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Abstract

Using transgenic animals harboring a targeted LacZ insertion, we studied the expression pattern of 

the C9ORF72 mouse ortholog. Unlike most genes mutated in ALS, which are ubiquitously 

expressed, the C9ORF72-ortholog was most highly transcribed in the neuronal populations 

sensitive to degeneration in ALS and FTD. Thus, our study provides a potential explanation for 

the cell type specificity of neuronal degeneration caused by C9ORF72 mutations.
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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that primarily affects 

motor neurons in the spinal cord, brain stem, and cerebral cortex 1. Frontotemporal dementia 

(FTD) is the second most common cause of presenile dementia. FTD is characterized by 

degeneration of the frontal and temporal lobes of the brain resulting in progressive changes 

in personality, behavior and language, with relative preservation of perception and 

memory2, 3. Recently, expansion of a noncoding hexanucleotide repeat in C9ORF72 was 

identified4, 5 as a common cause of both ALS and FTD6.

Several potential mechanisms by which the C9ORF72 mutation might lead to neuronal 

degeneration have been proposed. Significant reduction in transcript abundance has been 

observed in patients carrying expanded repeats5, 7, suggesting that haploinsufficiency could 

play a role in disease. The repeat expansion is associated with formation of nuclear RNA 
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foci, potentially indicating alterations in RNA metabolism4, 8. Finally, ubiquitinated 

inclusions containing dipeptide proteins non-canonically translated from the GGGGCC 

repeats have been found upon autopsy of C9ORF72 patients 9, 10. However, whether one or 

more of these mechanisms are the cause of neuronal degeneration has not been resolved. 

Regardless of which molecular mechanism, or mechanisms, are responsible for the 

mutation's negative effects, it remains to be determined whether this mutation acts primary 

in the neural subtypes subject to degeneration or through non-neuronal cell types, as has 

been suggested by studies of mutant SOD1. Moreover, the normal physiological function of 

C9ORF72 and its expression pattern in the developing and adult nervous system have not 

been explored. As a first step towards understanding the function of C9ORF72 in 

development, normal brain function and disease, we produced animals harboring a LacZ 

reporter gene targeted to the mouse ortholog and used them to study the gene's expression 

pattern 11.

The C9ORF72 gene is located on the reverse strand of chromosome 9 (Fig. 1a). We found 

that the mouse 3110043O21Rik gene was located on the reverse strand of chromosome 4 in 

a syntenic position, centromeric to Mob3b as well as Ifnk and telomeric to Lingo2 (Fig. 1b). 

BlastN revealed >90% identity between the predicted human C9ORF72 and the mouse 

311043O21Rik protein. Non-human primates, other mammals, Xenopus and Zebrafish also 

possess apparent orthologs with 66 - 98 % amino acid identity (Fig. 1c and Supplementary 

Fig. 1). Only 9 amino acids differ between the predicted protein sequences encoded by the 

mouse and human genes (Supplementary Fig. 2). In light of these findings, we will refer to 

the 311004O21Rik gene as the mouse C9ORF72-ortholog.

Analysis of predicted transcripts and expressed sequence tags (ESTs) demonstrated that the 

mouse and human orthologs also share similar predicted intron-exon structures 

(Supplementary Fig. 3). In humans, predicted isoform 1 and a rare EST did not include the 

repeat expansion sequence, while isoforms 2, 3 and several rare ESTs did. Predicted 

transcript isoform 1 and 2 in mouse did not contain the location of the human repeat while 

isoform 3 and relatively rare ESTs did. To experimentally determine the relative abundance 

of these isoforms, we performed RNA sequencing on mouse cortex and purified mouse as 

well as human embryonic stem cell-derived motor neurons. Among these transcripts, mouse 

isoforms 1 and 2 were most highly expressed in cortex and motor neurons, whereas isoform 

3 and the predicted ESTs were far less abundant. In human motor neurons, isoform 1 was 

most highly expressed, while isoform 2, 3 and ESTs were only present at more modest 

levels (Supplementary Fig. 3c-e).

