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Abstract: Appropriate cycle-slip and measurement-error models are essential for BeiDou carrier-
phase-based integrity risk calculation. To establish the receiver’s measurement-error model, an
accurate position reference of the GNSS antenna is fundamental for calculating the measurement
error. However, it is still a challenge to acquire position references for dynamic BeiDou receivers,
resulting in improper GNSS measurement-error models and unreliable integrity monitoring. This
paper proposes an improved precise relative positioning scheme by adopting multi-antenna trajectory
constraints for dynamic BeiDou receivers. The dynamic experiments show an obvious decline of
78.7%, at most, in the positioning failure rate of the proposed method, as compared with the
traditional method. The position solutions obtained from the proposed approach are used as the
reference to analyze the cycle-slip and measurement-error characteristics of the dynamic receiver. The
field test results indicate that the cycle-slip rate decreases with the increase of signal-to-noise ratio
(SNR), and cycle slipping obeys a positively skewed distribution that could be fitted by the Gaussian
mixture model (GMM). On the other hand, the standard deviation of the carrier-phase measurement
error is inversely proportional to SNR, and its distribution is characteristically fat-tailed, which could
be fitted by the bi-normal model.

Keywords: GNSS; dynamic receiver; error bounding; integrity monitoring; characteristic analysis

1. Introduction

The Global Navigation Satellite System (GNSS) can provide accurate position and
velocity information, thus playing an important role in various vehicular applications
such as autonomous driving, location-based services, unmanned delivery and aviation
navigation. To further expand the GNSS applications, it is necessary to improve GNSS
performance, including accuracy, integrity, continuity and availability. The Federal Aviation
Administration (FAA) defined a global instrument approach guidance service for aircrafts
called LPV-200, which requires high positioning accuracy. Moreover, the integrity risk
required by LPV-200 is lower than 10−7 per approach [1]. Accurate GNSS positioning
heavily relies on the carrier-phase observation, whose performance is highly affected by
cycle-slip and measurement-error characteristics. As a result, it is necessary to determine
proper (or conservative) cycle-slip and measurement-errors models, especially for GNSS
integrity risk calculation.

As for cycle slips, many existing works focus on cycle-slip detection and repairing
mechanisms. However, the effectiveness of these methods lacks long-term experimental
demonstration. Li [2] and Chen [3] adopted short-term measurement data, and artificially
added specific cycle slips to it to verify the effectiveness of the proposed method. Chen [4]
used different methods on vehicular test data for about ten minutes each to verify the
effectiveness of a robust, extended Kalman filter in cycle-slip detection. Yet, this could
lead to an underlying failure risk of the proposed method for some cycle slips in actual
situations. The integrity risk that is required, by LPV-200, to be met is equivalent to that of
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an aircraft performing 47 years of GNSS-based approach guidance during both day and
night, and only one failure due to having missed GNSS alarm is allowed (assuming that
an approach takes 150 s). Such an extremely small value cannot be simply demonstrated
experimentally within several minutes. The experimental durations and types of manually
added cycle slips, to date, may not be sufficient to represent the actual situation under
the influence of long-term and various risks, thus, these detection methods may still risk
missing alarms. It is still indispensable to test these methods with data measured over
longer intervals and to analyze the probability and characteristics of cycle slips in order to
calculate the integrity risk caused by cycle slips and missed alarms.

This has prompted extensive researches on the GNSS carrier phase measurement
error modeling for both static receivers and low-cost dynamic receivers. For static GNSS
receivers in field surveyal, the carrier phase measurement error terms can be properly
modeled and compensated for using accurate positioning results by long-term static
measurement, contributing to extremely high positioning accuracy (e.g., mm-level) [5–12].
Roland et al., used an ARIMA model and non-parametric spectral estimation method to
calibrate high-rate GNSS observations, successfully detecting vibrations on the order of
magnitude of 10 µm~0.1 mm [13]. Luis et al., proposed an improved, static and precise
relative-positioning method by reducing hardware and multipath delays, specifically
for GNSS-based distance metrics, which provide baseline references with sub-millimeter
accuracy [14]. As for dynamic GNSS receivers, the main difficulty lies in determining the
position references for moving trajectories. Many studies on the carrier phase measurement
errors of dynamic antenna have focused on low-cost GNSS receivers, using the position
results from high-accuracy geodetic receivers as references for moving trajectories [15–17].
Li Guangcai et al., compared Android devices (i.e., Galaxy S8, Honor V8 and Nexus 9) with
u-blox receivers and geodetic receivers and analyzed the pseudorange and carrier-phase
error characteristics of the low-cost receivers on Android devices under static and dynamic
conditions [18]. Chen et al., indicated that the differences between the pseudorange
and carrier-phase observations of some devices are not fixed, by comparing different
devices [19]. Gao et al., have pointed out that the integer property of the carrier phase
ambiguity should be restored by a detrending operation [20]. Different from these low-
cost GNSS receivers, the reference trajectories of high-precision receivers often need more
precise instruments, which are usually difficult to deploy in dynamic conditions.

