matched DNA methylation and gene expression 
data. Although the overlap at the single CpG level is 

Fig. 3  Epigenetic relationships among normal kidney and LTS/STS ccRCC groups. a Phyloepigenetic tree derived using 4100 DMCpG shared 
between the normal kidney samples and the STS/LTS groups. b Boxplot comparing the intra-LTS and intra-STS Euclidian distances. Each dot 
represents the Euclidian distance between any two samples in the group. In the LTS group there are 231 connections, and in the STS group 
there are 91 connections. c Heatmap showing 12/3207 hypermethylated CpGs in cohort 1 significantly associated with survival and significantly 
correlated with expression of their respective gene, derived from a. d Heatmap showing 4/893 hypomethylated CpGs in cohort 1 significantly 
associated with survival and significantly correlated with the expression of their respective gene derived from a. The red color in the heatmap 
represents a positive correlation between the methylation status of the CpG and expression of the respective gene. The blue color in the heatmap 
represents a negative correlation between methylation status of the CpG and expression level of its respective gene. The color bar next to the 
dendrogram indicates the genomic feature where each site in located: body (blue), promoter (red). The information on the opposite side of the 
dendrogram indicates the methylation status linked to longer patient survival (hyper or hypo) for the CpG in KIRC, the GC number of each CpG, and 
the respective gene name as per Illumina 450K manifest. CpGs in red text are associated with better survival when hypermethylated. CpGs in blue 
text are associated with better patient survival if hypomethylated
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limited between RRBS and the Illumina 450k array, we 
nonetheless identified 49 CpGs in common of which 43 
were included in our analysis as they were covered by 
90% of samples in KIRC (Additional file 1: Table S7). Of 

these 43 CpGs, 31 and 12 were present in the LTS fully 
unmethylated/fully methylated categories, respectively 
(Fig.  4c). We observed that high methylation levels in 
21 out of the 31 CpGs (67.8%) at the LTS unmethylated 

Fig. 4  Discovery and characterization of extreme phenotype CpGs among STS and LTS groups. a Hexbin plot of the mean methylation of each CpG 
for the LTS group versus Δβ(STS-LTS). Upper left and bottom right regions demarcated by dashed lines indicate CpGs deviating from the extremes 
in STS and analyzed further. The top-left represents CpGs that are lowly methylated in LTS (β = 0 to 0.1; n = 1204) and gain a minimum of 10% 
methylation value in STS. The bottom-right represents CpGs highly methylated in LTS (β = 0.9 to 1; n = 821) that lose at least 10% methylation in 
STS. b Scatterplot showing methylation changes of LTS (open circles) and STS (solid circles) against normal kidney (CON) plotted against normal 
kidney methylation levels on the x-axis. Unmethylated CpGs in LTS are colored in black (n = 701) and fully methylated CpGs in LTS are represented 
in red (n = 514). c Flowchart denoting relationships between the 5929 DMCpGs (from Fig. 1), and the 2025 CpGs deviating from the extremes 
analyzed here. The overlap of the LTS fully methylated and unmethylated CpGs with TCGA-KIRC is shown in the blue boxes. The progressive analysis 
of the overlapping CpGs for survival, and methylation-expression correlation are indicated in the flow diagram. This analysis was conducted using 
318 KIRC ccRCCs for which both 450K and RNA-seq data were available. d Heatmap showing the nine hypermethylated and three hypomethylated 
CpGs significantly associated with survival and correlated with expression of their respective genes from panel c. Red color in the heatmap 
represents a positive correlation between the methylation of the CpG and expression of its respective gene; blue color represents a negative 
correlation. The color bar on the left of the heatmap indicates the genomic feature where each site in located: body (blue), promoter (red). All 
promoter CpGs are inversely correlated with the expression of their respective genes. The information on the right indicates the methylation status 
linked to longer patient survival (hyper or hypo) for the CpG in KIRC, the identifier for each CpG, and the name of the associated gene (per Illumina 
450K manifest). CpGs in red text are associated with better survival when hypermethylated. CpGs in blue text are associated with better patient 
survival if hypomethylated. e PCA plot of 2025 CpG deviating from extremes in STS showing the ability of these sites to separate LTS (red) and STS 
(blue) groups. Percentages of variance that can be explained by each principal component are indicated
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sites were associated with poor patient survival, con-
sistent with the overall hypermethylation phenotype in 
short-term survivors. Moreover, these 21 CpGs mapped 
to 15 genes, and of these 15, approximately two thirds 
(n = 9, 60%) were significantly correlated (p < 0.05) with 
expression of their associated gene, using matched 
TCGA RNA-seq data (Fig.  4c, d), suggesting that these 
CpGs functionally contribute to gene expression. Fur-
ther support of this link is shown in Additional file 2: Fig. 
S3, where 450k array CpGs in the vicinity of DMCpGs 
derived from cohorts 1 and 2 were linked to survival 
using data from TCGA-KIRC. The ‘HR KIRC’ track in 
each browser view shows the hazard ratio (HR) of each 
CpG contained in the window of interest and surveyed by 
the Illumina 450k array. CpGs with HR > 1 are associated 
with worse survival when hypermethylated. This is con-
cordant with our findings indicating poor survival being 
associated with hypermethylation since hypermethyla-
tion at these sites is observed in the STS group. On the 
other hand, examination of the LTS fully methylated cat-
egory yielded 821 CpGs (Fig. 4c). Hypermethylation at six 
of these sites was associated with better survival in the 
KIRC dataset, and of these, three were significantly cor-
related with expression of their respective genes (Fig. 4c, 
d). Taken together, these findings show that CpGs devi-
ating away from methylation extremes are capable of 
discriminating between the STS and LTS cancer groups 
(Fig. 4e; Additional file 2: Fig. S7).

