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Abstract How distinct transcriptional programs are enacted to generate cellular heterogeneity and

plasticity, and enable complex fate decisions are important open questions. One key regulator is the

cell’s epigenome state that drives distinct transcriptional programs by regulating chromatin acces-

sibility. Genome-wide chromatin accessibility measurements can impart insights into regulatory

sequences (in)accessible to DNA-binding proteins at a single-cell resolution. This review outlines

molecular methods and bioinformatic tools for capturing cell-to-cell chromatin variation using

single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) in a scalable

fashion. It also covers joint profiling of chromatin with transcriptome/proteome measurements,

computational strategies to integrate multi-omic measurements, and predictive bioinformatic tools

to infer chromatin accessibility from single-cell transcriptomic datasets. Methodological refinements

that increase power for cell discovery through robust chromatin coverage and integrate measure-

ments from multiple modalities will further expand our understanding of gene regulation during

homeostasis and disease.
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Introduction

Since 1665, when Robert Hooke first described that single cells
form the building blocks of complex tissues, biologists have

sought to delineate cellular taxonomies based on form and
function. This task, however, has proven to be extraordinarily
difficult due to the remarkable diversity in function, regula-

tion, and morphology, even between cells grouped as one type.
Single-cell sequencing has become a turning point for cell
biologists as it enables profiling of single cells without experi-
mental purifications and provides an unbiased view of cells,

their different states, and their interactions with neighboring
cells through molecular cross-talks within an intact tissue
[1–3]. Leading the revolution in single-cell measurement tech-

nologies is single-cell RNA sequencing (scRNA-seq), which
has imparted significant insights into gene expression. Owing
to rapid developments in technology, such as droplet-based

microfluidics capable of profiling thousands of single-cells by
counting 30-end of transcripts [4,5], organism-scale atlases have
started to detangle transcriptional heterogeneity in cells

comprising complex tissues [6–14].
Although powerful in resolving cell-specific gene programs,

scRNA-seq fails to capture the diverse and dynamic chromatin
landscape that regulates gene expression. Waddington

famously conceptualized all cells as derivatives of a single
totipotent cell canalized through different troughs in the sinu-
ous epigenetic landscape, similar to a ball (cell) rolling down a

hill [15]. Analysis of transcriptomes, detached from properties
of chromosomes that form this epigenetic landscape, is akin to
studying the features of the ball without appreciating its rela-

tionship and residence on this hill. Indeed, bulk assay for
transposase-accessible chromatin (ATAC-seq) [16,17] and
Deoxyribonuclease I digestion (DNase-seq) [18] has revealed
that chromatin accessibility is a key component of the epige-

netic landscape. By exposing different promoters, enhancers,
and regulatory elements, cells enable transcription factors
(TFs) to regulate gene expression and to navigate it through

bifurcating valleys in the epigenetic landscape. For example,
during development, specialized cells progressively diverge
from their progenitors by gaining or losing chromatin accessi-

bility [19,20]. At any given time point through this process,
measurements of chromatin state can impart insights into a
cell’s past (lineage relationships) and provide a window into

its future (terminal fate) that cannot be captured by gene
expression alone [20]. In contrast to developmental trajecto-
ries, tumorigenesis is a reversion towards a de-differentiated
state as transformed cells reactivate chromatin states reminis-

cent of embryonic stem cells [20,21]. However, their upward
climb on the epigenetic landscape is haphazard as they also
adopt chromatin profiles (and subsequently activate gene

programs) of noncognate lineages [20].
Is there an example of epigenomic reversion where cells

truly de-differentiate by climbing the same hill they previously

rolled down from? This would imply retention and mainte-
nance of information regarding prior fate decisions. A number
of models have emerged to test this hypothesis in tissues like
the skin [22,23], jaw [24], digit tips [25], and the intestine

[26], where injury induces an embryonic phenotype, enabling
the tissue to regenerate and restore function. To fully appreci-
ate the fundamental mechanisms by which cells navigate the

epigenetic landscape requires techniques that capture
cell-to-cell chromatin variations in defined populations. To
this end, epigenomic techniques such as ATAC-seq [27,28],
ChIP-seq [29], Hi-C [30,31], and DNase-seq [32] have recently

been developed to assess chromatin structure at single-cell res-
olution. While the sensitivity of ChIP-seq traditionally
required large (~ 107 cells) inputs, recent developments such

as nano-ChIP [33], iChIP [34], MOWChIP [35], SurfaceChIP
[36], and single-cell ChIP using droplet separation termed
Drop-ChIP [37] have significantly reduced the input material.

Impressively, Drop-ChIP profiled post-translational histone
modifications that either enable (H3K4me3) or repress
(H3K27me3) transcription at single-cell resolution with
relatively high coverage (~ 1000 unique reads per cell) [37].

In particular, this review focuses on single-cell ATAC-seq as
it has demonstrated significant promise in capturing large cell
numbers (up to 100,000 single cells from 13 rodent tissues pro-

filed at 9000–23,000 unique reads per cell depth [38]) to
create organism-scale atlases comparable to those created
using scRNA-seq. These datasets are now being integrated

with single-cell transcriptomics and proteomics to generate
multi-omic measurements. This review catalogs and compares
recently developed scATAC-seq technologies and analysis

tools that can be exploited to delineate principles of gene reg-
ulation and features of regulatory sequences, as well as extrap-
olates on what may be possible by integrating chromatin
accessibility with other single-cell measurements.

scATAC-seq technologies

scATAC-seq library construction

The key element employed in ATAC-seq for detecting
nucleosome-free regions in the genome is Tn5 transposase, a
dimer of two chemically identical monomers that typically cat-
alyzes the movement of transposons to different parts of the

genome through a ‘‘cut-and-paste” mechanism (Figure 1).
Since endogenous transposase is relatively inactive (as transpo-
sitions are highly mutagenic), a hyperactive version of the Tn5

transposase [17,39] is first loaded with sequencing adapters to
create a dimeric transposome complex (Figure 1A), and then
introduced into intact nuclei where it simultaneously cuts

exposed DNA and ligates the loaded sequences (Figure 1B).
Since tightly packed heterochromatin has high steric hin-
drance, these sites remain inaccessible to transposase and

makes fragmentation at these sites less probable. Following
fragmentation, transposase inserts its adaptor payload to per-
manently mark active regulatory sites. Adapter-ligated frag-
ments are isolated, and inserts that contain two different

ends (s5 and s7) can be extended to add identifiers such as cell
barcodes and sample indexes [16,40] (Figure 1B and C). Highly
accessible regions return significantly more sequencing reads

that form peaks when called with peak-calling algorithms like
ZINBA [41] (Figure 1D and E). Interestingly, close inspection
of bulk ATAC peaks also reveal subregions (usually a few bp

in length) that had escaped tagmentation since they were
actively occupied by DNA-binding proteins and are consid-
ered ‘‘footprints” of those binding protein [16]. Bulk ATAC
became a useful method for profiling accessible chromatin

since: 1) its measurements are highly correlated with single-
and double-cut DNase-seq [16,42], 2) libraries can be gener-
ated from 500 cells (compared to >100,000 needed for