To obtain GNSS measurement errors in dynamic conditions, accurate position refer-
ences at each time epoch should be acquired for dynamic GNSS receivers. Lau Lawrence
et al., studied the GNSS multipath effects of dynamic receivers by conducting railway
experiments [21]. The reference trajectories in the examined railway were precisely mea-
sured before the experiment, however, this experiment actively introduced multipath
errors, such that accurate positioning results were difficult to determine. Therefore, they
used double difference residuals as the reference standard for calculating multiple paths.
Quan et al., used a GNSS receiver fixed on a slowly rotating metal rod to acquire GNSS
observation data, while a total-station instrument was employed to provide precise syn-
chronous observations, to aid in the evaluation of measurement error in their moving
condition [22]. However, employing a total-station instrument restricts the dynamic range
of GNSS receivers (i.e., antennae) to a relatively low rate (i.e., 0.21–0.72 m/s). Consequently,
some GNSS measurement error terms cannot be fulfilled. In addition, the period of the
observation data is too short to reveal the error characteristics thereof.

Motivated by the idea that mechanical structural constraints can be used to predict
trajectory references, this paper proposes an improved precise relative positioning scheme
by adopting multi-antennae trajectory constraints for dynamic BeiDou receivers to analyze
carrier phase-error characteristics. In this scheme, four GNSS antennae are fixed on the
same rotating platform, thus forming a geometric constraint, to collect GNSS observation
data over longer times. At the same time, this structural constraint is used to derive a
new constrained relative positioning model, based on double-differenced carrier phase
observations between satellites and epochs. The accurate position solutions obtained from
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the proposed method are used as trajectory references in analyzing BeiDou carrier phase
cycle-slip and measurement errors corresponding to each satellite in each epoch. The
relationships between carrier phase cycle slipping or measurement error and satellite orbits
and SNR are also analyzed in detail. The proposed method is then evaluated by actual
long-time dynamic GNSS observations.

The structure of this paper is as follows. Section 2 devises the constrained, precise
relative positioning model for dynamic GNSS receivers, and then presents our method for
determining carrier-phase cycle-slips and measurement error. The experiment’s results
and conclusions are given in Sections 3 and 4, respectively. The contribution of this
paper is the provision of an effective means of analyzing carrier phase-measurement error
characteristics, which could be beneficial to carrier phase-based integrity monitoring.

2. Determination Method of Carrier Phase Cycle-Slip and Measurement Error
2.1. Experimental Scheme Design

Accurately positioned GNSS antennae, at each measurement epoch, are needed to
determine carrier-phase cycle-slips and measurement error. Moreover, it operates auto-
matically, instead of relying on manual intervention, which favors dynamic data collection
with longer sampling durations. With consideration for changing weather, it was also nec-
essary to forgo the use of some sophisticated instruments, such as total-station instruments,
which would otherwise restrict the dynamic range and duration of measurements during
field testing.

As shown in Figure 1, the experiment can be divided into four modules:

(a) Installing the equipment and collecting data. Install four antennae on a rotating
platform of the same radius as the dynamic antennae, at intervals of 90◦ (as shown at
the top of Figure 2), and installed two static antennae not far away. Collect data as
needed for calibration and in the calculation of dynamic results.
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(b) Calibrating coordinates and relative positions. Calibrate the exact position of the static
antennae and the relative positioning relationships between the dynamic antennae,
and then calculated the motion trajectories of the antennae. After obtaining the above
parameters, set the platform set to rotate at a uniform speed and began collecting
data. The calibration method and contents are shown in Figure 3.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 18 
 

 

(b) Calibrating coordinates and relative positions. Calibrate the exact position of the 

static antennae and the relative positioning relationships between the dynamic 

antennae, and then calculated the motion trajectories of the antennae. After obtaining 

the above parameters, set the platform set to rotate at a uniform speed and began 

collecting data. The calibration method and contents are shown in Figure 3. 

Static reference stations

A1, A2

Dynamic receivers (B1~B4) 

fixed on a rotation platform

Precise positioning result

 and static baseline

PPP, static precise 

relative positioning

Static precise relative 

positioning

Rotation axis vector of the 

rotating platform

Coordinates of the dynamic antennae 
within the body coordinate system of

 the rotating platform

Standard rotating motion 

trajectories of  four 

dynamic antennae

Rotate platform to 

different positions

Input

Output

Process

 

Figure 3. Procedure for calibrating coordinates and relative positions. 

(c) Calculating precise and effective relative positioning results. Calculate the relative 

position of each dynamic antenna relative to the static antennae according to the 

collected data. In addition, since the orientation of the rotation axis of the rotating 

platform is fixed, when the body coordinate system of the rotating platform is 

defined, the real position of all dynamic antennae can be described by an azimuth 

parameter (similar to yaw angle). The schematic diagram is shown in Figure 4. 