Comparative sequence analysis at the site of human repeat expansion revealed that the 

unexpanded GGGGCC repeat sequence was conserved in chimpanzees (Supplementary Fig. 

4). This precise repeat sequence was not completely conserved in mouse. However, the CpG 

island in which the human repeat resides was highly conserved between Chimpanzee and 

Human (98% identity), and well as between Human and Mouse (58.3 % identity). Thus, 

although the hexanucleotide repeat itself is not conserved outside of primates, it resides in 

region that it is well conserved to the rodent and may therefore have a regulatory function.
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Review of the Knockout Mouse Project database revealed that mouse ES cells harboring a 

LacZ insertion replacing exons 2 through 6 of the C9ORF72-ortholog had been produced by 

gene targeting (Fig. 1d)11. Via standard methods, we produced chimeric mice that 

transmitted this mutant allele through the germ-line to offspring (Fig. 1d and e). Using 7 to 9 

week old heterozygous mice, we studied the expression pattern of the C9ORF72-ortholog 

using X-gal staining (Supplementary table 1, Supplementary Fig. 5). In the brain, we found 

X-gal activity in the hippocampus, dentate gyrus, striatum, thalamus, brainstem nucleus, 

cerebellum and throughout the cortex, (Fig. 2a-e). We did not detect X-gal staining in white 

matter regions such as the corpus callosum (Supplementary Fig. 5). In the spinal cord, X-gal 

activity was distributed throughout the grey matter, with highest levels found in the ventral 

horn (Fig. 2f, g).

Outside the CNS, the tibialis anterior muscle, heart, lung, liver, and kidney were X-gal 

negative (Fig2h, i Supplementary Fig. 6). The testis and germinal centers in the spleen were 

X-gal positive (Fig. 2j, k).

To determine the identity of X-gal positive cells in the CNS, we performed co-

imunnostaining with anti-β-gal antibodies and antibodies that labeled relevant classes of 

neuronal and non-neuronal CNS cell-type (Fig. 3). We found that 128/130 β-gal+ cells in 

layer V of the cortex expressed NeuN (98%) and that 120/195 (62%) of these cells further 

co-stained with antibodies specific to CTIP2, a transcription factor selectively expressed in 

cortical spinal motor neurons and other projection neurons of layers V and VI (Fig. 3a and 

b). In cortical layers II and III 112/114 β-gal+ cells expressed NeuN (98%), with 107/112 

(96%) of these NeuN+ cells further expressing CUX1, a transcription factor found in 

callosal projection neurons (Supplementary Fig. 7). Throughout the spinal cord, cells 

expressing β-gal uniformly expressed NeuN (111/115, 97%), with a fraction in the ventral 

horn further co-labeling with anti-ChAT antibodies, indicating that many were spinal motor 

neurons (65/115, 57%) (Fig. 3c and Supplementary Fig. 8). In striking contrast, spinal cord 

microglia as identified by IBAI staining, and astrocytes identified by GFAP expression, 

were largely and entirely β-gal negative respectively (Iba1: 7/172, 4% and GFAP: 0/172, 

0%) (Fig. 3d and Supplementary Fig. 9).

Through in situ hybridization using probes targeting exons 2 through 6 of the C9ORF72 

gene and its ortholog, we found that many cells with a neuronal morphology were labeled in 

both the human and mouse spinal cord (Fig. 3e-j). Labeled cells were predominantly 

observed in the ventral and lateral horns of the mouse and human spinal cord grey matter 

and absent from the white matter, a distribution identical to β-gal+ cells observed in 

heterozygous animals.