Figure 1 ATAC-seq probes genome-wide chromatin accessibility using hyperactive Tn5 transposase

A. Schematic illustrating hyperactive Tn5 being loaded with sequencing adapters by mixing equal amounts of two indexed oligos (s5 and

s7) with Tn5 and incubating the mixture for approximately one hour. B. During Tn5 tagmentation (fragmentation and tagging), the

transposase cleaves accessible DNA and attaches adaptor overhangs within intact nuclei. Since nuclei are not fragmented in this process,

bulk Tn5 tagging can be performed in scATAC reactions prior to partitioning tagged nuclei. C. Tagmentation generates three different

products: 1) sequence with s5 at both ends, 2) sequence with s7 at both ends, or ideally, 3) sequence with s5 and s7 at opposite ends (as

shown in the diagram). Only the final product (containing different ends) is amplifiable. Final library is generated by appending additional

identifiers such as cell/sample-specific barcodes using PCR. D. scATAC libraries are paired end sequenced and mapped to a reference

genome. E. Peak-calling algorithms identify enriched (peak) regions which correspond to open chromatin states. ATAC-seq, assay for

transposase-accessible chromatin using sequencing; scATAC, single-cell assay for transposase-accessible chromatin.
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DNase-seq), and 3) library generation requires two hours
(compared to multiday DNase-seq preparation) [16].

To resolve chromatin accessibility at a single-cell resolu-
tion, the Shendure and Chang/Greenleaf laboratories modified
methods that were originally developed for single-cell tran-

scriptomics and de novo genome assembly to tag transposed
DNA fragments from the same cell with a unique molecular
barcode (Figure 2) [27,28]. The two groups employed different

molecular methods to achieve this. The study by Shendure’s
group profiled >15,000 single cells using combinatorial cellu-
lar indexing, where nuclei were first tagged with barcoded Tn5
transposase in a 96 well plate, then pooled and diluted, and
15–25 nuclei were redistributed to another plate where a sec-

ond barcode was added during PCR with primers targeting
Tn5 adapters (Figure 2A) [28]. They reasoned that this
‘‘split-pool” approach would generate a large array of barcode

combinations, and all fragments originating from the same cell
can be identified by their shared combinatorial barcode.
Although this approach overcame the need to individually

compartmentalize single nuclei, since these libraries were pre-
pared from thousands of single cells sequenced to an average
depth of 2500 reads per barcode, the libraries had low



Figure 2 Schematic diagrams showing methods for transposition, barcoding, and library preparation for scATAC-seq

A. In combinatorial indexing, nuclei are first tagged in bulk via barcoded Tn5 transposase in a 96 well plate. Then, cells are pooled, and 15

to 25 nuclei are randomly sorted into another 96 well plate where a second barcode is added during PCR. The probability for two cells to

share the same combination of barcode is between 6%�11%. B. Micro-chamber capture utilizes a plate with thousands of non-adherent,

barcode-containing microwells with a central and a serpentine microfluid flow path. The first cell entering a microwell gets trapped in the

central path and blocks entry of subsequent cells, forcing them to take the serpentine path and be captured by a downstream chamber. The

cell trapped in the central path is subsequently subjected to lysis, transposition, and downstream library construction within the chamber.

C. Nanodispensers use non-contact dispensing to place a single cell (stained with live/dead Hoechst stain) into a nanowell containing

preprinted barcodes. Only wells containing a dispensed cell (approximately one third of the 5184 nanowells) are transposed to generate

sequencing libraries. D. In Drop-seq, transposed nuclei are compartmentalized into nanoliter-sized aqueous droplets containing unique

barcodes that are carried in a continuous oil phase.
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complexity (number of unique fragments recovered). The

Chang/Greenleaf laboratories programmed Fluidigm’s
microfluidics chip to capture, transpose, and amplify DNA
fragments from a single nucleus captured onto a microcham-

ber (Figure 2B) [27]. This approach sampled fewer cells
(~ 1600), but each cell received 30 times the sequencing cover-
age for an average of 73,000 reads per cell, generating at least a

two-fold increase in library complexity. However, even with
this approach, only 10% of all ubiquitously open regions were
recovered from a single cell [43]. Notwithstanding limitations
of sparse coverage, combinatorial indexing has been employed

to profile accessibility from 13 different tissues (~ 100,000 cells)
[38], developing Drosophila embryos (23,085 cells) [44], mouse
forebrains (~ 15,000 cells) [45], and cortices of mice with Down

Syndrome (13,766 cells) [46].
Recently, two additional microfluidic capture strategies

have been developed. First, Takara Bio’s SMARTer ICELL8

platform employs individually indexed nanoliter-scale wells
that can theoretically enable 5184 ATAC reactions to run in
parallel (Figure 2C) [47]. A particular advantage of this plat-

form is the integration of multi-color fluorescence imaging to
determine wells that received single cells to selectively add
reagents, thereby reducing library preparation/sequencing cost

to ~ 81! per cell. Integration of imaging may also foreshadow
methods that enable simultaneous imaging of accessible
chromatin to reveal its positional identity within the native

configuration of the nucleus, similar to its bulk counterpart
ATAC-see [48]. Second, Bio-Rad’s SureCell� ATAC kit
(http://www.bio-rad.com/en-ca/life-science-research/news/
bio-rad-launches-scatac-seq-solution-for-early-access-customers?

vertical=LSR&ID=Bio-Rad-Launches-scA_1537378901) [49]
and 10X Genomics’s scATAC solution [40] employ microflu-
idics to partition up to 10,000 transposed nuclei into nanosized

droplets, where content from each droplet is distinguished by
one of ~ 750,000 unique barcodes (Figure 2D). Using the 10x
technology, Satpathy and colleagues demonstrated that up to

6000 single cells can be individually barcoded whilst maintaining
a reasonable multiplet rate (~ 1%), an approach that costs ~ 25!

http://www.bio-rad.com/en-ca/life-science-research/news/bio-rad-launches-scatac-seq-solution-for-early-access-customers%3fvertical%3dLSR%26ID%3dBio-Rad-Launches-scA_1537378901
http://www.bio-rad.com/en-ca/life-science-research/news/bio-rad-launches-scatac-seq-solution-for-early-access-customers%3fvertical%3dLSR%26ID%3dBio-Rad-Launches-scA_1537378901
http://www.bio-rad.com/en-ca/life-science-research/news/bio-rad-launches-scatac-seq-solution-for-early-access-customers%3fvertical%3dLSR%26ID%3dBio-Rad-Launches-scA_1537378901
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per cell [40]. Impressively, Lareau and colleagues further extend
Bio-Rad’s microfluidics platform by combining droplet capture
with combinatorial indexing (termed droplet-based sciATAC-

seq) to enable simultaneous profiling of ~ 100,000 cells per
microfluidic run. This conjugate approach profiled 502,207 cells
from diverse mammalian and human tissues, including the

rodent brain (~ 39 K cells), human blood (~ 60 K cells), and
experimentally perturbed cell populations (~ 76 K cells) [49].
Since both commercial kits leverage their widely adopted

barcoding platforms, ddSEQ Single-Cell Isolator and the Chro-
mium System, an advantage for existing customers is that the
scATAC-seq assay can be easily integrated into existing
infrastructure.