Static reference stations

A1, A2

Dynamic receivers (B1~B4) 

fixed on a rotation platform

Input

Output

Process

Precise positioning result

 and static baseline

8 baselines (AiBj)

Precise relative positioning

Standard trajectories of 

rotating motion of 4 

dynamic antennas

Pass the multiple testing? Discard
No

Accurate azimuth and 

positioning results

Yes

 

Figure 4. Calculate the valid precise relative positioning results. 
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(c) Calculating precise and effective relative positioning results. Calculate the relative
position of each dynamic antenna relative to the static antennae according to the
collected data. In addition, since the orientation of the rotation axis of the rotating
platform is fixed, when the body coordinate system of the rotating platform is defined,
the real position of all dynamic antennae can be described by an azimuth parameter
(similar to yaw angle). The schematic diagram is shown in Figure 4.
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(d) Multiply test to ensure the accuracy of the positioning results. Error analysis requires
sufficiently accurate positioning data as reference. Even for ultra-short baselines, there
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will be some epochs without a solution or with a wrong solution in long-term data,
which is unfavorable to error analysis. In order to obtain reliable reference results,
multiple testing is required for the positioning results at each time point.

As shown in Figure 5, the contents of multiple testing include:

(i) Comparing the positioning results with antennae trajectories. If the deviation is too
large (for example, horizontal deviation: >5 cm or the elevation deviation: >7 cm), we
discarded it.

(ii) The relative positioning results from the dynamic antennae to the two static antennae
need to be checked by a closure error test. Theoretically, the sum of the baseline vectors
from the dynamic antenna to the two static antennae and the baseline vector of the two
static antennae should be zero. Therefore, the position of the dynamic antennae can
be considered accurate only when the sum of the three baseline vectors is lower than
the given threshold in three-dimensional space (for example, 3D threshold = 8 cm).

(iii) According to the positioning results, the azimuth of platform rotation can be cal-
culated, and the positioning results corresponding to the azimuth with excessive
deviation should be discarded.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 18 
 

 

(d) Multiply test to ensure the accuracy of the positioning results. Error analysis requires 

sufficiently accurate positioning data as reference. Even for ultra-short baselines, 

there will be some epochs without a solution or with a wrong solution in long-term 

data, which is unfavorable to error analysis. In order to obtain reliable reference 

results, multiple testing is required for the positioning results at each time point. 

As shown in Figure 5, the contents of multiple testing include: 

(i) Comparing the positioning results with antennae trajectories. If the deviation is too 

large (for example, horizontal deviation: >5 cm or the elevation deviation: >7 cm), we 

discarded it. 

(ii) The relative positioning results from the dynamic antennae to the two static antennae 

need to be checked by a closure error test. Theoretically, the sum of the baseline 

vectors from the dynamic antenna to the two static antennae and the baseline vector 

of the two static antennae should be zero. Therefore, the position of the dynamic 

antennae can be considered accurate only when the sum of the three baseline vectors 

is lower than the given threshold in three-dimensional space (for example, 3D 

threshold = 8 cm). 

(iii) According to the positioning results, the azimuth of platform rotation can be 

calculated, and the positioning results corresponding to the azimuth with excessive 

deviation should be discarded. 

8 baselines (AiBj)

Precise positioning result

 and static baseline

Is this azimuth consistent

 enough with the others?

Calculate the corresponding 

azimuth according to baselines

Discard

Positioning result of 

dynamic antennas

Standard trajectories of 

rotating motion of 4 

dynamic antennas

Coordinates of dynamic antennas

 in the body coordinates system 

of rotating platform

Output

No

No

No

Yes

Yes

Yes

Pass the closure error test?

Is the distance to the

 standard track small enough ?

 

Figure 5. The contents of the multiple testing. 

2.2. Using a Multi-Antennae Trajectory Constraint to Improve the Success Rate of Precision 

Relative Positioning in the Post-Processing Mode 

The calculation of position reference depends on the correct ambiguity resolution. 

However, abnormal GNSS observation may lead to integer ambiguity resolution failure, 

thus failing to provide position reference at this time for cycle-slip and carrier-phase error 

analysis of the dynamic antennae. In order to overcome this limitation and improve the 

success rate of precise relative positioning (ideally, the location success rate should exceed 

99.9% to reduce the impact of fault conditions on error modeling), two improvements for 

this experiment are proposed, as presented in this section. 

Figure 5. The contents of the multiple testing.

2.2. Using a Multi-Antennae Trajectory Constraint to Improve the Success Rate of Precision
Relative Positioning in the Post-Processing Mode

The calculation of position reference depends on the correct ambiguity resolution.
However, abnormal GNSS observation may lead to integer ambiguity resolution failure,
thus failing to provide position reference at this time for cycle-slip and carrier-phase error
analysis of the dynamic antennae. In order to overcome this limitation and improve the
success rate of precise relative positioning (ideally, the location success rate should exceed
99.9% to reduce the impact of fault conditions on error modeling), two improvements for
this experiment are proposed, as presented in this section.