Expression data compiled from the Allen Brain Atlas confirmed the expression pattern for 

the C9ORF72-ortholog (Supplementary Fig. 10-12) 12. We also carried out a developmental 

survey of X-gal activity and found that transcription of the C9ORF72-ortholog was 

undetectable during prenatal stages and became activated in an expression pattern similar to 

that found in the adult over the first two weeks of post-natal life (Supplementary Table 2).
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Here we show that 3110043O21Rik is the mouse ortholog of human C9ORF72, which we 

found to be highly conserved between vertebrate species. Using mice we produced carrying 

a LacZ reporter at the C9ORF72 ortholog, we found that transcription was most abundant in 

neural types known to degenerate in ALS /FTD. In contrast, the C9ORF72 ortholog was 

largely absent or undetectable in microglia and astrocytes. Although the results from our 

reporter analyses are clear, it is important to note that one limitation of this approach is 

that post transcriptional regulation of the C9ORF72 ortholog could alter the relative 

localization of the protein it encodes. While our findings do not rule out low levels of 

ortholog expression in these non-neuronal cell-types, our results do seem to argue against 

the notion that the C9ORF72 mutations act predominantly through them to mediate neural 

degeneration. Regardless of whether C9ORF72 repeat expansions act in disease through a 

loss of function or gain of function mechanism, our studies of the mouse ortholog provide a 

potential explanation for the cell-type selectivity of neural degeneration in individuals 

harboring this mutation: The neuronal types most sensitive to ALS and FTD transcribe the 

highest levels of this gene.

Methods

Methods and any associated references are available in the online version of the paper.

Online Methods

Bioinformatics

We referred spacial expression pattern of C9ORF72-ortholog of mice brain and spinal cord 

from Allen Brain Atlas database13. Probes are made from transcripts of exon 4 through exon 

11.

Generation of C9ORF72 Knock-in Mice

Target vector was designed in the National Institutes of Health Knockout Mouse (KOMP) 

project14. Briefly, Electroporation of C57BL/6N mouse ES cells with linearized plasmid 

DNA was carried out in electroporation cuvettes. Stable clones were selected in medium 

containing Geneticin. The ES cells were injected into C57BL/6 blastocysts to create 

chimeric mice, which were bred with C57BL/6 mice to generate heterozygous C9ORF72-

ortholog knock-in mice. Postnatal day 60 male mice are used for the experiments otherwise 

particulary mentioned. Up to 5 animals are housed in the same cage. All of the experimental 

protocols and procedures were approved by the Animal Committee of the Harvard 

University.

Genotyping

Genomic DNA from ear biopsies was lysed in lysis buffer with proteinase K at 60°C for 12 

h. The PCR contained primer set A (5′- ATCACGACGCGCTGTATC-3′ and 5′- 

ACATCGGGGAAATAATATCG-3′) which detect LacZ sequence and primer set B (5′- 

CCATGCTTACTGGGGAAGTC-3′ and 5′- AAGAAAGCCTTCGTGACAGC -3′), which 

detect deleted exon 4 and 5. Genomic DNA and primers (50 nM each) were placed in 

standard Taq buffer supplemented with 1.25 units of Taq polymerase for 10 min at 94 °C. 
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After enzymatic amplification for 35 cycles, the PCR products were resolved on 2% agarose 

gel in Tris acetate-EDTA buffer.

X-gal Staining of Tissues

Mice were anesthetized with avertin and perfusion-fixed with 4% paraformaldehyde (PFA). 

Tissues were harvested and post-fixed in 4% PFA overnight at 4 °C, washed with PBS, 

immersed in 30% sucrose for 24 h at 4 °C, and frozen in optimal cutting temperature 

compound for sectioning using cryostat. Some of the specimen from CNS are washed with 

PBS and cut using vibratome. X-galactosidase (X-gal) activity was assessed by incubating 

10-50 μm thick sections with LacZ staining solution (1.0 mg/ml of X-gal, 5mM potassium 

ferrocyanide, 5 mM potassium ferricyanide, 2 mM MgCl2) for 30 min-12 h at 37 °C. The 

sections were examined and photographed with a Zeiss AX10. Antibodies. The following 

antibodies were used: β-gal (1:500, CGAL-45A-Z, ICL), ChAT (1:100, AB144P, Millipore), 

CTIP2 (1:200, 25B6, Abcam), CuxI (1:200, sc13024, Santa Cruz), NeuN (1:200, MAB377, 

Millipore), IbaI (1:200, 019-19741, Wako), and GFAP (1:500, G3893, Sigma).