Finally, it is worth recognizing that scATAC is still in its
infancy and its evolution is constrained by what is computa-
tionally and technologically feasible. One example is whether

single cells or single nuclei should be the starting point for
ATAC assays. Currently, scATAC-seq technologies have been
optimized to isolate single nuclei to reduce mitochondrial reads

and downstream sequencing costs (https://www.10xge-
nomics.com/solutions/single-cell-atac/) [42,50]. However, two
recent reports reveal that the 10- to 100-fold higher mutation

rate in mtDNA (compared to nuclear DNA) can be employed
as a natural barcode to reconstruct clonal architecture and lin-
eage relationships in complex organisms [51,52]. Impressively,
both studies demonstrate mitochondrial mutation tracking in

human tissues and tumors, a system where there is currently
no method for fate mapping and studying clonal dynamics.
Indeed, how scATAC will be further customized to impart

novel single-cell measurements and go beyond deciphering
causality between gene expression and chromatin accessibility
are important open questions. In this regard, we highlight

recent developments (Table 1) and extrapolate on what may
be possible.

Customizations to scATAC-seq library construction

To corroborate chromatin accessibility with a cell’s function
and to quantitate the impact of genetic perturbations on the

epigenome, the Chang and Khavari laboratories repurposed
a candidate reverse transcription (RT)-based approach previ-
ously paired with single-cell transcriptomics (Figure 3) [53–

55]. Briefly, this approach, referred to as ‘‘Indexed Single-cell
Seq,” seeks to enrich specific amplicons during PCR steps of
library construction to provide an orthogonal measurement

of the cell’s state or of the perturbations introduced.
By recovering the single guide RNA (sgRNA) through RT

of an index called ‘‘guide barcode” during a microfluidics-
based scATAC-seq run, Rubin and colleagues identified

regions of the genome deleted in individual Cas9-expressing
cells, and then analyzed the impact of those deletions on the
regulatory dynamics broadly (Figure 3A) [56]. Since gRNA

can target any region of the genome, this combinatorial dele-
tion approach, termed perturbation-indexed single-cell
ATAC-seq (or Perturb-ATAC), can unearth new insights into

how coding (i.e., TFs, chromatin regulators) and noncoding
genomes enact distinct chromatin regulatory networks in each
cell. Already, a knockout screen on differentiating ker-
atinocytes in vitro has revealed positive and negative regulation

amongst interacting TFs and delineated how differentiation
trajectories can be rerouted as a result of TF perturbation.
As well, these analyses also reveal conceptual models of TF
interactions that can only be observed by perturbing them in
pairs. For example, it identified that, while the majority of

TF interactions were additive (no interaction between the pair
perturbed), a number of them were synergistic (positive inter-
action) or buffering (negative interaction). Further measure-

ments supported the notion that genomic co-localization and
co-binding of TF pairs may regulate synergistic TF activation,
a mechanism that may be especially important for activating

key regulatory genes that in turn, enact a distinct cell state.
Combining Perturb-ATAC with other candidate index or

mitochondrial lineage tracing methods can unearth unprece-
dented insights. For example, it’s theoretically possible to com-

bine Satpathy and colleagues’ TCR sequencing with ATAC
approach (termed ‘T-ATAC-seq’, Figure 3B) that enables
studying chromatin landscapes in clonal T cells [57] with

Perturb-ATAC [56] and mitochondrial lineage tracing [51].
Since T cells exhibit particularly high clonal dynamics, and
since understanding these dynamics are critical in states like

tumor infiltrating T lymphocytes to boost anti-tumor response,
simultaneous assessments of perturbations that enhance T cell
efficacy alongside TCR and epigenome/transcriptome

sequencing would be critical for identifying the repertoire
and regulatory drivers that can be targeted. Indeed, Yost, Sat-
pathy, and colleagues forecast the potential of such multiomic
T cell profiling approaches, as their combination of TCR and

transcriptome sequencing revealed novel repertoires of T cell
clones that may be suitable candidates for modulation in skin
cancers [58].

Methods integrating scATAC-seq with other omic

approaches

Deciphering regulatory associations between different genomic
layers can impart novel perspectives on how cellular informa-

tion flows from one layer to the next [59]. This approach,
applied to single cells, can further reveal the layering of regu-
latory controls (and its evolution over time) that underlie com-

plex processes such as fate choice during development or
disease. Combining single-cell chromatin accessibility mea-
surements with transcriptomics is of particular interest, as their
joint analysis can reveal novel cis-regulatory sequences (non-

coding DNA regions which modulate TF activity) and help
catalog its impact on gene expression (Figure 4). This is partic-
ularly important as these regulatory sequences may play a

more important role than their gene-coding counterpart
[60,61] and their purposeful correction/modulation may be
crucial for regulating cell function [62].

To this end, two methods have been developed to simulta-
neously profile chromatin and transcriptome from single cells.
The first method, called single-cell Chromatin Accessibility
and Transcriptome Sequencing (scCAT-seq), sorts single cells

into a 96-well plate, where the cell membrane is lysed and
the nucleus separated from the cytoplasm due to physical dis-
sociation (Figure 4A) [63]. Physical separation of the nucleus

and the cytoplasm enables simultaneous transposition of the
nucleus and full-length transcript capture from the cytoplasm
using Smart-seq2. This generates high-confidence regulatory

interactions for a small number of cells. The second method,
called single-cell combinatorial indexing-based profiling of
chromatin accessibility and mRNA (sci-CAR), trades the high

https://www.10xgenomics.com/solutions/single-cell-atac/
https://www.10xgenomics.com/solutions/single-cell-atac/


Table 1 Summary of molecular methods for single-cell isolation and ATAC library preparation

Note: PCR, polymerase chain reaction; CRISPR, clustered regularly interspaced short palindromic repeats; sgRNA, single guide RNA;

TCR, T cell receptor; TRA, T cell receptor alpha; TRB, T cell receptor beta; sciATAC-seq, single-cell combinatorial indexing; lATAC-seq,

nano-well scATAC-seq; SMARTer, switching mechanism at the 50 end of the RNA transcript; Perturb-ATAC, perturbation-indexed

scATAC-seq; T-ATAC-seq, transcript-indexed ATAC-seq; scPi-ATAC-seq, single-cell protein-indexed ATAC; scCAT-seq, single-cell

chromatin accessibility and transcriptome sequencing; sciCAR-seq, single-cell combinatorial indexing-based chromatin accessibility and

mRNA.
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Figure 3 Customizations to scATAC-seq enables high-throughput CRISPR screening and T cell clonotyping