2.2.1. Geometric Constraints Aided Ambiguity Searching

Theoretically, if the initial position values of the two GNSS antennae are more accurate
when the double-differenced carrier phase equation between antennae and satellites is
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established, the float solution of integer ambiguity will be closer to the correct value, and the
success rate of subsequent least-squares ambiguity decorrelation adjustment (LAMBDA)
search for integer ambiguity will be improved [23–25]. Considering that the dynamic
antennae in this experiment move along a circular trajectory, this geometric constraint can
be used to assist the ambiguity search when establishing the double-differenced carrier-
phase equation between antennae and satellites.

Assuming a static reference antenna as A, a dynamic antenna as B, and the trajectory
center of B as O, then the accurate coordinates of A and O can be obtained by static
positioning. Thus, the position of dynamic receiver B can be expressed as:

⇀
r B =

⇀
r A +

⇀
r AO + Re

n ·Rn
b ·

⇀
r

b
OB (1)

where e is the earth-centered earth-fixed (ECEF) frame; n is the north–east–down (NED)
frame at the reference point O; b is the body frame of the platform, and the position vector

of B can be referenced in the body frame as
⇀
r

b
OB =

[
x y z

]T ; Rn
b is the transformation

matrix from the body frame to the NED frame. Since the rotation axis of the turntable is
perpendicular to the local horizontal plane, it can be considered that Rn

b = Rz(α), where
Rz is the rotation matrix around the z-axis, and the z-axis points skyward; Re

n represents
the rotation matrix from the NED frame to the ECEF frame, which can be calculated as:

Re
n = (Rn

e )
T =

(
Ry

(
−
(

BO +
π

2

))
·Rz(LO)

)T
(2)

where Bo and Lo are the latitude and longitude of O. The operators Ry(•) and Rz(•)
represent the rotation matrix around the y- and z-axis, respectively; then Equation (1) can
be expressed as:

⇀
r B =

⇀
r A +

⇀
r AO + Re

n ·

 cos α sin α 0
− sin α cos α 0

0 0 1

 ·
 x

y
z

 =
⇀
r A +

⇀
r AO + Re

n ·

 0
0
z

+

 x y
y −x
0 0

 · [ cos α
sin α

] (3)

According to the Equation (3), the double-differenced pseudorange and carrier phase
equations between antennae and satellites with geometric constraints can be obtained as:
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where j represents the reference satellite; ji
ABφ  is the double-differenced carrier phase ob-

servation between antennae (i.e., A and B) and between satellites (i.e., i and j); ji
ABρ  is the 

double-differenced pseudorange observation between antennae (i.e., A and B) and be-
tween satellites (i.e., i and j); ,0

i
ABR  is the single-differenced distance between the initial 

positions of A and B for the satellite i, i.e., ,0
i i i
AB A OR = − − −r r r r    ; A

r represents the 

known position of static reference A; λ is the wavelength of the satellite signal 

where j represents the reference satellite; φ
ji
AB is the double-differenced carrier phase

observation between antennae (i.e., A and B) and between satellites (i.e., i and j); ρ
ji
AB is the

double-differenced pseudorange observation between antennae (i.e., A and B) and between
satellites (i.e., i and j); Ri

AB,0 is the single-differenced distance between the initial positions

of A and B for the satellite i, i.e., Ri
AB,0 =

∣∣∣∣⇀r i
−⇀

r A

∣∣∣∣− ∣∣∣∣⇀r i
−⇀

r O

∣∣∣∣; ⇀r A represents the known

position of static reference A; λ is the wavelength of the satellite signal wavelength; Nij
AB is

the double-differenced integer ambiguity between antennae and between satellites; ε is the

observation error; α represents the unknown azimuth of the rotating platform; and
⇀
A

i

B,cs is
the direction vector from point O to satellite i, which can be calculated as:

⇀
A

i

B,cs = −

(
⇀
r

i
−⇀

r B,0

)T

∣∣∣∣(⇀
r

i
−⇀

r B,0

)∣∣∣∣ ·R
e
n ·

 x y
y −x
0 0

 (5)
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where
⇀
r

i
is the position of the satellite i at observation time, and

⇀
r B,0 is the initial position

value of antenna B. They are vectors of dimension 3 × 1.
By solving the Equation (4), sin α′, cos α′ and the float solution of double-differenced

ambiguity can be obtained. It should be noted that the computed sin α′ and cos α′ are
usually inaccurate and cannot meet (sin α′)2 + (cos α′)2 = 1. The obtained ambiguity float
solution and variance matrix can be used in the conventional LAMBDA search for the
integer solution. It is anticipated that the geometric constraint can help reduce the number
of equation unknowns and improve the ambiguity search performance especially when
the number of available satellites is small.