Extrapolating STS‑LTS methylation signatures to public 
datasets
To drill deeper into the potential utility of the 2025 
extreme change CpGs (1204/821 most hyper-/hypo-
methylated), we calculated SSIGN scores for all samples 
in the KIRC dataset using pathologic data provided, then 
selected samples with SSIGN score ≤ 3 and further strat-
ified by patient survival, as we did for our Mayo Clinic 
cohorts but with relaxed inclusion criteria to maximize 
sample number [STS: death in < 7.5  years (SSIGN 0–1) 
or < 4.5  years (SSIGN 2–3), and LTS: survival > 8.5  years 
(SSIGN 0–1) or > 5.5 years (SSIGN 2–3)]. This resulted in 
29 samples (LTS = 19, STS = 9) in the SSIGN 0–3 range 
with survival data consistent with our metrics (note that 
this TCGA-derived case-cohort is not reflective of typical 
SSIGN 0–3 survival outcomes, but is driven by our spe-
cific inclusion criteria). Using this independent cohort, 
we conducted stepwise recursive partitioning and found 
that as few as 5/43 CpGs in common between TCGA-
KIRC and cohort 1 RRBS (cg24304972, cg16108059, 
cg14010015, cg02966332, and cg02139853) segregated 
LTS from STS with an AUC = 1.000 (Fig.  5a). Further-
more, stepwise recursive partitioning using another set 

of 6/564 CpGs in common between cohort 2 and cohort 
1 (chr3:195489634, chr9:137024923, chr5:3591951, 
chr12:52708570, chr5:80256046, and chr12:129338403) 
also segregated STS from LTS in cohort 2 with an 
AUC = 1.000 (Fig. 5b).

When the 43 CpGs were examined in all tumors 
in KIRC where SSIGN score could be calculated 
(n = 252), we observed the formation of three clus-
ters of tumor samples (hypermethylated, hypomethyl-
ated, and intermediate) that had significantly different 
median SSIGN scores (medianhyper = 7, medianhypo = 2, 
medianintermediate = 5; p < 0.001). While we identified these 
43 CpGs by comparing STS and LTS patients with low 
SSIGN score, the DNA methylation signature derived 
from this more restrictive comparison was capable of 
stratifying ‘all-comer’ ccRCCs into low, intermediate, and 
high risk groups. This finding suggests that these CpGs 
may be central to the pathogenesis of ccRCC, especially 
when the enrichment of survival-associated genes linked 
to these CpGs (27/43 CpGs linked to poor prognosis in 
STS from KIRC data) is also taken into account. Fur-
thermore, the hypermethylated and the intermediate 
groups contained an over-representation of tumors with 
high stage and grade (Fig.  6a, orange and green boxes 
respectively). To identify CpGs significantly associated 
with SSIGN score, and determine whether a smaller set 
of CpGs could identify more aggressive KIRC tumors, 
we performed correlation analysis and selected CpGs 
that significantly correlated with SSIGN score. This 