A. Perturb-ATAC maps the impact of CRISPR perturbation on chromatin accessibility in single-cells. First, cells are transduced by

sgRNA vectors containing a reporter sequence. FACS enriched cells are captured on microchambers (Figure 1C) and transposed with Tn5

enzyme. Following transposition, CRISPR sgRNAs are reversely transcribed using primers targeting the common 30 end of sgRNA

vectors. sgRNA and ATAC amplicons are amplified, pooled, sequenced, and analyzed for changes in TF features following genetic

perturbations. B. T-ATAC-seq simultaneously profiles chromatin accessibility and TCRs in single T cells. Single CD4+ T cells are

captured on microchambers (Figure 1C) where they are lysed, and their accessible chromatin transposed with Tn5 enzyme. TRa and TRb
transcripts (TRA and TRB) are reversely transcribed with primers targeting TRA and TRB, and ATAC amplicons are PCR amplified with

well-specific barcodes, pooled, and sequenced. TF, transcription factor; sgRNA, single guide RNA; CRISPR, clustered regularly

interspaced short palindromic repeats; FACS, fluorescence-activated cell sorting; Perturb-ATAC, perturbation-indexed scATAC-seq; T-

ATAC-seq, transcript-indexed ATAC-seq; TCR, T cell receptor; TRA, T cell receptor alpha; TRB, T cell receptor beta; RT, reverse

transcription; CDR3, complementarity-determining region 3.
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sensitivity of Smart-seq2 for high-throughput offered with
combinatorial indexing [64]. The key modification to the

pool-sort strategy used for ATAC alone [28] is the addition
of an RNA-seq index through RT that contains: 1) poly(T)
sequence to capture transcripts, 2) a well/pooling round-

specific barcode to trace the origin of transcripts, and 3) a
unique molecular identifier (UMI) to unambiguously quanti-
tate the number of transcript copies recovered (Figure 4B).

Finally, although there is a paucity of methods that combine
chromatin with comprehensive proteomics, the recently devel-
oped Protein-indexed ATAC (Pi-ATAC) seeks to correlate

chromatin accessibility to phenotypes that are delineated based
on protein markers [65]. By measuring fluorescence from anti-
bodies raised against epitopes of interest in each well and using

well-specific barcodes for ATAC fragments, this approach can
generate phenotype-resolved accessibility signatures (Fig-
ure 4C). While such a method is limited by the number of

resolvable fluorophores, it is well-suited for a system where



Figure 4 Methods for single-cell multi-omics that integrate chromatin accessibility with proteomics and transcriptomics

A. scCAT-seq separates the nucleus and the cytoplasm from single cells sorted in a 96-well plate. The cytoplasm is subjected to full-length

transcript capture using Smart-seq2 and the nucleus to transposition, and both are marked by a barcode unique to each well. B. sci-CAR-

seq profiling starts with nuclei distributed in a 96-well plate. First, nuclear RNA is indexed by reversely transcribing poly(A) mRNA with a

poly(T) primer carrying a well-specific barcode and a UMI. Then, accessible chromatin is indexed with transposase carrying a well-specific

barcode. All nuclei are pooled, and 15 to 25 are randomly sorted into another 96 well plate where a second barcode is added during

indexed PCR for RNA-seq or for ATAC-seq. Amplicons from both libraries are pooled and sequenced. C. scPi-ATAC-seq starts with

fixed and permeabilized cells that are subjected to antibody staining and bulk transposition. Cells are then sorted into a 96 well plate where

fluorescence emitted by antibodies are quantified, proteins are reverse crosslinked, and barcodes are added by indexing PCR. scCAT-seq,

single-cell chromatin accessibility and transcriptome sequencing; sci-CAR-seq, single-cell combinatorial indexing-based chromatin

accessibility and mRNA; scPi-ATAC-seq, single-cell protein-indexed ATAC-seq; UMI, unique molecular identifier.
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(relative) expressions of key markers robustly identify cell
states, which can then be correlated to its chromatin status.

Albeit in its infancy, co-assaying the ‘input’ (chromatin acces-
sibility) alongside gene or protein ‘outputs’ will reveal the com-
binatorial logic that generates diversity and dynamics in

biological systems and eventually inform in silico models that
predict functional impacts of perturbations to (non)coding
regions of the genome [66,67].
scATAC-seq analysis

Computational challenges in scATAC-seq analysis

In comparison to bulk chromatin accessibility, where cell

ensembles exhibit a range of signal intensities across accessible
regions, data from single cells is essentially binary. Although it
is possible to have multiple Tn5-transposase insertions at one

site in a single cell, since such events are rare [27]. The binariza-
tion of read count matrix is often the first processing step. By
the same account, if a site receives no read, it is difficult to dis-
cern if that is truly an inaccessible chromatin region or a site

that was missed by transposase or lost during amplification
[68]. scATAC-seq data analysis is also more challenging than
scRNA-seq due to the former’s considerably larger data matri-

ces that have much higher sparsity. Since scATAC-seq matri-
ces can contain counts from over hundreds of thousands of
regulatory sites (compared to 20,000 protein coding genes typ-

ically assessed in RNA-seq) across thousands of single cells,
the result is large datasets containing sparsely mapped reads.
Similar to tackling the dropout problem in scRNA-seq data,

where only a small percentage of the transcriptome is retrieved
for each cell, resulting in a sparse gene-barcode matrix, an
antidote to scATAC-seq sparsity is aggregating signals across
similar cells and across sites that share a common feature

[27,28]. However, aggregating cells results in a loss of the
single-cell nature of scATAC-seq. Moreover, grouping sites
by a common feature (i.e., TF motif) requires significant a pri-

ori knowledge. Despite these challenges, scATAC-seq tools
can: 1) perform discrete and continuous cell groupings [69–



Table 2 Summary of open source bioinformatic tools for scATAC-seq analysis

(continued on next page)
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Note: CRAN, comprehensive R archive network; scABC, single cell Accessibility Based Clustering; SOM, self-organizing maps;

coupled NMF, coupled nonnegative matrix factorizations; STREAM, single-cell trajectories reconstruction, exploration and mapping;

Scasat, single-cell ATAC-seq analysis tool; Destin, detection of cell-type specific difference in chromatin accessibility; SCRAT, single cell

R analysis toolkit; BROCKMAN, brockman representation of chromatin by K-mers in mark-associated nucleotides; SCENIC,

single-cell rEgulatory network inference and clustering; TFBS, transcription factor binding site; MATCHER, manifold alignment to

CHaracterize experimental relationship; BIRD, Big data regression for predicting DNase I hypersensitivity.

Table 2 Summary of open source bioinformatic tools for scATAC-seq analysis
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82], 2) identify cis-regulatory regions and their target genes
[76,83], and impressively, 3) integrate single-cell chromatin
dataset with other single-cell measurements, such as scRNA-

seq [84–86].

Bioinformatics workflow for scATAC-seq analysis

A full comparative overview of bioinformatic tools, either pub-
lished through a peer-reviewed stream (9/19) or uploaded on
preprint servers (10/19) that are accessible through open code

repositories are described in Table 2. Briefly, scATAC-seq pro-
cessing constitutes the following five sequential steps.

