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ABSTRACT Genomic-enabled prediction in plant and animal breeding has become an active area of
research. Many prediction models address the collinearity that arises when the number (p) of molecular
markers (e.g. single-nucleotide polymorphisms) is larger than the sample size (n). Here we propose four
Bayesian approaches to the problem based on commonly used data reduction methods. Specifically,
we use a Gaussian linear model for an orthogonal transformation of both the observed data and the
matrix of molecular markers. Because shrinkage of estimates is affected by the prior variance of trans-
formed effects, we propose four structures of the prior variance as a way of potentially increasing the
prediction accuracy of the models fitted. To evaluate our methods, maize and wheat data previously
used with standard Bayesian regression models were employed for measuring prediction accuracy
using the proposed models. Results indicate that, for the maize and wheat data sets, our Bayesian models
yielded, on average, a prediction accuracy that is 3% greater than that of standard Bayesian regression
models, with less computational effort.
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Predicting complex traits possibly affected by large numbers of genes
(each one having a small effect) that are greatly affected by the envi-
ronment is a difficult task. Information from dense molecular markers
attempts to exploit linkage disequilibrium between at least one marker
and at least one putatively causal locus, so as to predict the genetic
values of individuals based on their phenotypic data.

There is a vast literature describing methods that use different
functions of markers for predicting genetic values (e.g., de los Campos
et al. 2012; Gianola 2013), starting with the seminal work of Meuwissen
et al. (2001), in which they propose genome-based prediction func-
tions that regress phenotypes on all available markers by using
a Gaussian linear model with three different prior distributions on
marker effects. Several regularized regression models, such as ridge
regression (Hoerl and Kennard 1970), the Least Absolute Shrinkage

and Selection Operator (i.e., LASSO) (Tibshirani 1996), and its
Bayesian counterpart (Park and Casella 2008; de los Campos e al.
2010), have been described and used for genomic-based prediction
in animals and plants (de los Campos et al. 2009, 2010; Crossa et al.
2010, 2011; Gónzalez-Camacho et al. 2012; Heslot et al. 2012; Pérez-
Rodríguez et al. 2010, 2012).

The basic quantitative genetic model describes the ith response or
phenotype (yi) as the sum of an unknown genetic value (gi) plus a re-
sidual ei expressed as a deviation from some general mean (m); thus, the
basic model is yi ¼ gi þ ei (i ¼ 1; :::; n). The unknown genetic value
can be represented as a function of genotypes with a large number of
genes that may involve all gene · gene interactions, if there are any.
Because the genes affecting a trait are unknown, this complex function
must be approximated by, for example, a regression of phenotype on
marker genotypes. Large numbers of bi-allellic markers on fxi1; . . . ; xipg
(xij is the number of copies of one of the two alleles observed in the ith

individual at the jth marker) may be used in a regression function for
predicting the genetic value of the ith individual. The regression can be
formulated as uðxÞ ¼ uðxi1; . . . ; xipÞ such that the basic genomic model
becomes yi ¼ ui þ ei, where ei is a model error that may include errors
due to unspecified environmental effects, imperfect linkage disequilib-
rium between markers and the actual loci affecting the trait, and un-
accounted for gene · gene and gene · environment interactions. In
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several applications, uðxÞ is a parametric linear regression of the form
uðxi1; . . . ; xipÞ ¼

Pp
j¼1 xijbj, where bj is the substitution effect of the

allele coded as ‘one’ at the jth marker.
The linear regression function on markers becomes

yi ¼
Pp

j¼1 xijbj þ ei, or, in matrix notation,

y ¼ Xbþ e (1)

where X is the n·p incidence matrix, b is the vector of unknownmarker
effects, and e is an n·1 vector of random errors, typically assumed to
follow the normal distribution Nð0; Ins2

e Þ; where s2
e is the random

error variance component. If the vector of marker effects is assumed
random with normal distribution Nð0; Ips2

bÞ, where s2
b is the variance

of marker effects, then the genetic value of the individuals is u ¼ Xb
with a variance-covariance matrix proportional to the genomic relation-
ship matrix G¼XX

0
=
Pp

j¼1 2qjð12 qjÞ (where qj is the frequency of
allele “1” often estimated from the data at hand); this random effect
leads to the genomic best linear unbiased predictor (Vanraden, 2007,
2008), which is extensively used in genomic-assisted prediction. Note
that the Bayesian ridge regression (BRR) is equivalent to the genomic
best linear unbiased predictor when the distribution of single-nucleotide
polymorphism (SNP) effects is regarded as Gaussian with mean 0 and
variance Ips2

b; that  is Nð0; Ips2
bÞ (Pérez-Rodríguez et al. 2012).

The regression function uðxi1; . . . ; xipÞ also can be represented by
semiparametric approaches, such as reproducing Kernel Hilbert space
regressions or different types of neural networks (Gianola et al. 2006,
2011; Gianola and Van Kaam 2008; de los Campos et al. 2010; González-
Camacho et al. 2012; Pérez-Rodríguez et al. 2012). de los Campos et al.
(2012) reviewed penalized linear regression models and Bayesian shrink-
age estimation methods.

The basic linear model (1) is generally overparameterized and
therefore ill-conditioned because there are many more predictors
(markers) than individuals with observations (p . .n), as well as
strong collinearity among predictors due to linkage disequilibrium;
hence X is not a full column rank. These challenges can be overcome
using what is called the inverse problem approach (Aster et al. 2005;
Tarantola 2005). The discrete inverse problem approach for matrices
of incomplete rank or that are ill-conditioned due to possible collin-
earity is discussed at length by Aster et al. (2005), whereas Tarantola
(2005) addresses the continuous version of the same problem. Cavalier
(2008) summarized the inverse problem as a nonparametric regression,
d ¼ Tuþ ~e, of a transformed data vector d on the linear operator
Tn · n with u 2 Qn4ℝn as a vector of regression parameters and ~e
as a vector of Gaussian errors. Within a Bayesian framework, Knapick
et al. (2012) proposed a solution by using the singular value decom-
position of T such that the decay of singular values is mimicked in the
prior distribution of u. Thus, estimating the unknown transformed
marker effects of u from this perspective seems of interest but has
not been attempted in genome-enabled prediction. The inferential
solution to the inverse problem is based on the posterior distribution
of u, with the variability of ~e and prior beliefs about u conveyed
through probabilistic models.