2.2.2. Interpolation Calculation and Secondary Processing

After checking the baseline vectors as described in Section 2.1, the accurate position
solutions of each dynamic antenna can be obtained.

Considering that the platform rotation speed is relatively stable, it is assumed that
the second derivative (angular acceleration) of the platform azimuth should be first-order
differentiable. Moreover, the velocity derived from Doppler observations is accurate. As a
result, the cubic spline interpolation can be performed for the platform azimuth to compute
the missing position of the dynamic antenna.

After the interpolation calculation, in order to reduce the number of unsolvable epochs
further, carry out secondary processing according to the following steps:

(a) Take the interpolated antenna position as the initial position, and then solve the float
ambiguity calculation equation.

(b) Use LAMBDA to search the fixed ambiguity solution. As the initial value is more
accurate, the success rate of this step will increase.

(c) Integrate the results of other antennae to obtain the accurate position.

The schematic diagram is shown in Figure 6.
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2.3. Using the Mixture of Gaussian Distribution to Model Carrier-Phase Cycle Slips

At present, all cycle-slip detection methods cannot guarantee that they will never
miss the alarm. Therefore, analyzing the characteristics of cycle slip is conducive to
achieving both the integrity and availability indicators at the same time. Cycle slips are
characteristically have sharp peaks and heavy tails, and do not comply with the normal
distribution. However, it is also improper to fit its statistical characteristics using the
skew-normal distribution model by experience. This paper proposes to fit its probability
density with the mixture of gaussian (MOG) distribution as follows:

pMOG(x) =
k

∑
j=1

Pj

[
1

(2π)d/2∣∣Σj
∣∣1/2 exp

(
−1

2
(x− µj)

TΣ−1
j (x− µj)

)]
(6)

where k is the number of sub-Gaussian distributions in the mixture of Gaussian distribution,
Pj is the probability of the jth sub-Gaussian distribution, µj is the mean value of the jth
sub-Gaussian distribution, Σj is the covariance matrix of the jth sub-Gaussian distribution,
and d is the dimension of the variable x [26].

2.4. Using the Bi-Normal Distribution to Model Carrier Phase Measurement Error

It has been demonstrated that carrier phase measurement error does not fully comply
with the Gaussian distribution. The actual measurement errors usually have fat tails [27],
which undermines the effectiveness of the carrier phase-based receiver autonomous in-
tegrity monitoring (CRAIM) [28,29]. Compared to the Gaussian distribution, the bi-normal
distribution can envelope the fat tails while retaining its characteristic spikes [30]. Through
simulation experiments, Song [30] confirmed the effectiveness and robustness of the bi-
normal distribution in integrity monitoring. Different from the mixture of Gaussian distri-
bution, the bi-normal distribution is not the superposition of two Gaussian distributions,
but the splicing of two Gaussian distributions after truncation. The error ε of this dis-
tribution is considered to be zero-mean and symmetrically distributed. In addition, the
bi-normal distribution distinguishes between normal measurement and measurement fault
in the formula, and introduces fault probability (Pf), which helps to make the integrity
monitoring more accurate or conservative.

The error within the threshold ±εT obeys the Gaussian distribution of a small normal
standard deviation σ0, while the error outside the threshold obeys the Gaussian distribution
of a large standard deviation σ1. The probability density function schematic diagram is
shown in Figure 7. fMid(ε) and fTail(ε) are defined as:

fMid(ε) = k0 · 1√
2πσ0

e
− ε2

2σ2
0 ε ∈ [−εT , εT ]

fTail(ε) = k1 · 1√
2πσ1

e
− ε2

2σ2
1 ε ∈ (−∞,−εT) ∪ (εT ,+∞)

(7)

in which k0 and k1 are the parameters to adjust the curve shape to ensure that the sum of
probabilities is 1.
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This paper presents a method of calculating the parameters of the “bi-normal distri-
bution” model. The probability of outlying error is Pf, and the quantile is 1 − α = 0.5 × Pf.
For the standard normal distribution with the upper quantile x corresponding to Pf, the
standard deviation of the distribution for outlying error is σ1 = εT/x. In order to conserva-
tively bound large measurement errors, a scaling factor k is introduced. Note the maximum
occurrence frequency of an error within ±εT in the measured data is p, it is required that:

fMid(εT) ≥ k · p
fMid(ε) =

(1−Pf )·φ(ε;0,σ0)

Φ(εT)−Φ(−εT)

(8)

where φ(·) represents the probability density function of the normal distribution; Φ(·)
represents the normal distribution function, and the value is calculated by the integral of
φ(·). The analytic solution of the abovementioned inequality is difficult to obtain, and the
minimum σ0 satisfying Equation (8) can be taken as the standard deviation of the normal
distribution through the search method.