Processing raw sequencing data

This includes trimming sequencing adapters, eliminating poor
quality reads, mapping paired-end reads, eliminating cells with
a library size that falls below a chosen threshold, and aggregat-

ing cell barcodes for downstream processing. For users
employing a commercial platform like 10X Genomics, accom-
panying analysis pipelines such as CellRanger-ATAC
(https://support.10xgenomics.com/single-cell-atac/software/

pipelines/latest/what-is-cell-ranger-atac) may readily perform
these steps.

Pre-defined feature selection

Typically, the complete list of chromosomal locations is not
inspected for differential accessibility. Instead, the overall vari-
ance in a dataset is reduced by restricting the analysis to pre-

defined motifs or a list of genomic/gene set annotations. For
example, chromVAR, one of the first scATAC-seq tools devel-
oped by the Greenleaf lab, aggregated reads based on known

TF motifs. This aggregation converted sparse accessibility by
cell barcode matrix to a more stable, bias-corrected deviation
per TF motif matrix, enabling cell-to-cell similarity measure-

ments by analyzing gain or loss of accessibility within defined
genomic features [69].

Heterogeneity calculation of single cells

Using the filtered accessibility–barcode matrix, a dissimilarity
measurement that quantitates the extent of divergence between
two cells is calculated based on differential peak accessibility.

For example, Scasat employs Jaccard distance as a dissimilar-
ity index [87] by identifying shared and distinct peaks. SCRAT
first aggregates co-activated sites to derive pathway level acces-
sibility. It then uses pathway-level accessibility as a feature to

compute cell dissimilarity. It is shown that aggregation can
increase signal-to-noise ratio and lead to improved dissimilar-
ity measures that better separate cells by cell type [75].

Dimensionality reduction

Since the accessibility matrix is a high-dimensional dataset,
reducing its dimensionality, such that biological variance is

retained but random variables contributing to noise are elim-
inated, is critical for downstream analysis and visualization.
Multidimensional scaling (MDS) [88], t-distributed stochastic

neighbor embedding (tSNE) [89], and Uniform Manifold
Approximation and Projection for Dimension Reduction
(UMAP) [90] are common dimensionality reduction tech-

niques where the number of dimensions included is user-
specified and depends on the overall complexity of the
dataset.

Cell clustering and differential accessibility analysis

Based on heterogeneity in chromatin accessibility, clustering
algorithms modified for scATAC-seq (i.e., k-medoid giving
higher weight to cells with higher sequencing coverage

[77]) hierarchically cluster cells into different groups. A
number of different statistical tests (i.e., Fisher exact, Infor-
mation gain) can then be employed to calculate differential

accessibility signatures between two clusters. A more tar-
geted two-sided t-test can be used to determine whether a
particular motif is differentially accessible between two

clusters.
Extending differential accessibility measurements, a num-

ber of tools have started to impart novel perspectives on the

chromatin regulatory landscape. Below, we highlight three
particularly impressive approaches that enable: 1) mapping
co-accessible DNA elements to connect regulatory sequences
with its targets, 2) predicting cell-type specific transcription

factor activity, and 3) integrating scATAC-seq data with scRNA-
seq, spatial transcriptomics, and other single-cell measure-
ments. We conclude by highlighting that methods capable of

predicting chromatin status from scRNA-seq datasets will fur-
ther improve the power of both techniques and enable superior
integration across single-cell modalities.

Predicting DNA interactions by mapping chromatin co-accessibility

The mechanisms by which cis-regulatory sequences engage in

long-range interactions to recruit transcriptional machinery
and control gene expression is highly cell type-, state-, and
context-specific [91,92]. Indeed, such widespread and context-
dependent enhancer–promoter associations pose a significant

challenge to generating computational models of gene expres-
sion and the way they change as a result of perturbation [66].
Although long-range contacts can be quantified in cell ensem-

bles using structural genomic approaches, such as ChIA-PET
[93], Hi-C [94], and HiChIP [95,96], there are no methods to
infer this in single cells. Cicero, a software developed in the

Shendure/Trapnell labs, seeks to infer these interactions by
mapping the co-accessibility of promoters with other regula-
tory sites. This infers that the cis-regulatory landscapes that
enact a given homeostatic gene program enable tracking

changes in this landscape over pseudotime by modifying trajec-
tory inference algorithms developed for Monocle2 [97,98]. As a
proof-of-concept, Cicero’s application to myoblast differentia-

tion revealed that while accessible promoter analysis explained
17% of the variance, the addition of promoter–distal site link-
ages explained 2.27-fold higher variance in expression. Extend-

ing this idea further, sequences that are in close physical
proximity, share common TF targets, and undergo synchro-
nized changes in accessibility over pseudotime may qualify as

‘‘chromatin hubs” [99], and their modulation could preferen-
tially bias a cell’s fate. Tracking chromatin co-accessibility
enables interrogating fundamental biological questions in a
new light, including the fate reversion question posed in the

beginning of this review. Knowing the extent to which reacqui-
sition of embryonic-exclusive TFs are driven by interactions
with the same distal regulatory sequences after injury, and

https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/what-is-cell-ranger-atac
https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/what-is-cell-ranger-atac
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their accessibility/co-accessibility status in the uninjured adult
tissue, will be critical for assessing whether a cell remembers its
lineage history and harbors a latent capacity to navigate

Waddington’s valley in a reverse direction.

Predicting cell type-specific TF function

An emerging concept in single-cell regulomics is that expres-
sion, activation, and function of any particular TF is deter-
mined by the complete composition of co-factors active at a

given time. As such, methods that use differences in features
for cell grouping fail to appreciate how the presence or absence
of other factors may impact the function of each feature used.

To circumvent this and to improve prediction of the cell type-
specific impact of a TF, Aerts group’s cisTopic [83] employs
topic modelling, where co-accessible regions are assigned to
one or multiple regulatory topics with varying strengths, and

these topics (and not its constituent features) are then used
for cell grouping. This approach revealed an interesting feature
about the SOXE TFs: while a core SOXE topic (SOX9/10) was

robustly present in a variety of cell types (i.e., melanocytes,
melanoma, oligodendrocytes, astrocytes), its predicted motif
and co-regulatory factors were cell-type and cell-state depen-

dent. These observations were explained by a model where
SOXE proteins function as pioneering TFs that unmask chro-
matin domains and recruit cell type-specific co-factors (i.e.,
OLIG in oligodendrocytes) to enforce somatic cellular pro-

grams. A recent assessment comparing ten scATAC tools on
a standardized benchmarking platform revealed that, while cis-
Topic was slightly more sensitive to noise, along with SnapA-

TAC [100] and Cusanovich2018 [38], it outperformed other
methods used for separating cell types/states [101]. Revisiting
the discussion on the epigenetic basis of injury-induced fate

reversions, it can be concluded that it is possible, at least in
theory, to carry out an assessment of somatic cells’ propensity
to activate pioneering TFs (perhaps by alleviating repression

that prevents their function during adulthood) that subse-
quently recruit lineage-specific TFs to reenact development.