In the prediction context, de los Campos et al. (2010) used the fact
that the matrix G (or X) may be eigen-decomposed as G ¼ UDU 9,
withD containing the eigenvalues of G, and U being its corresponding
eigenvectors. This transformation allows reducing the original highly
dimensional data to fewer dimensions by extracting most of the sig-
nals in the “first” components of the decomposition and relegating the
noise to the “last” components. As de los Campos et al. (2010) dem-
onstrated, the regression of phenotypes on all markers is equivalent to
the regression of phenotypes on a set of rotated covariates. Imple-

menting regression methods with p. . n generally requires either
shrinkage estimation or reducing the dimensionality of the data,
which is the approach considered here. Recently, Gianola (2013) stud-
ied the influence of the prior on the posterior inference of marker
effects in the overparameterized models used in genome-enabled pre-
diction. He concluded that a main driving force in the various Bayes-
ian models (Bayesian alphabet) is the prior and not the data; thus
different priors will produce different results mainly because their
shrinkage effect varies.

In this work, we propose using the parametric model (1) within
the framework of inverse problems and a Bayesian approach to
predict genetic values of individuals when p . .n. This proposal is
similar to that introduced by de los Campos et al. (2010) for dimen-
sion reduction. However, ours has several different features, including
an orthogonal transformation of the observed data (y), as well as
differential shrinkage as a result of the prior variance assigned to
the regression parameters.

MATERIALS AND METHODS

Statistical methods
In model (1), when X is not of full rank, the least squares solution for
the unknown b is neither unique nor stable. These ill-conditioned
problems may be analyzed within the framework of an inverse prob-
lem theory by using the singular value decomposition of X, of order
n·p (Aster et al. 2005), as X ¼ USV 9; where U and V are orthonor-
mal matrices of orders n·n and p·p, respectively, and S is a rectan-
gular n·p matrix containing n non-negative singular values ordered
from largest to smallest, s1 $ s2 $⋯$ sn. One can write S ¼ ½S1; S2�,
where S1 is the n· n matrix with singular values along its diagonal,
and S2 is a matrix of order n·(p-n) and all its entries are null. Con-
sider the linear transformation on both sides of (1):

U9y ¼ U9USV9bþ U9e

and let d ¼ U9y, b ¼ V9b and ~e ¼ U9e. Since  U9U ¼ In, the model
(1) becomes:

d ¼ Sbþ ~e (2)

In (2), d and ~e are vectors each of order n·1 and b is a vector of

order p·1. The column vector b is partitioned as b ¼
h b1
b2

i
; where

b1 is an n·1, and b2 has order (p-n)·1. Therefore, equation (2)
becomes:

d ¼ S1b1 þ S2b2 þ ~e ¼ S1b1 þ ~e

because S2b2 is zero for any value of b2. Here only the first n entries
of b can be inferred.

Since ~e ¼ U9e, it follows that ~e ¼ U9e eNð0;U9Us2
e Þ ¼

Nð0; Ins2
e Þ. The distribution of the transformed data d; given b and

s2
e ; is

f ðdjb;s2
e Þ ¼

Yn
i¼1

Nðdijsibi;s2
e Þ

where di is the i-th element of d and has the form

di ¼ sibi þ ~ei;   ði ¼ 1; . . . ; nÞ (3)

since S1 ¼ diagfs1; . . . ; sng. To recover the original parameter b, the
p · p matrix V is partitioned into V ¼ ½V1;V2�, where V1 contains
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the first n columns of V ; and V2 contains the remaining p2 n, so
that b ¼ V1b1 þ V2b2. The p original parameters are recovered as
b ¼ V1b1; whereas b2 does not contribute to fitting the data, that
is:

b ¼
Xn
i¼1

biV i;1 (4)

where V i;1 is the i-th column of V1. Hence

covðbjb2 ¼ 0Þ ¼ V1covðb1ÞV19 (5)

and, for example, independent Gaussian priors can be assigned to
each of the elements of b1. Obviously, b2 is an unknown quantity, so
a prior must be assigned to this vector. However, as shown pre-
viously and in Gianola (2013), the likelihood function does not de-
pend on b2, so the data do not provide information about b2. Here,
the marginal posterior of b1 is the likelihood times its prior, and the
marginal posterior of b2 is equal to its prior. Thus, if the Dirac delta
function is assigned as a prior to each element of b2, we get (4) as the
quantity of interest and can safely leave b2 out of the analysis. Thus
b1, V1 and S1 will herein after be denoted as b, V and S, respectively,
without loss of generality.

The ordinary least squares estimator of b found using the gener-
alized Moore-Penrose inverse method is

b� ¼
Xn
i¼1

di
si
V i (6)

Thus, b� depends on the ratios di
si
; i ¼ 1; . . . ; n; between transformed

data points and the decaying singular values, which could be inter-
preted as representing a decreasing signal-noise ratio sequence. So,
as singular values decay, there is an increase in the noise component
of the least squares estimate of component b. This signal-noise ratio
is inversely proportional to the singular values, as is clearly shown by
the expression:

di
si
¼ bi þ s2 1

i ~ei (7)

The least squares estimator of bi can be computed from expression
(7) as b�i ¼ di

si
and serves as a basis for regularizing estimation

through truncation or weighting.

A Bayesian inverse regression model
Several methods have been proposed for mitigating ill-conditioned
regression problems by shrinking the solution space via restricting the
magnitudes of the estimates and their variance. One of the first
proposals was the ridge regression estimator (Hoerl and Kennard
1970). Since model (3) has the form d ¼ Sbþ ~e, with
~e � Nð0; Ins2

e Þ, the ridge regression estimator is:

bg ¼
�
S9SþG

�21
S9d¼ �S2 þG

�21
Sd (8)

with G as a diagonal matrix of dimensions n·n with values on the di-
agonal. Here g. 0 is a vector of parameters that reduce ill-conditioning.
If their magnitude increases excessively, this can lead to a poor fit of the
model to the data. Therefore, the choice of vector g is critical.