Fig. 5  AUROC analysis for CpGs involved with differentiating low 
SSIGN score ccRCC patients. a AUROC using the top five CpGs 
obtained from a stepwise recursive partitioning analysis performed 
on the TCGA-KIRC derived LTS-STS cohort (LTS = 19, STS = 9). Each 
AUC is the cumulative score of the inclusion of an additional CpG 
in the following order: cg24304972 (black), cg16108059 (red), 
cg14010015 (green), cg02966332 (blue), and cg02139853 (fuchsia). 
b AUROC using the top six CpGs obtained from a stepwise recursive 
partitioning analysis performed on the cohort 2 (LTS = 30, STS = 27). 
Each AUC is the cumulative score of the inclusion of an additional 
CpG in the following order: chr3:195489634 (black), chr9:137024923 
(red), chr5:3591951 (green), chr12:52708570 (blue), chr5:80256046 
(kaki), and chr12:129338403 (fuchsia)
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analysis identified 22 CpGs significantly correlated with 
SSIGN score capable of segregating the most aggressive 
ccRCCs into a distinct cluster (p < 0.01, Additional file 2: 
Fig. S8, orange box). Consistent with this, the median 
SSIGN score in the more aggressive and hypermethylated 
cluster of tumors is significantly higher than that in the 
less aggressive cluster (medianhyper = 7, medianhypo = 2; 
p < 0.001). We sought to further increase the size of this 
cohort by combining it with additional ccRCC samples 
from a Swedish RCC cohort available from NCBI GEO 
(GSE113501) [32]. Due to the limited clinical data avail-
able for this cohort it was not possible to calculate SSIGN 
score, therefore we used TNM staging for comparison. 
Examination of the combined dataset (KIRC and the 
Swedish cohort), revealed that use of 37/43 CpGs linked 
to poor prognosis in STS from the RRBS/KIRC overlap 
set, significantly (p < 0.001) separated stage I/II tumors 
(hypomethylated) from stage III/IV tumors (hyper-
methylated, Fig.  6b). These findings suggest that the 43 
CpGs are capable of segregating ccRCCs based on dis-
ease aggressiveness and poor clinical outcome in a larger 

multicenter independent cohort of patients. Importantly, 
higher methylation was associated with more aggres-
sive clinical phenotype (e.g. SSIGN score, tumor stage) 
in a broader patient group than our Mayo Clinic cohorts 
(TCGA, Swedish cohort), consistent with the fact that 
they were originally identified in epigenetically more 
aggressive short-term survivor SSIGN 0–3 tumors.

Discussion
In the current manuscript we address a significant desid-
eratum in ccRCC patient management to better under-
stand the molecular underpinnings of aggressive and 
recurrent disease and identify patients with high risk 
tumors that the current SSIGN score algorithm fails to 
capture. In other words, what molecular characteristics, 
specifically DNA methylation signatures, could contrib-
ute to tumor aggressiveness independent of currently 
implemented scoring criteria, with the ultimate goal 
of better stratifying survival of ccRCC patients? Using 
genome-wide DNA methylation data derived from RRBS 
in two ccRCC cohorts from Mayo Clinic, we identified a 