Leveraging strengths of different single-cell modalities

Understanding biochemical mechanisms that endow cell type-
specific functions requires comprehensive integration of

modalities, measuring distinct cell states and purposeful use
of one measurement to inform interpretations of another.
For example, out of all the single-cell measurement assays,

transcriptomics is the most powered for detecting cell types,
yet it is devoid of positional context of each cell in a three-
dimensional tissue. While spatial transcriptomics can resolve
the distribution of transcripts, limitations in how closely posi-

tional barcodes (or barcoded beads) can be placed precludes
single-cell [102,103] or subcellular resolution [104]. Similarly,
while scATAC-seq profiles chromatin accessibility, and with

inclusion of mitochondrial reads enables robust lineage recon-
struction [51,52], its sparse and binarized nature derives statis-
tical strength from cluster (not single-cell) analysis. As such,

algorithms that integrate each modality to generate harmo-
nized atlases add significant value.

To this end, algorithms have been devised to perform join
dimensionality reduction to compare two single-cell datasets.

In Seurat Version 3 [84], Linked Inference of Genomic Exper-
imental Relationships (LIGER) [105], a concept similar to
mutual nearest neighbors is applied, where each cell in the first
dataset (say scATAC-seq) is queried against all cells in a sec-

ond dataset (say scRNA-seq) to identify its closest neighbor
across datasets [106]. This is subsequently repeated, but now
starting from the second (scRNA-seq) dataset where each cell

is queried against cells in the first (scATAC-seq) dataset. If
both analyses identify a mutual pair, these two separate mea-
surements are thought to be taken from the same underlying

cell state and the pairs are integrated. MATCHER is another
tool that integrates data types by performing the alignment of
pseudotime from transcriptome and epigenome data, although
it works well on trajectories that are linear rather than

branched [107]. A similar but more generalizable approach uti-
lizes self-organizing maps (SOMs) [85], a type of artificial neu-
ral network that is trained to generate low-dimensional

representations of either scRNA-seq or scATAC data. Result-
ing SOMs for each data type can then be used to identify
groups of co-expressed genes and open chromatin elements

in order to identify those that jointly change across datasets.
Advantages of this approach include the ability to analyze time
series and a lack of reliance on inferred pseudotime. While

benchmarking studies have compared scRNA-seq analysis
methods [108] (i.e., tools for Gene Regulatory Network con-
struction [109,110]) and a recent study extended this approach
to compare ten scATAC tools [101], none have systematically

compared data integration algorithms. Parameters that will
need to be assessed using standardized benchmarking frame-
works include joint dimensionality reduction/clustering, label

transfer, resistance to variable sequencing coverage, impact
of changing signal-to-noise ratios, as well as practical consider-
ations such as running times and CPU/memory requirements

especially when considering integration of large (i.e.,
>80,000 single-cell in sci-ATAC-seq mouse atlas [38]) datasets
across multiple modalities.

An essential prerequisite to integration is sufficient batch
correction of all datasets being integrated [111], especially if
the variance introduced due to batch is comparable to variance
across cell types/states. An ever-evolving challenge continues

to be the need to improve molecular methods to recover
greater percentage of the data for each cell and to develop
imputation and predictive methods, both of which can increase

statistical power for integration. Together, robust integrative
analyses will enable the transfer of biological and computa-
tional phenotypes from one dataset to another. For example,

a lineage trajectory predicted based on RNA splicing kinetics
from transcriptomics [112] can be directly compared with
one delineated based on mtDNA mutations from accessible
chromatin [51,52]. Such analyses will provide unprecedented

insights and inform both the biology and the bioinformatic
tools employed to decipher it.

Predicting chromatin accessibility from transcriptomics

Single-cell RNA-seq is currently the most widely used single

cell functional genomic technology. Most scRNA-seq datasets
are generated without accompanying scATAC-seq data. Con-
ventionally, scRNA-seq is only used for analyzing transcrip-
tome but not chromatin accessibility. However, a recent

study from the Ji lab has shown that chromatin accessibility
can be predicted using scRNA-seq (Figure 5) [113]. They used
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DNase-seq and RNA-seq samples from matching cell types
generated by the ENCODE and Roadmap Epigenomics pro-
jects to train prediction models, leveraging the recently devel-

oped Big Data Regression for Predicting DNase I
hypersensitivity (BIRD) algorithm [114]. The trained predic-
tion models are then applied to new bulk or single-cell

RNA-seq samples to predict genome-wide chromatin accessi-
bility (Figure 5A). Interestingly, using bulk DNase-seq data
from the corresponding cell type [115] as ‘ground truth’, BIRD

prediction using low-input RNA-seq data from 30 and 100
cells outcompeted ATAC-seq signals from 500 cells. More-
over, compared to scATAC-seq performed using the same
number of cells, chromatin accessibility predicted by BIRD

from scRNA-seq is more continuous, less sparse, and can more
accurately reconstruct gold standard bulk DNase-seq and bulk
ATAC-seq profiles in the same cell type (Figure 5B).
Figure 5 Predicting chromatin accessibility from single-cell transcript

A. Overview of the prediction approach. B. BIRD-predicted chromatin

data for two cell types (GM12878 and H1) are compared in a sample

while BIRD-predicted signals are more continuous and correlate better

predicting DNase I hypersensitivity.
This prediction approach has at least three potential appli-
cations. First, when an investigator only has scRNA-seq data
but not scATAC-seq data, one can use scRNA-seq to predict

the chromatin accessibility landscape and cis-regulatory ele-
ment activities. Because the vast majority of single-cell genomic
data are scRNA-seq, prediction may substantially increase the

value of both existing and new scRNA-seq experiments. Sec-
ond, when scATAC-seq data are available, chromatin accessi-
bility predicted by scRNA-seq can be used as pseudo-

replicates to improve signal quality. It has been shown that
combining these pseudo-replicates with experimental
scATAC-seq data can tremendously increase the signal-to-
noise ratio and the accuracy for inferring cis-regulatory element

activities [113]. Third, when both scRNA-seq and scATAC-seq
data are available, prediction may be used as a bridge to align
and integrate these two distinct data types. Thus, predicting
omics

accessibility, experimental scATAC-seq data, and bulk ATAC-seq

genomic region. The scATAC-seq signals are sparse and discrete,

with the bulk ATAC-seq signals. BIRD, Big Data Regression for
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chromatin accessibility using scRNA-seq offers a new tool for
single-cell regulome analysis. It is useful both when scATAC-
seq data is unavailable and when it is available.