Hoerl and Kennard (1970) showed that there is a range of g values
where the mean squared error (MSE) of estimates is smaller than the
corresponding MSE of the ordinary least squares solution. They mini-
mized MSE by choosing

gi ¼
s2
e

b2i
;   ði ¼ 1; . . . ; nÞ (9)

This requires knowing the true values of b. However, (9) can be used
to justify the choice

g � ns2
e

b̂
9
b̂
� ŝ2

e

ŝ2
b

(10)

where b̂, ŝ2
b ¼ b̂

9
b̂=n, and ŝ2

e are estimates of b, s2
b ,  and  s

2
e , respec-

tively, thus providing a single (global) shrinkage parameter.
In the Bayesian approach, the prior distribution reflects prior

beliefs about bi, and its variance affects the extent to which the least
squares estimate moves toward the prior mean. To construct a model
along the lines of de los Campos et al. (2012), we adopted as the
conditional prior distribution of bi

pðbijliÞ ¼ Nðbij0; liÞ;   i ¼ 1; . . . ; n (11)

where the bi coefficients (given li) are conditionally independent.
Therefore, the joint posterior distribution of b and s2

e in model (3) is
given by:

p
�
b;s2

e jd; S;l
�
}

(Yn
i¼1

N
�
dijsibi;s2

e

�
Nðbij0; liÞ

)
p
�
s2
e

�
(12)

where li (i = 1,. . .,n) are variance parameters and pðs2
e Þ is the prior

distribution of s2
e . Usually the conjugate prior for s2

e is a scaled
inverse x2 distribution with ye degrees of freedom and scale param-
eter Sce, that is,

p
�
s2
e

� ¼ x22ðs2
e

��ye; SceÞ (13)

From (12), the conditional posterior distribution of b is:

p
�
bjd; S;l;s2

e

� ¼Yn
i¼1

N

�
bij lisidi

lis2i þ s2
e
;

s2
eli

s2
e þ lis2i

�
(14)

Expression (14) indicates that the conditional posterior mean
depends on the data (di), whereas the variance is a fixed but unknown
quantity.

The conditional expectation of b in (14) can also be expressed as

E
�
bi
��di; si; li;s2

e

� ¼ lisidi
lis2i þ s2

e
¼ fib

�
i

where fi ¼ lis2i
lis2i þs2

e
is known as the ‘weighting factor’ that weights

the least squares estimate b�i ¼ di
si
.

Because the magnitude of variance of b�i ði ¼ 1; . . . ; nÞ grows with i,
Casella (1985) suggested applying a lower weighting factor for estimates
with larger variance. The weighting factor assigns weights close to one
to the first elements of b�, whereas the remaining elements receive
lower weights, and can take on values close to zero, or zero itself.

Bayesian inverse parametric regression models
Four versions of the Bayesian inverse regression models are described
in this section. The first two, Bayesian inverse ridge regression (BIRR)
and Bayes A inverse (BAI), are versions of the standard BRR and
Bayes A (Meuwissen et al. 2001), respectively. In these models, the
decay of the prior variances is not explicitly considered, whereas
the other two proposed models do incorporate a prior decay of the
variances.
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Bayesian inverse ridge regression (BIRR): The posterior expectation
of bi, given di; si; li and s2

e in (14), can also be written as:

E
�
bijdi; si; li;s2

e

� ¼ ðs2i þ
s2
e

li
Þ21sidi

which agrees with the ridge estimator in (8). A special case (BIRR) is
when all prior distributions of bi are assigned a constant variance
li ¼ s2

b. Then

pðbijliÞ ¼ N
�
bij0; li ¼ s2

b

�
  i ¼ 1; . . . ; n

If a scaled inverse x2 distribution is assigned to s2
b, the joint poste-

rior distribution of ðb;s2
b;s

2
e Þ is given by:

p
�
b;s2

b;s
2
e jd; S; yb; Scb; ye; Sce

�
}

(Yn
i¼1

N
�
dijsibi;s2

e

�
N
�
bij0;s2

b

�)

· x22�s2
bjyb; ybScb

�
p
�
Scb
�
x22�s2

e jye; Sce
�

(15)

Note that model BIRR is analogous to the standard BRR in the
sense that they both assign to the regression parameters a prior
distribution with mean zero and constant variances.

Bayes A inverse (BAI): Bayes A (Meuwissen et al. 2001) assigns the
scaled t distribution as a prior to each marker effect, which can be
represented as a normal-gamma mixture. We then have a hierarchical
model with two levels: in the first one, a normal distribution with zero
mean and variance li ¼ s2

bi
is used as a conditional prior for b and, in

the second level, the same scaled inverse x2 prior distribution is used
for all s2

bi
(Yi and Xu 2008). Thus the joint posterior distribution of

ðb;s2
bi
; Scb;s2

e ) is

p
�
b;s2

b1 . . . ;s
2
bn ; Scb;s

2
e jd; S; yb; Scb; ye; Sce

�
}

(Yn
i¼1

N
�
dijsibi;s2

e

�
N
�
bij0;s2

bi

�
x22

�
s2
bi jyb; ybScb

�)

· pðScbÞx22ðs2
e jye; SceÞ (16)

According to Yi and Xu (2008), when yb ¼ 0; and  Scb ¼ 0, this
induces an improper distribution of b. Therefore, these hyper-
parameters should be greater than zero. We assigned yb ¼ 3
and, for Scb, a uniform distribution with support on the interval
(0,A), where A . 0. It should be noted that model BAI is not
equivalent to the standard Bayes A because the prior variance of b
under BAI is not the prior variance of the transformation V9b
under Bayes A.

Bayesian inverse regression with decay model 1 (BIR1): The mean
of the posterior distribution of b can be seen as the product of a filter
producing values that tend to shrink the least squares estimate toward
0 through the weighting factor fi, which depends on singular values of
X. It is then reasonable to assume a prior that will shrink the values of
b�, in accordance with the singular values decay. Suppose we assign
Nð0;CÞ as prior distribution to b with C ¼ VLV 9 being the eigen-
decomposition of C, where V is the right orthogonal p · p matrix
of the singular value decomposition X ¼ USV9. Then the prior

distribution of b is Nð0;LÞ because b ¼ V9b and the vector s2 of
eigenvalues of X9X and the vector l of eigenvalues of C share the
same V eigenvectors. Therefore, in this case it can be assumed that
there is a relationship between si and li, i ¼ 1; . . . ; n. Note that this
relationship is consistent with what de los Campos et al. (2010)
presented for semiparametric regression.