Fig. 6  Heatmap and hierarchical clustering of ‘all-comer’ ccRCC samples using a subset of extreme change CpGs. a Heatmap showing supervised 
hierarchical clustering of KIRC ccRCC samples (n = 252) driven by methylation beta values at the 43 CpGs from analysis presented in Fig. 4c. 
Color bars beneath the column dendrogram represent, from top to bottom: SSIGN score, pathologic T stage, and cancer grade. SSIGN scores are 
categorically divided into 3 groups: ≤ 3, 4–8, and ≥ 9. Pathologic T stages are divided into low (T1 and T2) and high (T3 and T4) stages. Cancer 
grades are divided into low (G1, and G2), and high (G3 and G4). The color bar next to the row dendrogram indicates the genomic feature. In panel 
(a), when examining 43 CpGs, poor outcome tumors form two clusters: hypermethylated (orange box) and intermediately methylated (green box), 
which show a significant over representation (p < 0.01) of more aggressive tumors (higher SSIGN scores, more aggressive pathologic T status, and 
cancer grade). b Heatmap showing supervised hierarchical clustering of a combination of KIRC (n = 252) and the Swedish cohort (n = 132) ccRCC 
samples driven by methylation beta values at the 37/43 CpGs from analysis presented in Fig. 4c. Color bars beneath the column dendrogram 
represent, from top to bottom: TNM stage, and cohort from which the sample originates. TNM stages are divided into low (I and II) and high (III, IV) 
stages. The color bar next to the row dendrogram indicates the genomic features. When examining 37 CpGs, more aggressive tumors cluster into 
one distinct group (orange box)
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set of CpGs that show robust differences in methylation 
between the STS and LTS groups. Methylation at a sub-
set of these CpG sites is capable of segregating aggres-
sive from less aggressive tumors in 450k-derived DNA 
methylation data from TCGA-KIRC and an independent 
Swedish cohort. In addition, locus-specific pyrosequenc-
ing shows that key STS/LTS methylation differences are 
reproducible at individual CpGs using an independent 
assay method. With as few as five CpGs, we achieve > 95% 
sensitivity and specificity in distinguishing between STS 
and LTS patients within the lower risk (0–3) SSIGN score 
category. This suggests that the CpGs identified here rep-
resent promising epigenetic biomarkers that should be 
further validated in larger cohorts. Our study is limited 
in that our cohorts are relatively small and from a single 
institution, and it will be critical to validate the markers 
we identified in larger independent cohorts of SSIGN 
score 0–3 tumors. We intentionally selected lower risk 
SSIGN 0–3 tumors because of the longer overall survival 
of these patients where a misclassification would lead to 
a higher number of years of lost life (median survival of 
cohort 1 LTS was 9.5 years whereas it was 2.5 years for 
the STS group). While promising as high-risk biomark-
ers, genes associated with the differentially methylated 
regions are enriched in processes such as EMT, VEGF 
and TGF-beta signaling, stemness, and cancer/metasta-
sis signaling pathways, suggesting that these epigenetic 
changes functionally drive disease aggressiveness. The 
globally elevated level of DNA methylation in high risk 
STS patients may further serve as a marker for this group 
of patients by exploiting immunohistochemical stains for 
5-methylcytosine or mass spectrometry-based quantifi-
cation. Taken together, our study reveals novel epigenetic 
differences characteristic of high risk ccRCCs that are 
paradoxically classified as lower risk by the SSIGN score. 
To better identify patients in this group, and to provide 
more personalized treatments, the newly discovered epi-
genetic markers should be further researched and under-
stood. It is encouraging to note that our methylation 
signature obtained from FFPE blocks should be read-
ily amenable to clinical implementation since this is the 
most widely used method of tissue preservation.

Prognostic models for metastatic RCC, such as the 
International Metastatic RCC Database Consortium Risk 
Model [33] and the Memorial Sloan-Kettering Cancer 
Center Score for Metastatic RCC [34], have been previ-
ously described and attempts were made to incorporate 
genomic information into furthering predictions [35]. 
However, unlike these models, the Mayo Clinic SSIGN 
score is specific for localized ccRCC. In fact, the SSIGN 
score correctly predicts larger, aggressive tumors with 
worse survival, but misses some tumors that disguise 
their aggressiveness with histologic and clinical traits 