3. Experimental Results and Analysis

The experiment was conducted on the roof of a building in Changsha, China, and
there were no buildings or trees above an elevation of 20◦. Four dynamic antennae and
receivers were fixed on a horizontal rotating platform with a radius of about 0.5 m. During
the experiment, the rotation speed reached approximately 120 rpm, and the linear speed
of the GNSS antennae about 6.3 m/s. The distances between the dynamic antennae and
the static reference antennae were about 20 m, forming ultra-short baselines. The baseline
length of the two static reference antennae was about 1 m. The GNSS sampling rate was
2 Hz. The B1I and B3I signal components of the BeiDou satellite navigation system L1C
and the L2W signal components of GPS were collected during the experiment.

It is worth mentioning that the horizontal acceleration direction of the dynamic
receiver changed rapidly during the experiment, which is definitely worse than in common
application. The ComNav K708 OEM boards and Harxon HX-CA7606A aviation antennae
were adopted for all four dynamic receivers and antennae, which can operate stably under
such working conditions. The experimental scene and equipment are shown in Figure 8.
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Carrier phase observations included receiver-clock error, ionospheric delay, tropo-
spheric delay, satellite ephemeris error, multipath error [31], hardware noise [32], etc.
Considering the beneficial factors such as fixed and known platform position, the short-
time interval between two observations, and the inactive ionosphere during the experiment,
the double-differenced carrier phase between epochs and satellites can eliminate most of
the systematic errors but for cycle slips, and also amplify noise. Therefore, the double-
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differenced carrier phase residuals at each epoch can be decomposed into cycle slips and
measurement errors by simple rounding.

3.1. The Effect of Geometric Constraints-Aided Ambiguity Searching

The method of geometric constraints-aided ambiguity searching reduces the number
of unknowns in the equations, and uses a relatively accurate initial position, which can
make the ambiguity float solution closer to the correct solution and improve the ambiguity-
searching efficacy when the number of available satellites is small.

The limitation of the proposed method lies in its dependence upon the unknowns
sin α and cos α, which violates the basic assumption of least-squares estimation. In addition,
the positioning error in the elevation direction is also ignored, so that the residuals in the
elevation direction are projected to the horizontal direction, which has a negative impact
on the calculation of float ambiguity and its variance estimation. When the number of
satellites is large, enough redundant satellites make the float ambiguity accurate enough,
and the error-of-variance matrix reduces the success rate of searching ambiguity.

In this experiment, when only GPS satellites (less than nine) were observed, the
adoption of the proposed algorithm witnessed a slight increase in the success rate of
fixed solutions compared with the traditional method. However, when there were more
than 20 satellites available, the performance of this method had no advantage over the
traditional method except for calculation time.

Using the method in Section 2.2.2, the position of each epoch in the experiment has
been correctly calculated, and these positioning results are used as reference positions.
When the 3D error between the positioning result and the reference result of the geometric
constraint method or traditional method does not exceed 7 cm, the epoch is considered to
be solved successfully. The experimental results are shown in Table 1.

Table 1. The success rate of the geometric constraints method and the traditional method.

System Solvable
Epoch

Traditional
Method

Geometric
Constraints

Method

Satellite
Number (Min)

Satellite
Number (Max)

GPS 9409 9108 9338 5 9
GPS + BDS 9414 9332 9310 21 27

3.2. The Result of Interpolation Calculation and Secondary Processing

A 25-day corpus of GNSS observation data (about 4,327,810 epochs) was collected
from 19 November to 14 December 2020. The number of effective epochs obtained by the
above steps is shown in Table 2.

Table 2. Number of effective epochs after each processing step.

Steps A1B1/A2B1 A1B2/A2B2 A1B3/A2B3 A1B4/A2B4

Move to static precise relative
positioning 4,319,319/4,319,644 4,319,688/4,320,046 4,318,656/4,319,033 4,318,900/4,319,280

Closure error test 4,316,937 4,316,677 4,316,478 4,316,870
Integrated processing 4,319,191

Interpolation processing 4,324,975 (increased 5784 epochs)
Secondary processing 4,325,669/4,325,803 4,325,595/4,325,786 4,325,634/4,325,800 4,325,577/4,325,723

Closure error test 4,324,550 4,324,531 4,324,575 4,324,383
Integrated processing 4,325,062

Interpolation processing 4,325,400 (increased 338 epochs)

In this table, Ai is a static reference antenna and Bi is a dynamic antenna.
It can be seen from Table 2 that the interpolation calculation and secondary processing

reduce the proportion of positioning-failure epochs from 1.99‰ to 0.56‰, a decrease of
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72%. Compared with the traditional method checked by closure error test, the positioning
failure rate of the new method is reduced by 78.7% at most. The risk of cycle-slip and
error-characteristics analysis caused by positioning-failure epochs can be reduced as much
as possible.