Immunohistochemistry15, 16

Cryosections of tissue (10-50 μm thick) were cut from the brain, spinal cord and other 

organs, placed on poly-L-lysine-coated slides, air-dried, and pre-incubated in phosphate-

buffered saline (PBS) containing 5 % goat serum for 30 min at room temperature. The 

primary antibodies were applied overnight at 4 °C. Following incubation with the 

appropriate secondary antibodies, the mounted sections were observed using Zeiss AX10 

microscope or Zeiss LSM 700 laser scanning confocal microscope (Carl Zeiss Micro-

Imaging GmbH). Images were processed using ZEN 2010 software. Stainings were 

performed at least three times and representative figures were shown.

Motor neuron differentiation from mouse and human ES cells (ESCs)

Mouse and Human derived ES cells with HB9GFP reporter are differentiated and 

fluorescence activated cell sorting (FACS) purified as described previously16, 17. Briefly, 

human ESCs are incubated in accutase and resuspended in low-attachment flasks. ESCs are 

differentiated into motor neurons with dual-SMAD inhibition, and then retinoic acid (RA) 

and smoothened antagonist (SAG). Mouse ESCs were differentiated into motor neurons 

according to methods previously described16. For differentiation to motor neurons, mouse 

ESCs are cultured in medium supplemented with RA and SAG for 7 days. After motor 

neuron differentiation, GFP positive motor neurons are collected using FACS.

RNA sequence

Following harvesting of RNA from indicated sources, RNA quality was determined using 

bioAnalyzer (Aligent). RNA integrity numbers (RIN) above 7.5 were deemed sufficiently 

high quality to proceed with library preparation. In brief, RNA sequencing libraries were 

generated from ∼250ng total RNA using the illumina TruSeq RNA kit v2, according to the 

manufacturers' directions. Libraries were sequenced at the Harvard Bauer Core Sequencing 

facility on a HiSeq 2000. Libraries were generated from at least 2 independent biological 

replicates and 20-40 million, 100 base-pair, paired end reads were obtained for each sample. 
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Reference files of the genome build hg19 (human) and mm9 (mouse) as well as ensembl 

transcript annotations were obtained from iGenomes (http://support.illumina.com/

sequencing/sequencing_software/igenome.ilmn). Reads were aligned to the genome using 

the split read aligner Tophat (v2.0.7) and Bowtie2 (v2.0.5)18. Transcript assembly and 

isoform specific quantitation was performed using Cufflinks (v2.1.1). Abundance of 

individual isoforms is reported as Fragments per Kilobase of transcript per Million mapped 

reads (FPKM). Computations were performed on the Odyssey cluster supported by the FAS 

Science Division Research Computing Group at Harvard University. No statistical methods 

were used to pre-determine sample sizes but our sample sizes are similar to those generally 

employed in the field.

In situ hybridization

A 658 base pair fragment spanning exons 2-6 of spliced human C9ORF72 was amplified 

from a human whole brain cDNA library. Primers used were 

TCTCCAGCTGTTGCCAAGAC, AGTGTGAGCTGATGGCATTGA. For mouse, primers 

used were TTGGCGGCTACCTTTGCTTA, GTCTGCAGGTGTGAGCTGAT. The 

amplicon was purified, A-tailed, cloned into the pGEM-T expression vector (Promega), and 

sequenced. Digoxigenin (DIG)-labeled antisense riboprobe was transcribed in vitro from the 

linearized C9ORF72 cDNA clone (Roche), purified, and hybridized to acetylated human 

spinal cord sections overnight at 65 C. After stringent washes in 0.2× SSC at 65 C, sections 

were probed with anti-DIG antibody directly coupled with horseradish peroxidase (Roche) 

for 1 hour, washed, and developed for 20 minutes with Cy3 tyramide (Perkin Elmer) in the 

presence of 10% dextran sulfate and 2 mM of 4-iodophenol (Sigma Aldrich). Stained tissue 

was then washed with PBST and mounted with Aqua Polymount (Polysciences).