of low risk tumors. We therefore focused our efforts 
on identifying epigenetic signatures of these deceptive 
tumors. Several other laboratories have more broadly 
reported epigenetic features related to poor outcome in 
ccRCC regardless of tumor risk and SSIGN score, some 
of which are applicable to biomarker development. For 
example, Wei et  al. [12] developed a five CpG methyla-
tion classifier panel using the 450k array on 46 normal-
tumor pairs representing a range of stages and grades. 
The classifier was reproducible in independent cohorts 
[12]. However, this analysis focused on differences 
between normal kidney tissue and ccRCCs, which could, 
by design, fail to capture differences between tumors that 
distinguish aggressiveness of disease. Indeed, the exist-
ence of a set of DNA methylation alterations that char-
acterize ccRCC with poor-outcome is supported by our 
findings where the altered CpGs specific to our lower risk 
SSIGN 0–3, STS/LTS cohort also delineate a subgroup 
of the most aggressive and hypermethylated ccRCCs in a 
combined TCGA-KIRC and the Swedish cohort irrespec-
tive of SSIGN score. Another report showed consistent 
results with our findings that differentially methylated 
regions are enriched in kidney H3K4me1-marked regions 
(poised enhancers). Genes linked to the enhancers were 
often downregulated and enhancer methylation had 
prognostic value [21]. Finally, Chen et  al.’s [18] work on 
the interplay between DNA methylation and its oxida-
tion product, hydroxymethylation, showed that 5hmC 
loss was linked to DNA hypermethylation and that low 
global 5hmC was associated with poor outcome in 
ccRCC. It is worth noting that the standard RRBS proto-
col does not distinguish between DNA methylation and 
hydroxymethylation, thus some of the ‘hypermethylation’ 
we observe could result from 5hmC gains. Finally, RRBS, 
like the 450/850k arrays, interrogate only a modest por-
tion of the total CpG sites in the methylome. As such, 
additional and/or more robust differential methylation 
events likely remain to be discovered. Our study would 
also benefit from being replicated in a larger multicenter 
cohort of ccRCC samples with SSIGN score 0–3 and by 
employing machine learning algorithms to develop and 
test predictive models based on relevant CpGs, as part of 
future work.

A finding of particular interest from our study was the 
globally elevated level of DNA methylation in STS, com-
pared to LTS ccRCCs. This difference was even more 
pronounced at the significant DMCpGs between the two 
groups, and was consistent across both of our cohorts as 
measured by RRBS, and at specific loci by pyrosequenc-
ing. Although further functional studies are needed to 
elucidate mechanisms, global hypermethylation may 
generally promote stemness and/or drive EMT, as sug-
gested by gene ontology analysis. Both of these features 
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are generally associated with more aggressive cancer [36]. 
Many of the specific loci we identified to be differentially 
methylated are consistent with this link to EMT. For 
example, the PRDM16 gene has functions ranging from 
regulation of apoptosis, to muscle-brown fat cell fate 
decisions, hematopoiesis, inflammation, and suppression 
of EMT [37, 38]. PTPRN2, involved in processes ranging 
from insulin secretion to metastasis and cell migration, 
is widely reported to be aberrantly methylated in cancer 
and non-cancer conditions [39, 40]. SLC12A7 (solute car-
rier family 12 (potassium/chloride transporter), member 
7, or KCC4) is normally expressed in the ascending limb 
of the loop of Henle and is involved in salt reabsorption, 
however it also functions as a scaffolding protein in the 
plasma membrane with actin binding protein ezrin. In 
this context, elevated expression of SLC12A7 promotes 
cancer invasion and metastasis through modulation of 
MMP-2 activity and cell volume control [41, 42]. Regard-
less of mechanism, the link between global DNA hyper-
methylation and poor outcome/tumor aggressiveness in 
ccRCC is a consistent finding across a number of stud-
ies. For example, TCGA KIRC linked hypermethylation 
of 1532 450k probes to poor survival in RCC, and higher 
disease stage in ccRCC, papillary RCC (pRCC), and chro-
mophobe RCC [17, 18]. Evelönn et  al. (2016) observed 
a hypermethylated ccRCC group associated with higher 
TNM staging and worse outcome, consistent with an ear-
lier study [43], along with a progressive increase in over-
all methylation going from normal kidney across stages 
I-IV (metastatic) of ccRCC [13]. It is also worth noting 
that none of these previous investigations incorporated 
SSIGN scores into their survival analyses. We previ-
ously showed that SETD2 mutation in ccRCC was asso-
ciated with a DNA hypermethylator phenotype, worse 
patient survival, and greater metastatic potential [11, 
14], which was confirmed by TCGA [26]. Taken together, 
these studies indicate that elevated global DNA methyla-
tion in ccRCC is not only a marker of poor outcome, but 
is also likely a driver of this process. Presumably this is 
achieved through a combination of tumor suppressor 
gene hypermethylation and/or silencing of key regula-
tors of EMT and metastasis. The hypermethylator phe-
notype, however, creates a potential vulnerability of such 
tumors to DNA hypomethylating agents like 5-aza-2′-
deoxycytidine (5-azadC), an FDA-approved epigenetic 
drug for myeloid disease. Indeed, globally hypermeth-
ylated glioma cells (due to IDH1/2 mutation, another 
driver of the hypermethylator phenotype) are hyper-
sensitive to DNA hypomethylating drugs [44]. Thus, 
the most aggressive ccRCCs (including the STS ccRCCs 
from our study) might also be the tumors most suscep-
tible to drugs like 5-azadC, providing an individualized 
treatment for patients with hypermethylator tumors. 