Knapick et al. (2012) proposed that the variances of the prior
distribution be represented as li ¼ ui2122aði ¼ 1; . . . ; nÞ in an at-
tempt to mimic the decay of the singular values of X, as sug-
gested above. Thus, u is a parameter that scales the rate i2122a of
decay of the prior variance with respect to i. Knapick et al. (2012)
suggested fixing a and letting u be the regularization parameter
to be inferred, but without indicating how to do it. Since u is an
unknown scale parameter, it seems appropriate to assign an inverse
scaled x2 distribution to it with parameters yu; Scu. However, this
may produce overshrinkage, which would be reflected in a poor
fit and, thus, low prediction power. To address this problem, we
redefined li as

li ¼ u
�
i2122a þ h

�
(17)

where h represents a smoothing parameter. The idea of adjusting the
decay of a prior variance with a smoothing parameter was given by
Maruyama and George (2011).

Thus the posterior density of ðb;u; Scu;s2
e Þ; given d; S; is:

p
�
b;u; Scu;s

2
e jd; S; h; yu;a; ye; Sce

�
}

(Yn
i¼1

N
�
dijsibi;s2

e

�
Nðbij0; liÞ

)

· x22�ujyu; yuScu�p�Scu�x22�s2
e jye; Sce

�
(18)

where pðScuÞ is a proper prior distribution for Scu.

Bayesian inverse regression with decay model 2 (BIR2): A variant of
BIR1 is obtained by defining li ¼ usai . In this case, we may assign as
prior for u an inverse scaled x2 distribution, with a kept fixed. Thus,
the posterior is

p
�
b;u; Scu;s

2
e jd; S;a

�
}

(Yn
i¼1

N
�
dijsibi;s2

e

�
N
�
bij0;usai

�)

· x22�ujyu; yuScu�pðScuÞx22ðs2
e jye; SceÞ (19)

with pðScuÞ being a proper prior distribution. When the value of a
increases, shrinkage tends to increase, and when a decreases, shrink-
age decreases and approximates BIRR when a=0. In the examples
below, a=1 (the default value).

Gibbs sampler
It is difficult to sample from the joint posterior distributions (15), (16),
(18), and (19), because there are no known closed forms. However, it
is possible to obtain the closed form for conditional distributions of
the parameters (see the Appendix). This allows using Markov Chain
Monte Carlo through the Gibbs Sampler (Gelfand and Smith 1990)
algorithm, which samples sequentially from the full conditional dis-
tributions until it reaches a stationary process, converging with the
joint posterior distribution.
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We carried out convergence and diagnostic tests on different data
sets. The Gelman-Rubin convergence tests for the four models were
satisfactory, using lag-10 thinning results in low autocorrelations in
each of the four models. The Raftery-Lewis test suggested a small
burn-in and a number of iterations between 10,000 and 20,000 for the
data set used below.

With the aim of decreasing the possible impact of Markov Chain
Monte Carlo errors on prediction accuracy, we performed a total of
60,000 iterations with a burn-in of 10,000 and a thinning of 10 so that
5000 samples were used for inference.

EXPERIMENTAL DATA

Maize data set
The maize data represented 21 trait-environment combinations for
300 tropical inbred lines genotyped with 55,000 SNPs each (González-
Camacho et al. 2012). A first group of traits included female flowering
or days to silking, male flowering (MFL) or days to anthesis, and
the anthesis-silking interval. Each trait was evaluated under severe
drought stress and in well-watered environments. This data set was
also used by Crossa et al. (2010) for assessing prediction performance,
but they used only 1148 SNPs.

In the second group of traits, grain yields (GYs) were obtained
under severe drought stress and well-watered environments. Further-

more, GYs of the 300 maize lines also were measured in a large
number of relatively high yielding environments and low yielding
environments. In the third group of traits, the 300 maize lines also
were evaluated in nine international environments for gray leaf spot
(GLS), a disease caused by the fungus Cercospora zeae-maydis. Finally,
in the fourth group, the same 300 lines were evaluated in another set
of trials for northern corn leaf blight (NCLB), a disease caused by the
fungus Exserohilum turcicum.

Wheat data set
This data set included 306 elite wheat lines from CIMMYT’s Global
Wheat Program that were also used by Pérez-Rodríguez et al. (2012).
These lines were genotyped with 1717 diversity array technology
markers generated by Triticarte Pty. Ltd. (Canberra, Australia;
http://www.triticarte.com.au). Two traits were analyzed: days to head-
ing, measured in 10 different environments, and GY, measured in
seven different environments.

Comparing models using cross-validation
Model predictions for each of the maize and wheat data sets were
done in each of 50 random partitions, with 90% of the individuals in
the training set and 10% of individuals in the testing set to be predicted.
We used the same 50 random partitions as González-Camacho et al.