3.3. Cycle-Slip Characteristics of the Dynamic Receiver
3.3.1. The Distribution Characteristics of Cycle Slips

In this subsection, we explore the conditional distribution of the cycle-slip size when
cycle slip has occurred, which could be conservatively approximated for subsequent
assessment of cycle slips’ missed detection rate. It is observed that the distribution of cycle
slips above ±40 cycles is relatively isolated. Therefore, cycle slips within (−∞, −40 cycles]
and [+40 cycles, +∞) are counted together. The histogram of cycle slips at B1I and B3I
signals of one antenna is shown in Figure 9.
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Figure 9. The histogram of cycle slips at B1I and B3I.

It can be seen from Figure 9 that the incidences corresponding to different cycle-slip
sizes do not obey the normal distribution. For cycle slips within (−40 cycles, +40 cycles),
the kurtosis of the cycle slips at the B1I signal is 40.942 and the skewness is 5.884; while the
kurtosis of cycle slips at the B3I signal is 29.970 and the skewness is 5.033. Obviously, the
distributions of these two signals are skewed.

For cycle slips within (−40 cycles, +40 cycles), in this paper, a cubic Gaussian distribu-
tion mixture is adopted to fit the envelop curve of the cycle-slips histogram in Figure 10.
The fitting formula can be expressed as:

pMOG,B1I = 0.4070 exp
(
−
(

x−0.1393
0.4605

)2
)
+ 0.0985 exp

(
−
(

x−0.0193
2.0952

)2
)
+ 0.0326 exp

(
−
(

x−16599
5.2510

)2
)

pMOG,B3I = 0.3441 exp
(
−
(

x+0.1995
0.6311

)2
)
+ 0.0523 exp

(
−
(

x−1.2589
2.3785

)2
)
+ 0.0248 exp

(
−
( x−5.9598

7.5597
)2
) (9)

The fitting results are shown in Figure 10, and the statistical analysis of cycle slip
data is listed in Table 3, which reveals that cycle slips occur differently at different sizes.
Specifically, positive cycle slips are more likely to occur than negative ones, and small cycle
slips are more likely to occur at all.



Sensors 2021, 21, 6930 12 of 17

Sensors 2021, 21, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 9. The histogram of cycle slips at B1I and B3I. 

It can be seen from Figure 9 that the incidences corresponding to different cycle-slip 

sizes do not obey the normal distribution. For cycle slips within (−40 cycles, +40 cycles), 

the kurtosis of the cycle slips at the B1I signal is 40.942 and the skewness is 5.884; while 

the kurtosis of cycle slips at the B3I signal is 29.970 and the skewness is 5.033. Obviously, 

the distributions of these two signals are skewed. 

For cycle slips within (−40 cycles, +40 cycles), in this paper, a cubic Gaussian distri-

bution mixture is adopted to fit the envelop curve of the cycle-slips histogram in Figure 

10. The fitting formula can be expressed as: 

2 2 2

,B1I

2

,B3I

0.1393 0.0193 16599
0.4070exp 0.0985exp 0.0326exp

0.4605 2.0952 5.2510

0.1995 1.2589
0.3441exp 0.0523exp

0.6311 2.3785

MOG

MOG

x x x
p

x x
p

     − − −     
= − + − + −                         

 + − 
= − + −     

2 2
5.9598

0.0248exp
7.5597

x






   −    
+ −                

 

(9) 

The fitting results are shown in Figure 10, and the statistical analysis of cycle slip data 

is listed in Table 3, which reveals that cycle slips occur differently at different sizes. Spe-

cifically, positive cycle slips are more likely to occur than negative ones, and small cycle 

slips are more likely to occur at all. 

 

Figure 10. The fitting envelop curve of the cycle-slips histogram with the mixture of Gaussian distribution. Figure 10. The fitting envelop curve of the cycle-slips histogram with the mixture of Gaussian
distribution.

Table 3. Size of cycle slips statistics.

Interval B1I B3I Interval B1I B3I

≤−40 878 650 (0, 5) 9178 18,486
(−40, −35] 0 78 [5, 10) 1235 7541
(−35, −30] 0 67 [10, 15) 398 3565
(−30, −25] 5 221 [15, 20) 213 1887
(−25, −20] 4 150 [20, 25) 141 1173
(−20, −15] 10 110 [25, 30) 106 753
(−15, −10] 46 51 [30, 35) 43 636
(−10, −5] 348 229 [35, 40) 73 432
(−5, −0) 5523 19,781 ≥−40 1563 4275

3.3.2. The Relationship between Cycle-Slip Incidence and SNR

The signal-to-noise ratio (SNR) is observed by the receiver for carrier-phase changes,
along with many factors such as weather, satellite positions, and environmental electromag-
netic noise, etc. Figure 11 shows the trend of the cycle slips with SNR at B1I and B3I signals,
using solid lines. Figure 11 also shows that the proportion of carrier phase observations at
theB1I and B3I signals changes along with different SNRs using the dotted lines.
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It is indicated that the cycle-slip probability decreases with the increase of SNR at both
B1I and B3I. The weaker the signal, the easier it is for the receiver to lose lock and cycle
slip. When the SNRs of B1I and B3Iis are larger than 34 and 31, respectively, the number of
observations was over 1000.