Indeed, the notion of being able to target a subgroup of 
the most aggressive ccRCCs with epigenetic therapy is 
bolstered by a recent study that combined DNA methyla-
tion and histone deacetylase (HDAC) inhibitors to target 
lung cancer recurrence and metastasis following surgical 
resection (which is the front line treatment for ccRCC). 
Using data from a small group of lung cancer patients, 
Lu et al. [45] showed that recurrence and metastasis was 
reduced in patients treated with these agents after resec-
tion and was associated with better long-term survival. In 
mouse models of metastatic lung, breast, and esophageal 
cancers, adjuvant epigenetic therapy following resection 
of the primary tumor disrupted the premetastatic micro-
environment and inhibited lung metastases, at least in 
part, by inducing differentiation of myeloid derived sup-
pressor cells [45]. Given that there are no adjuvant thera-
pies in ccRCC that improve overall survival following 
resection of the primary tumor, coupled with the obser-
vation that the most aggressive recurrent ccRCCs tend to 
be globally hypermethylated, it is intriguing to speculate 
that this form of epigenetic adjuvant therapy could be 
particularly well suited to this group of patients most in 
need of a novel form of treatment. It will be of interest 
to test such novel strategies for managing ccRCC recur-
rence in the future.

Methods
Clinical samples and clinical/pathological features
Following institutional review board approval, we que-
ried the Mayo Clinic Nephrectomy Registry to identify 
patients treated with radical nephrectomy for unilateral 
ccRCC, between the years 1971 and 2010. We identified 
1625 cases of which 906 were patients with good progno-
sis SSIGN scores (0–3 range). After imposing our survival 
inclusion criteria to identify patients who succumbed to 
ccRCC in < 6  years (SSIGN 0–1) or < 3.2  years (SSIGN 
2–3), which we refer to as short-term survivors (STS), we 
selected 14 cases for DNA methylation analysis. We also 
identified a control group of ccRCC patients with SSIGN 
score 0–3 that remained alive > 10  years (SSIGN 0–1) 
or > 6.9 years (SSIGN 2–3); referred to here as long-term 
survivors (LTS), of which we selected 22 cases for DNA 
methylation analysis. These subjects constituted cohort 1, 
the discovery cohort. We revisited the nephrectomy reg-
istry at a later stage to select a replication cohort (cohort 
2) which is made up of 30 LTS and 27 STS patients (57 
total). It is important to note that the proportion of LTS 
and STS tumors in our cohorts is not representative of 
the proportions in the ccRCC population as a whole, and 
that cases with SSIGN 0–3 that did not meet our sur-
vival inclusion criteria were not considered for this study. 
LTS and STS groups were frequency matched for SSIGN 
score, age at surgery, and sex. All pathologic specimens 
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were reviewed by a urologic pathologist blinded to 
patient outcome for assessment of parameters that go 
into calculation of the SSIGN score (histologic subtype, 
tumor size, TNM classification, grade, and necrosis), as 
described previously [1]. Vital status for patients in the 
Mayo Clinic Nephrectomy Registry is updated yearly. To 
establish a normal kidney DNA methylation profile as a 
reference, we obtained two non-cancerous kidney sam-
ples from the Mayo Clinic Biorepository. Detailed clini-
cal information for all samples used in this study is listed 
in Additional file 1: Table S1 and summarized in Table 1. 
As a third independent ccRCC patient cohort, publicly 
available expression (RNA-seq) and DNA methylation 
(450k array) data were downloaded from TCGA Kid-
ney Clear Cell Carcinoma (KIRC) [6] dataset. To obtain 
as many samples as possible, we calculated the SSIGN 
score for these samples and defined short versus long 
term survivors using more relaxed inclusion criteria than 
those described above: STS [death in < 7.5 years (SSIGN 
0–1) or < 4.5  years (SSIGN 2–3)] and LTS [survival 
in > 8.5  years (SSIGN 0–1) or > 5.5  years (SSIGN 2–3)]. 
This resulted in the acquisition of a modestly sized cohort 
made up of 28 samples: STS (n = 9) and LTS (n = 19). 
Furthermore, we included in our study DNA methylation 
data from a publically available ccRCC cohort on GEO 
from Sweden (GSE113501) [32], however SSIGN score 
could not be calculated for these samples due to insuffi-
cient clinical/pathological annotation. Instead our analy-
sis was restricted to an ‘all-comers’ ccRCC comparison 
using TMN stages.