Human sample

Adult human spinal cord (70 year old, male) was derived from Upstate New York 

Transplant Services (UNYTS). The protocol was approved by Harvard IRB.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mouse 3110043O21Rik gene is the ortholog of human C9ORF72
Human C9ORF72 gene is located on the reverse strand of chromosome 9 

(27,546,544-27,573,864) (a), while mouse 3110043O21Rik gene is located in a region of 

apparent synteny on the reverse strand chromosome 4 (35,138,536-35,173,129) (b). (c) 

Homology of C9ORF72 gene and its apparent orthologs. Black line represents ×1 branch 

length, while blue line represents ×10 branch length. F18A1.6 in C elegans has 23 % 

identity with human C9ORF72. (d) Construction of the C9ORF72 LacZ “knock-in” mice. 

Boxes represent exons. Frt sites (open triangle) and Loxp sites (closed triangle) are shown. 

Exon 2 through exon 6 are deleted and substituted with LacZ sequence. Grey and black 

arrows represent the locations of primers used in Fig. 1e respectively. (e) LacZ genotyping 

result. Primer-set A detects LacZ sequence (530 bp). Primer-set B detects exon 4 and 5 of 

C9ORF72 ortholog (615 bp). Mol. Wt = Molecular Weight.
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Figure 2. Distribution of X-gal in heterozygous animals with C9ORF72-ortholog LacZ insertions
(a-e). X-gal staining of the brain of C9ORF72 ortholog knock-in mice. Expression of X-gal 

in cortex and hippocampus (a), striatum (b), cerebellum (c), brainstem nucleus (d), thalamus 

(e). X-gal expression distributes mainly in grey matter of the spinal cord in C9ORF72 

ortholog knock-in mice (f, g). (g) Shows higher magnification image of white rectangle in 

(f). X-gal staining of non-nervous system organs (h, k). X-gal staining was undetected in 

tibialis anterior muscle (h) and heart (i). Note that peripheral of germinal center in spleen (j) 

and testis (k) were positive for X-gal staining. Bar, 200 μm (a), 100 μm (f), 50 μm (b-e, g-k).
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Figure 3. Characterization of the cells expressing β-gal under control of the C9ORF72-ortholog 
promoter
(a). Co-localization of β-gal, CTIP2 (layer V) and NeuN in cortex. Green-β-gal, red-CTIP2, 

blue-NeuN. (b) shows Z-stack and orthogonal images of white rectangle in (a). (c) Co-

localization of β-gal with ChAT, and β-gal with NeuN in ventral horn of the spinal cord are 

shown. Dashed line represents the border between grey and white matter. (d) β-gal positive 

cells are not colocalized with GFAP or Iba1 in ventral horn of the spinal cord. (e-j) Spliced 

C9ORF72 mRNA is specifically expressed in motor neuron-like cells in the mouse (e) and 

human spinal cord (f-j). (f) Composite photomicrograph of a coronal section of a human 

spinal cord stained with Hoechst to visualize DNA. (g) Map of C9ORF72-expressing cells 

(black dots) observed in the spinal cord section show in panels (f-j). Labeled cells were 

sparse and were confined to cell bodies distributed in the ventral and lateral horns of the 

spinal cord. The wedge-shaped tear on the left dorsolateral edge of the spinal cord is a 

histological artifact. (h) Photomicrograph of the yellow-boxed region in f, showing the in 

situ hybridization signal of DIG-labeled antisense riboprobe against spliced human 

C9ORF72 mRNA (yellow arrows). Hybridization was strong and specific. (i) High power 

photomicrograph of the green boxed region in (h), illustrating a representative labeled cell 

(green), whose nucleus (arrowhead) is considerably larger than those of surrounding cells 

(yellow arrows). (i and j) Representative C9ORF72-expressing cells are large and 

pyramidal, and strongly reminiscent of spinal cord motor neurons. Bar, 50 μm (a, e) and 20 

μm (b, c, d, h), 2mm (f), 100μm (i), and 10μm (j).

Suzuki et al. Page 10

Nat Neurosci. Author manuscript; available in PMC 2015 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