Considering that BeiDou satellites have three kinds of orbits (i.e., GEO, IGSO, and
MEO), this section also analyzes the relationship between SNR and the cycle-slip probability
in different orbits, as shown in Figure 12. Owing to the distance between GEO satellites and
receivers being almost constant, the variations in the SNR and cycle-slip probabilities are
stable and small. However, the frequency of cycle slipping for the MEO satellites becomes
large when the SNR is small, while the cycle-slip frequency of MEO satellites becomes small
when the SNR is large. The reason may be that MEO satellites’ elevation changes rapidly
and the propagation distance of their signals in the atmosphere also changes rapidly. In
general, the number of MEO observations is only 1/3 of that of the IGSO observations, and
1/4 of that of GEO observations.
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3.4. Carrier-Phase Measurement-Error Characteristics Analysis
3.4.1. Distribution of Carrier-Phase Measurement Error

The average values of the carrier-phase measurement errors of the two frequencies are
very close to zero. The standard deviation of the measurement errors at B1I was 0.061 cycles,
and the standard deviation of measurement errors at B3I was 0.080 cycles. The normal
distribution curve was fitted according to the average value and standard deviation, as
shown in Figure 13.

It can be seen from Figure 13 that the carrier-phase measurement errors have an
obvious peak and heavy tails for both the B1I and B3I signals. Usually, the measurement
error with a deviation of more than 3σ from the mean can be regarded as the outlying
error. Consequently, the outliers should account for 0.27% at each frequency for the
normal distribution. Yet, the actual percentages of the outliers at B1I and B3I were 0.586%
and 1.046%, respectively. This means that the actual outliers cannot obey the Gaussian
distribution, and the thick tails should be depicted by bi-normal modelling.
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Taking the measurement error on B3I as example, define k = 1.1, the bi-normal distri-
bution density function at the B3I frequency is obtained as follows:

f (ε) =
{

φ(ε; 0, 0.094) ε < −0.2414 or ε > 0.2414
0.9940× φ(ε; 0, 0.085) −0.2414 ≤ ε ≤ 0.2414

(10)

The envelope curve of the bi-normal distribution is shown in Figure 14. It can be seen
that the bi-normal distribution can bound the actual errors, showing better ability to bound
the outliers than the Gaussian distribution.

Different receiver types, antennae types, satellite navigation systems, environments
and dynamic conditions may lead to different measurement-error characteristics. The
above model can be used as an example, and the parameters obtained are not necessarily
universal.
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3.4.2. Relationship among Carrier Phase Measurement Error and Orbit

When the different orbits are considered, the measurement errors of the two frequen-
cies change along with SNR, as shown in Figure 15. As is general knowledge, with the
increase of SNR, the error standard deviation (STD) of each orbit decreases. When the SNR
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is high, the standard deviation of the measurement error is relatively small. Moreover,
the standard deviation of the measurement error of MEO satellites is larger than those of
IGSO and GEO. A possible reason for this phenomenon may lie in transmission signal
power differences among different satellites in different orbits. It has also been verified that
the average signal power of high orbit satellites is not necessarily less than that of MEO
satellites. The error standard deviation of IGSO and GEO is close, and IGSO is even better
than GEO on the B1I frequency when the SNR is large enough.
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4. Conclusions

To analyze the carrier-phase cycle-slip and measurement error of dynamic receivers,
this paper proposes an improved precise relative positioning scheme by adopting multi-
antenna trajectory constraints for dynamic BeiDou receivers. The long-term dynamic
experimental results show that the new algorithm can decline the positioning failure
rate by 78.7%, at most, using the techniques of interpolation calculation and secondary
processing, as compared with its traditional counterpart.

With the acquired position as reference, it is feasible to analyze the cycle-slip- and
measurement-error characteristics for a dynamic receiver. The dynamic test results indicate
that the incidence of cycle slips decreases with the increase of signal-to-noise ratio (SNR),
and cycle slips are more likely to happen in the observations of MEO satellites than in
those of IGSO and GEO. On the other hand, the results also show that the carrier phase-
measurement error distributions at B1I and B3I are similar to the Gaussian distribution,
but have the characteristics of a sharp peak and thick tails. The standard deviation of
carrier-phase measurement error correlates negatively with SNR, and large measurement
errors are more likely to happen in the observations of MEO satellites than in those of IGSO
and GEO ones.

In addition, it is indicated that both the carrier-phase cycle-slip probability and mea-
surement error are larger than the empirical values, which could be explained, to some
extent, by the fast-rotating condition of the GNSS receivers in the dynamic experiment.

5. Patents

The method described in Section 2.2.1 of this article has applied for an invention
patent in China and has been authorized (CN112987038B).
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