n Table 1 Maize data sets

Trait-Environment
Combination+

Mean Correlation Mean PMSE

BRR BIRR BAI BIR1 BIR2 BRR BIRR BAI BIR1 BIR2

FFL-WW 0.818 0.819 0.828 0.842 0.847 0.262 0.260 0.219 0.201 0.196
FFL-SS 0.754 0.755 0.759 0.762 0.764 0.342 0.325 0.325 0.324 0.320
MFL-WW 0.822 0.822 0.829 0.841 0.850 0.263 0.263 0.225 0.203 0.198
MFL-SS 0.776 0.777 0.784 0.782 0.788 0.318 0.318 0.299 0.298 0.293
ASI-WW 0.582 0.582 0.580 0.578 0.574 0.649 0.648 0.649 0.651 0.655
ASI-SS 0.613 0.614 0.617 0.614 0.611 0.653 0.652 0.647 0.649 0.650
Average 0.727 0.728 0.733 0.736 0.739
% increase 21.2% 21.1% 20.5% 0% 0.4%
GY-SS 0.320 0.326 0.305 0.354 0.360 0.890 0.883 0.904 0.866 0.862
GY-WW 0.557 0.558 0.555 0.558 0.558 0.677 0.675 0.680 0.674 0.675
GY-HI 0.634 0.635 0.664 0.667 0.674 0.597 0.595 0.558 0.554 0.546
GY-LOW 0.410 0.412 0.419 0.424 0.423 0.863 0.845 0.847 0.835 0.837
Average 0.480 0.483 0.486 0.501 0.503
% increase 24.2% 23.7% 23.1% 0% 0.4%
GLS 1 0.241 0.238 0.260 0.282 0.287 0.930 0.928 0.920 0.902 0.900
GLS 2 0.419 0.421 0.414 0.427 0.426 0.827 0.825 0.835 0.819 0.819
GLS 3 0.588 0.589 0.585 0.586 0.584 0.625 0.624 0.629 0.627 0.629
GLS 4 0.522 0.522 0.529 0.533 0.528 0.735 0.733 0.728 0.721 0.729
GLS 5 0.338 0.341 0.348 0.360 0.356 0.819 0.815 0.807 0.801 0.803
GLS 6 0.257 0.274 0.241 0.278 0.276 0.975 0.964 0.986 0.959 0.960
GLS 7 0.474 0.475 0.472 0.480 0.484 0.761 0.761 0.766 0.756 0.750
GLS 8 0.595 0.596 0.593 0.593 0.591 0.618 0.617 0.621 0.620 0.622
GLS 9 0.522 0.522 0.529 0.533 0.530 0.734 0.732 0.728 0.723 0.727
Average 0.442 0.442 0.441 0.453 0.445
% increase 22.9% 22.4% 22.6% 0% 20.2%
NCBL 1 0.649 0.649 0.697 0.693 0.697 0.592 0.592 0.521 0.527 0.523
NCBL 2 0.469 0.473 0.523 0.526 0.524 0.731 0.723 0.673 0.679 0.680
Average 0.559 0.561 0.61 0.610 0.611 0.656 0.658 0.646 0.638 0.639
% increase 29.0% 28.7% 0.2% 0% 0.7%

Mean predicted correlation, average, % increase correlation with respect to model BIR1, and mean PMSE of five models, BRR, BIRR, BAI, BIR1, and BIR2, for 50
random partitions for each of 21 trait-environment combinations. The largest correlations and smallest PMSE for each trait-environment combination are in boldface.
PMSE, predictive mean squared error; BRR, Bayesian ridge regression; BIRR, Bayesian inverse ridge regression; BAI, Bayes A inverse; BIR1, Bayesian inverse regression
model 1; BIR2, Bayesian inverse regression model 2; FFL, female flowering; WW, well-watered environment; SS, severe drought stress; MFL, male flowering; ASI, MFL
to FFL interval; GY, grain yield; HI, optimum environment; LOW, stress environment; GLS, Cercospora zeae-maydis; NCLB, Exserohilum turcicum.
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(2012) and Pérez-Rodríguez et al. (2012). Pearson’s correlation between
predicted and observed values and the predictive mean squared error
(PMSE) were used as measures of predictive ability.

Data and software
The 21 maize data sets and the 17 wheat data sets, as well as the R
scripts developed to fit the predictive statistical models BIRR, BAI,

n Table 2 Maize data sets

Trait-Environment
Combination

Number of Times One Model Had a Larger Correlation
Than Another Model over 50 Random Partitions

BIR1 . BIRR BIR1 . BAI BIR2 . BIRR BIR2 . BAI BIR2 . BIR1

FFL-WW 38 32 40 35 28
FFL-SS 36 27 35 40 33
MFL-WW 41 36 41 38 33
MFL-SS 39 30 39 35 30
ASI-WW 24 23 19 16 16
ASI-SS 25 20 19 18 17
GY-SS 33 41 36 41 31
GY-WW 26 33 25 34 22
GY-HI 42 33 43 30 26
GY-LOW 32 29 31 27 25
GLS 1 35 33 37 33 29
GLS 2 31 34 30 33 19
GLS 3 21 28 18 26 20
GLS 4 32 29 28 23 17
GLS 5 33 32 31 29 21
GLS 6 26 32 26 32 21
GLS 7 34 37 31 34 31
GLS 8 18 24 19 23 24
GLS 9 30 29 29 24 24
NCBL 1 46 19 46 26 33
NCBL 2 46 15 44 21 23
Average 33 29 32 29 25

Number of times one model had a greater correlation than another model in 50 random partitions for each of the
21 trait-environment combinations. The models were BIRR, BAI, BIR1, and BIR2. BIR1, Bayesian Inverse
regression model 1; BIRR, Bayesian inverse ridge regression; BAI, Bayes A inverse; BIR2, Bayesian inverse
regression model 2; FFL, female flowering; WW, well-watered environment; SS, severe drought stress; MFL, male
flowering; ASI, MFL to FFL interval; GY, grain yield; HI, optimum environment; LOW, stress environment; GLS,
Cercospora zeae-maydis; NCLB, Exserohilum turcicum. Environment 129.

n Table 3 Wheat data sets

Trait Environment BL BRR Bayes A Bayes B BIRR BAI BIR1 BIR2

DTH 1 0.59 (0.11) 0.59 (0.11) 0.59 (0.11) 0.56 (0.11) 0.60 (0.11) 0.60 (0.11) 0.60 (0.11) 0.59 (0.11
2 0.58 (0.14) 0.57 (0.14) 0.61 (0.12) 0.57 (0.13) 0.62 (0.14) 0.61 (0.14) 0.62 (0.14) 0.65 (0.12)
3 0.60 (0.13) 0.60 (0.12) 0.62 (0.11) 0.60 (0.12) 0.62 (0.12) 0.62 (0.12) 0.62 (0.12) 0.63 (0.12)
4 0.02 (0.18) 0.07 (0.17) 0.06 (0.17) 0.06 (0.17) 0.06 (0.18) 0.01 (0.18) 0.06 (0.18) 0.04 (0.20)
5 0.65 (0.09) 0.64 (0.10) 0.66 (0.09) 0.66 (0.09) 0.65 (0.09) 0.65 (0.09) 0.65 (0.09) 0.65 (0.09)
8 0.36 (0.15) 0.37 (0.15) 0.36 (0.15) 0.35 (0.14) 0.38 (0.15) 0.39 (0.15) 0.38 (0.15) 0.36 (0.15)
9 0.59 (0.12) 0.59 (0.11) 0.53 (0.12) 0.52 (0.11) 0.60 (0.11) 0.60 (0.11) 0.60 (0.11) 0.57 (0.11)