DNA methylation analysis by RRBS and bisulfite 
pyrosequencing
Genome-wide DNA methylation was profiled in all sam-
ples (normal and ccRCC) through reduced representa-
tion bisulfite sequencing (RRBS), as previously described 
[46, 47]. In brief, after isolation of DNA from FFPE slides 
for ccRCC samples, or fresh frozen tissue for normal kid-
ney samples, 100 ng of DNA was used for digestion with 
MspI, followed by size selection using standard RRBS 
protocols to create sequencing libraries. Libraries were 
sequenced on an Illumina HiSeq2500 at the Mayo Clinic 
Medical Genome Facility. Quality control and align-
ment were performed using the SAAP-RRBS pipeline 
[48]. CpG sites were included in downstream analysis 
only if they had a coverage depth of at least 5X in ≥ 90% 
of all ccRCC samples. In cohort 1, the mean number of 
CpGs covered per sample was 3,243,705 with an overlap 
of 2,392,937; in cohort 2 the mean number of CpGs was 
3,059,894, and the overlap was of 1,153,661.

Select differential methylation events identified by 
RRBS were confirmed using bisulfite pyrosequencing 
in 20 ccRCC samples (LTS = 10 and STS = 10; a sub-
set of cohort 1). 500  ng of DNA was bisulfite modified 
using the EZ DNA Methylation kit (Zymo Research) and 
sequenced on a PyroMark Q24 (Qiagen) as previously 
described [49]. PCR and pyrosequencing primers were 
custom designed using MethPrimer (http://www.uroge​
ne.org/methp​rimer​/) (sequences are listed in Additional 
file 1: Table S8). Sequenced regions did not exceed 100 bp 
and contained fewer than 10 CpGs. Pyrograms were visu-
alized and methylation levels calculated using Pyromark 
Q24 v2.0.6 software.

Published dataset use
To establish an enhancer/promoter landscape for normal 
kidney, we used publicly available data from Encyclo-
pedia of DNA Elements (ENCODE) for histone marks 
H3K27ac, H3K4me1, and H3K4me3 with accession 
numbers GSM1112799, GSM773001, and GSM773005, 
respectively. These marks were acquired from the kid-
ney of the same 50  year old male. Across the genome, 
regions with overlapping H3K27ac, H3K4me1, but not 
H3K4me3, were considered active enhancers. Regions of 
the genome with H3K4me1 (no H3K27ac and H3K4me3) 
were considered poised enhancers, whereas regions 
marked by H3K4me3 were considered promoters. For 
some figures, promoters were also annotated based on 
physical proximity to genes using the Bioconductor pack-
age VariantAnnotation [50].

Statistical analysis
All analyses were executed in an R environment (version 
3.6.2). DNA methylation differences for each CpG site 
between LTS and STS groups were assessed using inde-
pendent two-sided t tests on beta values, and the criteria 
for differential methylation were p < 0.01 and a change in 
methylation of 10% (|Δβ(STS-LTS)|≥ 0.1, as per Yang et al. 
[51]). Phyloepigenetic trees were constructed using the R 
packages ape and ggtree, and heatmaps were constructed 
using R packages heatmap3 and gplots. Browser views 
were generated using the Gviz package [52]. Ingenuity 
Pathway Analysis (IPA, Qiagen) and Genomic Regions 
Enrichment of Annotation Tool (GREAT) [53] were used 
for gene ontology and comparative analyses. Linear rela-
tionships between DNA methylation and gene expression 
in TCGA data were assessed using Pearson correlation 
and survival analysis between CpGs in Illumina 450k 
array and TCGA samples were obtained from the meth-
surv database [54].

http://www.urogene.org/methprimer/
http://www.urogene.org/methprimer/
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