One limitation of prediction is that it requires training data.
Currently, only human and mouse have matched chromatin
accessibility and transcriptome data from a broad spectrum

of cell types that may support training prediction models.
Most other species do not have enough training data.
However, as more data become available, this limitation will

eventually be resolved in the future. Moreover, most of today’s
scRNA-seq data (94% of scRNA-seq samples in SRA) are
from human and mouse. Thus, prediction in these two species
alone would be tremendously useful. Overall, predicting chro-

matin accessibility from scRNA-seq is a new area that has yet
to be fully explored. There is plenty of room to improve pre-
diction accuracy. New methods that can better handle techni-

cal biases in single-cell data and more effectively train
prediction models for ultra-high-dimensional responses (i.e.,
genome-wide chromatin accessibility) using ultra-high-

dimension predictors (i.e., transcriptome) could make this
approach more powerful in the future.

Conclusion

How organisms achieve a division of labor amongst trillions of
cells that enable emergent properties like consciousness to arise
has intrigued philosophers for centuries. Scientists have since

appreciated that specialized cell function, which forms the basis
of division in labor, is the final product of many layers
of combinatorial control. Single-cell genomics has started to
impart a detailed glimpse of the epigenetic landscapes that

maintain this specialized cell function and has started to corre-
late these landscapes with distinct gene and protein expression
outputs. Methods that assess chromatin accessibility at a single

cell resolution are becoming powerful tools for inferring this
epigenetic landscape and for asking how it changes following
perturbation, injury, disease, or more gradually over micro/

macro-evolutionary timescales. We predict that its applications
will impart novel insights into important questions, like: Do
somatic cells retain an epigenetic memory of their lineage? If
so, how do they recall the trajectories they traversed to adopt a

final fate? Such memories may explain their latent capacity to
revert back to an embryonic stage and reactivate tissue-specific
developmental programs after sustaining an injury [22–26].

Understanding how specialized cells maintain such memories
can inform drug treatments that purposefully activate regener-
ative programs to improve the quality of healing and restore

native tissue function.
Single-cell chromatin measurements can also unearth novel

dynamics in non-coding regions that underlie changes over

evolutionary or disease processes. Comparative epigenomic
studies have implicated changes in chromatin accessibility in
driving cis-regulatory evolution across different species
[116,117]. The ability to profile cell-to-cell divergences in chro-

matin landscapes can enable ‘‘cellular anthropology” with
unprecedented resolution and track how noncoding regulatory
elements change with the emergence of new cell types and spe-

cies. Indeed, integration of single-cell transcriptomic and chro-
matin accessibility data from rodents has revealed that
enhancers may facilitate modifications to existing gene regula-

tory networks by integrating de novo genes transcribed from
regions of the genome that were previously non-coding. Such
wiring and rewiring of gene regulatory networks may explain
phenomena like the birth of de novo gene sets across eumeta-

zoan evolution [118]. In the context of human diseases, the
majority of pathogenic variants lie within non-coding func-
tional elements that lead to gene dysregulation. Since multiple

layers of the epigenome are dysfunctional in multiple cell
types, leading to tumor initiation and progression [119,120],
integration of scATAC-seq with low-input or single-cell

ChIP-seq for selected TFs/histone modifications may be an
attractive approach. Simultaneous measurements of TF bind-
ing and chromatin accessibility enabled by ‘ChIPmentation’
[121] or ‘CUT&Tag’ [122] can reveal definitive binding sites

of key TFs (eliminating reliance on motif inferences or deci-
phering ATAC TF footprints). Since ‘CUT&Tag’ relies on
tethering pA-Tn5 transposomes to antibodies bounded to a

target chromatin protein, it is well suited for low cell inputs
and can be configured with commercial single-cell platforms,
such as 10X Genomics droplet separation system (Figure 2B)

or SMARTer ICELL8 nano-dispensation system (Figure 2D)
[122]. Alternatively, orthogonal single-cell ChIP and ATAC
measurements assaying the same underlying cell types/states

may be bioinformatically integrated by identifying shared bio-
logical states, such that information captured by one technique
may inform the interpretation of another. Notwithstanding
these expectations, single-cell chromatin accessibility profiling

will lead to many unexpected discoveries, each revealing mech-
anisms of gene regulation that underlie the remarkable cell
diversity and plasticity seen in complex tissues.
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Glažar P, et al. Cell type atlas and lineage tree of a whole

complex animal by single-cell transcriptomics. Science 2018;360:

eaaq1723.

[10] Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar

C, et al. The Drosophila embryo at single-cell transcriptome

resolution. Science 2017;358:194–9.

[11] Fincher CT, Wurtzel O, de Hoog T, Kravarik KM, Reddien PW.

Cell type transcriptome atlas for the planarian Schmidtea

mediterranea. Science 2018;360:eaaq1736.

[12] Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza

R, et al. Comprehensive single-cell transcriptional profiling of a

multicellular organism. Science 2017;357:661–7.
[13] Farrell JA, Wang Y, Riesenfeld SJ, Shekhar K, Regev A, Schier

AF. Single-cell reconstruction of developmental trajectories

during zebrafish embryogenesis. Science 2018;360:eaar3131.

[14] Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A,

Wysoker A, et al. Single-cell RNA sequencing of microglia

throughout the mouse lifespan and in the injured brain reveals

complex cell-state changes. Immunity 2019;50:253–71.

[15] Waddington CH. The strategy of the genes. A discussion of some

aspects of theoretical biology. London: Allen & Unwin; 1957.

[16] Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ.

Transposition of native chromatin for fast and sensitive epige-

nomic profiling of open chromatin, DNA-binding proteins and

nucleosome position. Nat Methods 2013;10:1213.

[17] Adey A, Morrison HG, Asan XX, Kitzman JO, Turner EH,

et al. Rapid, low-input, low-bias construction of shotgun

fragment libraries by high-density in vitro transposition. Genome

Biol 2010;11:R119.

[18] Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng

Z, et al. High-resolution mapping and characterization of open

chromatin across the genome. Cell 2008;132:311–22.

[19] Chen T, Dent SYR. Chromatin modifiers and remodellers:

regulators of cellular differentiation. Nat Rev Genet

2014;15:93–106.

[20] Stergachis AB, Neph S, Reynolds A, Humbert R, Miller B, Paige

SL, et al. Developmental fate and cellular maturity encoded in

human regulatory DNA landscapes. Cell 2013;154:888–903.

[21] Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou

W, et al. The chromatin accessibility landscape of primary

human cancers. Science 2018;362:eaav1898.

[22] Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, et al. Wnt-

dependent de novo hair follicle regeneration in adult mouse skin

after wounding. Nature 2007;447:316–20.

[23] Wang X, Hsi TC, Guerrero-Juarez CF, Pham K, Cho K,

McCusker CD, et al. Principles and mechanisms of regeneration

in the mouse model for wound-induced hair follicle neogenesis.

Regeneration 2015;2:169–81.

[24] Ransom RC, Carter AC, Salhotra A, Leavitt T, Marecic O,

Murphy MP, et al. Mechanoresponsive stem cells acquire neural

crest fate in jaw regeneration. Nature 2018;563:514.

[25] Carr MJ, Toma JS, Johnston APW, Steadman PE, Yuzwa SA,

Mahmud N, et al. Mesenchymal precursor cells in adult nerves

contribute to mammalian tissue repair and regeneration. Cell

Stem Cell 2019;24:240–56.