10 0.54 (0.14) 0.52 (0.14) 0.56 (0.13) 0.54 (0.14) 0.55 (0.13) 0.54 (0.14) 0.55 (0.13) 0.56 (0.12)
11 0.52 (0.15) 0.52 (0.16) 0.53 (0.13) 0.51 (0.13) 0.54 (0.15) 0.54 (0.16) 0.54 (0.15) 0.52 (0.13)
12 0.45 (0.19) 0.42 (0.18) 0.45 (0.18) 0.45 (0.18) 0.47 (0.18) 0.47 (0.18) 0.48 (0.18) 0.49 (0.19)

Average 0.49 0.49 0.50 0.48 0.51 0.50 0.510 0.51
% increase 24.0% 24.3% 22.6% 25.8% 20.1% 21.1% 0% -0.7%

GY 1 0.48 (0.13) 0.43 (0.14) 0.48 (0.13) 0.46 (0.13) 0.48 (0.13) 0.48 (0.14) 0.48 (0.13) 0.47 (0.13)
2 0.48 (0.14) 0.41 (0.17) 0.48 (0.14) 0.48 (0.14) 0.47 (0.15) 0.47 (0.15) 0.47 (0.15) 0.48 (0.13)
3 0.20 (0.21) 0.29 (0.22) 0.20 (0.22) 0.18 (0.22) 0.24 (0.22) 0.25 (0.21) 0.24 (0.22) 0.21 (0.20)
4 0.45 (0.15) 0.46 (0.13) 0.43 (0.15) 0.42 (0.15) 0.46 (0.14) 0.46 (0.14) 0.46 (0.14) 0.43 (0.14)
5 0.59 (0.14) 0.56 (0.16) 0.75 (0.11) 0.74 (0.12) 0.58 (0.15) 0.58 (0.15) 0.59 (0.15) 0.58 (0.13)
6 0.70 (0.10) 0.67 (0.11) 0.73 (0.08) 0.71 (0.08) 0.71 (0.1) 0.71 (0.10) 0.71 (0.1) 0.71 (0.1)
7 0.46 (0.14) 0.50 (0.14) 0.42 (0.14) 0.40 (0.15) 0.48 (0.14) 0.48 (0.15) 0.48 (0.14) 0.42 (0.15)

Average 0.48 0.474 0.499 0.484 0.489 0.49 0.489 0.473
% increase 21.7% 22.9% 2.1% 20.8% 0.2% 0.5% 0% 23.5%

Mean predictive correlations (SD in parentheses) for GY and DTH by environment for eight models: BL, BRR, Bayes A, Bayes B (Pérez-Rodríguez et al. 2012), BIRR, BAI,
and BIR1 and BIR2. Average correlation for each model and % increase correlation with respect to model BIR1 is shown. The largest values for each trait-environment
combination are in boldface. DTH, days to heading; GY, grain yield; BL, Bayesian least absolute shrinkage and selection operator; BRR, RR-BLUP; BIRR, Bayesian
inverse ridge regression; BAI, Bayes A inverse; BIR1, Bayesian inverse regression model 1; BIR2, Bayesian inverse regression model 2.
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BIR1, and BIR2 used in this study, are deposited at http://repository.
cimmyt.org/xmlui/handle/10883/4036.

RESULTS

Maize data sets
Table 1 shows mean correlations and mean PMSE from 50 random
partitions for four models (BIRR, BAI, BIR1, and BIR2), along
with the results of BRR, obtained using the BLR package in R (de
los Campos and Pérez-Rodríguez 2010; Pérez-Rodríguez et al.
2010). The largest correlations and smallest PMSE for each trait-
environment combination are in boldface. Models BIRR and BAI
gave results similar to those of BRR. Models BIR1 and BIR2, which
explicitly considered the decay of the singular values in the prior
distribution, in general had greater average correlations and lower
average PMSE, indicating better prediction ability than BRR, BIRR,
and BAI.

Table 1 also shows average correlations and percentage differences
from BIR1 for each group of trials: Flowering, GY, GLS, and NCLB.
The approximate differences from BIR1 or BRR and BIRR were 4%
for GY and 9% for NCLB, whereas the differences for GLS and Flow-
ering were 2.6% and 1.2%, respectively. BIR1 and BIR2 had similar
performance. BAI and BIR1 had similar results in the Flowering and
NCLB groups, but BAI was slightly worse for GY and GLS. This
finding indicates a 3% improvement in the overall average prediction
ability of BIR1 and BIR2 over that of BRR, BIRR, and BAI. Model
BIR1 had greater predictive correlations than BRR in 18 of the 21
trait-environment combinations, whereas BIR1 had smaller PMSE
than BRR in 18 of the trait-environment combinations. Models
BIR1 and BIR2 had the lowest PMSE in 16 of the 21 maize data sets.
The PMSE of BIRR and BAI were similar.

Table 2 shows the number of times a model had a greater corre-
lation than another model in 50 random partitions for each of the
21 trait-environment combinations. BIR1 was better than BIRR in
17 trait-environment combinations, i.e., in 697 of 1050 comparisons.
BIR1 was better than BAI in 16 trait-environment combinations,
i.e., in 669 partitions. Also, BIR2 was superior to BIRR and BAI

in 640 and 610 partitions, respectively, of a total of 1050 random
partitions.

Wheat data sets
Table 3 shows mean correlations of models BIRR, BAI, BIR1, and
BIR2, along with results for models BL, BRR, Bayes A, and Bayes B, as
reported by Pérez-Rodríguez et al. (2012) using the same 50 random
partitions. The largest average correlation for each trait-environment
combination is in boldface. The table also shows correlation standard
deviations (in parentheses). In the case of trait days to heading, the
average correlations for BIRR, BAI, BIR1, and BIR2 are very similar
and better than those for BL, BRR, Bayes A, and Bayes B. Within the
GY group, BIRR, BAI, and BIR1 have similar correlations; however,
BIR2, BL, BRR, and Bayes B exhibit a smaller global average than

n Table 4 Wheat data sets

Trait Environment BL BRR Bayes A Bayes B BIRR BAI BIR1 BIR2

DTH 1 13.02 13.18 12.72 13.23 12.81 12.85 12.8 12.66
2 11.89 12.37 10.65 11.28 11.64 11.88 11.59 10.63
3 8.18 8.44 7.31 7.59 8.09 8.04 8.08 7.44
4 21.59 22.27 21.79 21.67 21.61 21.57 21.61 22.7
5 8.86 9.23 8.48 8.37 8.78 8.81 8.78 8.68
8 14.72 15.22 14.54 14.58 14.69 14.68 14.69 14.75
9 21.38 21.44 23.71 23.93 21.36 21.40 21.35 22.22

10 7.72 8.51 7.27 7.57 7.67 7.91 7.62 7.27
11 6.83 7.12 6.59 6.74 6.78 6.74 6.77 6.77
12 13.60 14.42 13.56 13.46 13.66 13.62 13.60 13.42

GY 1 0.07 0.09 0.07 0.07 0.07 0.07 0.07 0.07
2 0.06 0.08 0.06 0.06 0.06 0.06 0.06 0.06
3 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06
4 0.22 0.24 0.23 0.23 0.22 0.22 0.22 0.23
5 0.39 0.44 0.26 0.27 0.40 0.40 0.40 0.39
6 0.13 0.15 0.12 0.13 0.13 0.13 0.13 0.13
7 0.40 0.41 0.43 0.44 0.40 0.40 0.40 0.43

Mean predicted mean squared error between observed and predicted values for GY and DTH of wheat lines in environments (1211) for eight models: BL, BRR, Bayes
A, Bayes B (Pérez-Rodríguez et al. 2012), BIRR, BAI, and BIR1 and BIR2. The smallest values for each trait-environment combination are in boldface. BL, Bayesian least
absolute shrinkage and selection operator; BRR, RR-BLUP; BIRR, Bayesian inverse ridge regression; BAI, Bayes A inverse; BIR1, Bayesian inverse regression model 1;
BIR2, Bayesian inverse regression model 2; DTH, days to heading; GY, grain yield.

Figure 1 Decay of the singular values and noise pattern for maize
trait-environment combination male flowering in well-watered environ-
ments: (A) decay of all singular values, (B) decay of all singular values
except the first 10, and (C) noise in the ordinary least squares (OLS)
estimates for all singular values.
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BIRR, BAI, and BIR1. Table 4 shows the PMSE for both traits, and
their values are in agreement with the results in Table 3.

DISCUSSION
The SVD transformation of the data generates a basic probability
model such that the joint density of the data (given parameters) is the
product of univariate independent random variables, pðdjS; b;s2

e Þ ¼Qn
i¼1

Nðdijsibi;s2
e Þ. Moreover, the new parameterization allows reduc-

ing the dimensionality of the vector of regression parameters from p
to n. Because p-n parameters are not estimable, they do not contribute
to data fitting and are considered to have a prior distribution with
mean and variance equal to zero (a Dirac delta function). Because the
proposed transformation yields n positive singular values, it reduces
the number of parameters to n. This gives BIRR, BAI, BIR1, and BIR2
an extra computational advantage over BRR because the Gibbs sam-
pler algorithm is faster due to the posterior distributions simulating
a smaller number of parameters with univariate distributions. The
proposed inverse Bayesian models implement the idea put forward
by Casella (1985) that the increased instability of the OLS estimates
b�i can be ameliorated by decreasing the value of the weighting
factor. Shrinkage is achieved using the weighting factorðfiÞ, that is,
Eðbi

��; di; si; li;s2
e Þ ¼ fib�i , which weights the estimates b�i such that

the instability of b�i is controlled with a smaller weighting factor. The
weights are highly dependent on the singular values and on the var-
iance of the li prior distribution.

In the following section, we describe the prediction performance of
the four inverse Bayesian methods in terms of the magnitude and
decay of the prior variance and the behavior of the OLS estimates b�i .
Finally, we consider the pattern of noise amplification as a result of the
decay of the singular values, which also depends on the data di.

Shrinkage and prediction in the maize data set
For the 21 maize data sets, the X matrix had a rank equal to n with
moderate decay in singular values, indicating moderate ill-condition-
ing. Figure 1, A2C shows the decay of singular values for data set
MFL-WW. Figure 1A shows all singular values, and Figure 1B
excludes the first 10 singular values and depicts the rapid decay in
the first subsequent 45 singular values, a smaller rate of decay in

singular values 452200 and the rapid decay of singular values after
the 200th singular value, reflecting the actual collinearity trend. Figure
1C shows that the OLS estimator of bi is very stable for the first 200
singular values and becomes very erratic at the end due to noise,
coinciding with the rapid decrease in singular values after the first
200. In short, Figure 1, A2C show that more weight should be given
to the first 200 least squares estimates (b�i Þ and less weight should be
assigned to the last 50 b�i ´s, which basically represent noise. The four
inverse Bayesian methods had good predictive power, with differences
being due to the variance assigned to the prior distribution of param-
eter bi.

Figure 2, A and B depicts the prior variance for models BIRR, BAI,
BIR1, and BIR2 for trait-environment combination MFL-WW. In
Figure 2A, the prior variance of bi for BIRR is represented by a solid
line, whereas li used in BAI are scattered dots, each representing an
individual. It is interesting to note that, for MFL-WW, most of the li
values for BAI, BIR1, and BIR2 were smaller than those for BIRR,
represented by a solid line. This indicates that BAI, BIR1, and BIR2
cause more shrinkage. Figure 2B depicts the decay of singular values
for BIR2 (dashed line) and BIR1 (solid line), both mimicking the
current decay of singular values shown in Figure 1, A and B. The decay
of BIR1 reflects the polynomial function i21, but smoothed by the
parameter h, as indicated in (18), with less shrinkage for the first sin-
gular values and increasing shrinkage toward the later singular values.

These prior variances are reflected in the weighting factor. For
example, Figure 3A shows the weights for BAI and for BIRR and, in
general, there is more shrinkage for BAI than for BIRR. Figure 3B
shows that the weights for BIR1 are slightly larger than those for BIR2.
When comparing Figures 2 and 3, it is clear that as shrinkage
increases, the weights come closer to 0. The four inverse Bayesian
methods assigned weights that parallel the decay of the singular values
(Figure 1, A and B), but for trait MFL-WW, the methods that reduced
the weighting factors the most were BIR2 and BIR1, which had larger
mean predictive correlations (0.850 and 0.841, respectively) than
BIRR, with a mean predictive correlation of 0.822 (Table 1). This
may be a reflection of some overfit caused mainly by larger weights
used in the last 50 estimators, where noise is concentrated (Figure 1C).
Trends were different for other traits; for example, for trait-environment

Figure 2 Maize trait-environment combination male flowering in well-
watered environments: the prior variances for the i-th singular values
for four inverse Bayesian regression models: (A) Bayesian inverse ridge
regression (line) and Bayes A inverse (dots); (B) Bayesian inverse re-
gression model 1 (solid line) and Bayesian inverse regression model 2
(dashed line).