[26] Nusse YM, Savage AK, Marangoni P, Rosendahl-Huber AKM,

Landman TA, De Sauvage FJ, et al. Parasitic helminths induce

fetal-like reversion in the intestinal stem cell niche. Nature

2018;559:109–13.

[27] Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML,

Snyder MP, et al. Single-cell chromatin accessibility reveals

principles of regulatory variation. Nature 2015;523:486–90.

[28] Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L,

Gunderson KL, et al. Multiplex single-cell profiling of chromatin

accessibility by combinatorial cellular indexing. Science

2015;348:910–4.

[29] Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz

DA, et al. Single-cell ChIP-seq reveals cell subpopulations

defined by chromatin state. Nat Biotechnol 2015;33:1165–72.

[30] Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E,

Dean W, et al. Single-cell Hi-C reveals cell-to-cell variability in

chromosome structure. Nature 2013;502:59–64.

[31] Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ,

Disteche CM, et al. Massively multiplex single-cell Hi-C. Nat

Methods 2017;14:263–6.

[32] Jin W, Tang Q, Wan M, Cui K, Zhang Y, Ren G, et al. Genome-

wide detection of DNase i hypersensitive sites in single cells and

FFPE tissue samples. Nature 2015;528:142–6.

http://refhub.elsevier.com/S1672-0229(21)00011-5/h0005
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0005
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0005
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0005
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0010
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0010
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0010
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0010
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0015
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0015
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0020
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0020
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0020
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0025
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0025
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0025
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0030
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0030
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0030
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0030
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0035
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0035
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0035
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0040
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0040
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0040
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0045
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0045
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0045
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0045
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0050
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0050
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0050
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0055
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0055
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0055
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0060
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0060
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0060
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0065
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0065
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0065
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0070
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0070
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0070
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0070
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0075
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0075
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0080
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0080
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0080
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0080
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0085
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0085
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0085
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0085
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0090
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0090
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0090
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0095
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0095
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0095
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0100
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0100
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0100
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0105
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0105
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0105
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0110
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0110
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0110
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0115
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0115
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0115
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0115
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0120
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0120
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0120
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0125
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0125
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0125
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0125
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0130
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0130
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0130
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0130
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0135
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0135
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0135
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0140
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0140
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0140
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0140
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0145
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0145
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0145
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0150
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0150
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0150
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0155
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0155
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0155
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0160
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0160
http://refhub.elsevier.com/S1672-0229(21)00011-5/h0160


188 Genomics Proteomics Bioinformatics 19 (2021) 172–190
[33] Adli M, Zhu J, Bernstein BE. Genome-wide chromatin maps

derived from limited numbers of hematopoietic progenitors. Nat

Methods 2010;7:615.

[34] Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin

DA, David E, et al. Chromatin state dynamics during blood

formation. Science 2014;345:943–9.

[35] Cao Z, Chen C, He B, Tan K, Lu C. A microfluidic device for

epigenomic profiling using 100 cells. Nat Methods 2015;12:959.

[36] Ma S, Hsieh YP, Ma J, Lu C. Low-input and multiplexed

microfluidic assay reveals epigenomic variation across cerebel-

lum and prefrontal cortex. Sci Adv 2018;4:eaar8187.

[37] Grosselin K, Durand A, Marsolier J, Poitou A, Marangoni E,

Nemati F, et al. High-throughput single-cell ChIP-seq identifies

heterogeneity of chromatin states in breast cancer. Nat Genet

2019;51:1060.

[38] Cusanovich DA, Hill AJ, Aghamirzaie D, Daza RM, Pliner HA,

Berletch JB, et al. A single-cell atlas of in vivo mammalian

chromatin accessibility. Cell 2018;174:1309–24.

[39] Goryshin IY, Reznikoff WS. Tn5 in vitro transposition. J Biol

Chem 1998;273:7367–74.

[40] Satpathy AT, Granja JM, Yost KE, Qi Y, Meschi F, McDermott

GP, et al. Massively parallel single-cell chromatin landscapes of

human immune cell development and intratumoral T cell

exhaustion. Nat Biotechnol 2019;37:925–36.

[41] Rashid NU, Giresi PG, Ibrahim JG, Sun W, Lieb JD. ZINBA

integrates local covariates with DNA-seq data to identify broad

and narrow regions of enrichment, even within amplified

genomic regions. Genome Biol 2011;12:R67.

[42] Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-

Armstrong NA, Vesuna S, et al. An improved ATAC-seq

protocol reduces background and enables interrogation of frozen

tissues. Nat Methods 2017;14:959.

[43] Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility

and the regulatory epigenome. Nat Rev Genet 2019;20:207–20.

[44] Cusanovich DA, Reddington JP, Garfield DA, Daza RM,

Aghamirzaie D, Marco-Ferreres R, et al. The cis-regulatory

dynamics of embryonic development at single-cell resolution.

Nature 2018;555:538–42.

[45] Preissl S, Fang R, Huang H, Zhao Y, Raviram R, Gorkin DU,

et al. Single-nucleus analysis of accessible chromatin in develop-

ing mouse forebrain reveals cell-type-specific transcriptional

regulation. Nat Neurosci 2018;21:432–9.

[46] Spektor R, Yang JW, Lee S, Soloway PD. Single cell ATAC-seq

identifies broad changes in neuronal abundance and chromatin

accessibility in Down Syndrome. bioRxiv 2019;561191.

[47] Mezger A, Klemm S, Mann I, Brower K, Mir A, Bostick M,

et al. High-throughput chromatin accessibility profiling at single-

cell resolution. Nat Commun 2018;9:3647.

[48] Chen X, Shen Y, Draper W, Buenrostro JD, Litzenburger U,

Cho SW, et al. ATAC-see reveals the accessible genome by

transposase-mediated imaging and sequencing. Nat Methods

2016;13:1013.

[49] Lareau CA, Duarte FM, Chew JG, Kartha VK, Burkett ZD,

Kohlway AS, et al. Droplet-based combinatorial indexing for

massive scale single-cell epigenomics. Nat Biotechnol

2019;37:916–24.

[50] Montefiori L, Hernandez L, Zhang Z, Gilad Y, Ober C,

Crawford G, et al. Reducing mitochondrial reads in ATAC-seq

using CRISPR/Cas9. Sci Rep 2017;7:2451.

[51] Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C, Li

LH, et al. Lineage tracing in humans enabled by mitochondrial

mutations and single-cell genomics. Cell 2019;176:1325–39.

[52] Xu J, Nuno K, Litzenburger UM, Qi Y, Corces MR, Majeti R,

et al. Single-cell lineage tracing by endogenous mutations

enriched in transposase accessible mitochondrial DNA. Elife

2019;8:e45105.

[53] Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L,

et al. Perturb-seq: dissecting molecular circuits with scalable
single-cell RNA profiling of pooled genetic screens. Cell

2016;167:1853–66.

[54] Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK, Chen
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