Figure 3 Maize trait-environment combination male flowering in well-
watered environments: weighting factor values for four inverse
Bayesian regression models: (A) Bayesian inverse ridge regression
(solid line) and Bayes A inverse (dots); (B) Bayesian inverse regression
model 1 (solid line) and Bayesian inverse regression model 2 (dashed
line).
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combination GLS-3, BIRR, BIR1, and BIR2 had mean predictive corre-
lations of 0.589, 0.586, and 0.584, respectively.

Comparing Figure 1C (OLS estimates for MFL-WW) and Figure
4B (OLS estimates for GLS-3), instability of OLS estimates is observed
for the last 50 OLS values in MFL-WW but this occurred in only a few
of the last OLS estimates for GLS-3. This indicates that trait MFL-
WW required more shrinkage than that needed for trait GLS-3. This
may explain why, for MFL-WW, model BIR2, which showed more
shrinkage than BIRR, had a better predictive correlation than BIRR.
For the same reasons, model BIRR was a better predictor than BIR2
for trait GLS-3. BIR1 had a good predictive correlation for most traits
because the decay of the variance was smoothed out by h ¼ 1

sr e0:10
(see Equation 17), which allowed “intermediate” shrinkage.

Shrinkage and prediction in the wheat data set
The decay pattern of singular values and the noise in the wheat data
set were different from those found in the maize data set. The X
matrix had a rank equal to n-1, indicating stronger collinearity and,
thus, greater decay of singular values than that found in the maize
data sets; in addition, data for various trait-environment combinations
had outliers and were more complex. This is shown, for example, in
Figure 5, A2C for trait-environment combination DHT-1. Figure 5A
shows that the decay of singular values for this trait was more pro-
nounced than that for MFL-WW in maize (Figure 1, A and B). This
data set has more collinearity than the maize data, making it difficult
to visualize and detect where random noise is manifested in the OLS
estimates; this represents a moderate-to-high ill-conditioning situa-
tion. Figure 5B shows that one singular value close to zero (upper
right-hand side of the figure) magnified the OLS estimate, but when
that outlier was removed, the noise pattern was more clearly delin-
eated (Figure 5C). Noise increased systematically toward the last sin-
gular values, where the signal was practically lost.

In cases with strong collinearity, Kyung et al. (2010) suggested ridge
regression as an effective model. This may explain, in part, why BIRR,
BAI, and BIR1 had similar performance, whereas BIR2, with more
shrinkage than the other models, had a mean predictive correlation
similar to those of other models but with differential performance for
each trait-environment combination. The greater complexity of the X
matrix, as well as of the phenotypes included in the wheat data, suggests
that other prediction models, such as the semiparametric regression
described by Pérez-Rodríguez et al. (2012), may be more suitable.

CONCLUSIONS
Models were developed within the framework of inverse regression
theory. Inverse solutions induce some parsimony while keeping condi-
tional independence of the transformed phenotypes. Inverse solutions
make it possible to visualize that noise is inversely proportional to
singular values. The univariate structure allows graphical depiction of
shrinkage behavior according to the prior variance and weighting
factor. The models developed here seem to deal well with the ill-
conditioning and random noise problems arising in genomic pre-
diction, where p . .n.

The differences among models depend on several factors, such as
the pattern and decay of singular values. It is expected that when the
decay of the singular values is moderated, the prediction accuracy of
the proposed models will be adequate or improved. For the maize data
set, with a large number of markers, the moderate decay of singular
values causes a low level of ill-conditioning. In these cases, BIR1 and
BIR2 seemed to give slightly better predictions than BL, BIRR, and
BAI. On the other hand, the wheat data set had a greater level of ill-
conditioning, with several outliers and a drastic decay of singular
values. BIRR, which assigns a constant prior variance (as standard
Bayesian ridge regression), tends to over- or undershrink; this would
favor markers with small singular values while penalizing markers
with large singular values.
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APPENDIX

Recalling that model (1) is represented as a deviation from the overall mean m, closed form distributions can be derived from their joint
distributions (15), (16), (18), and (19). The conditional distribution of m is univariate normal:

p
�
m j y;b;s2

e

�
}N

 
m j 1

n

Xn
i¼1

�
yi 2Xi9b

�
;
1
n
s2
e

!

The conditional distribution of s2
e is:

p
�
s2
e jd; b;s2

b; ye; Sce
�¼ x22�s2jnþ ye; ðd2SbÞ0 ðd2 SbÞþ Sce

�
(small values are given to ye ¼ 0:0001; Sce ¼ 0:0001).

Specifically for the BIRR model, the conditional distributions for s2
b and Scb are:

p
�
s2
bjd; b; yb; Scb

�¼ x22�s2
bjnþ yb; b

0
bþ ybScb

�

p
�
Scbjd; b;s2

b; yb
� ¼ Ga

 
Scbj

yb
2
þ 1;

yb
s2
b

!

For the BAI model, the conditional distribution of s2
bi
is:

pðs2
bi jd; bi;s2

e ; ScÞ ¼ IG

�
s2
bi j

n þ 1
2

;
nScþ b2i

2

�
The Bayesian model is completed by giving y a value of 3 to avoid infinite variance in the distribution of s2

bi
. The conditional distribution of

Sc is

p
�
Scjd; b; y;s2

b

� ¼ Ga

 
Scj ny

2
;
�y
2

�Xn
i¼1

1

s2
bi

!

For BIR 1 and BIR2, the conditional distributions of u Scu are:

pðujd; bi; yu; ScuÞ ¼ IG

�
uj yu þ n

2
;
b9Vbþ yuScu

2

�

p
�
Scujd; b;u; yu

� ¼ Ga

�
Scj yu

2
þ 1;

yu

2u

�
;

respectively.
For BIR1,V is a diagonal matrix of order n · n, with elements in the diagonal 1

i2122aþh for i=1,2,. . .,n. For BIR2,V is equal to matrix S21. For
BIR1, the default value of smoothing parameter h is 1

sr
.
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