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Abstract: Smartphones have emerged as a revolutionary technology for monitoring everyday
life, and they have played an important role in Human Activity Recognition (HAR) due to its
ubiquity. The sensors embedded in these devices allows recognizing human behaviors using machine
learning techniques. However, not all solutions are feasible for implementation in smartphones,
mainly because of its high computational cost. In this context, the proposed method, called HAR-SR,
introduces information theory quantifiers as new features extracted from sensors data to create simple
activity classification models, increasing in this way the efficiency in terms of computational cost.
Three public databases (SHOAIB, UCI, WISDM) are used in the evaluation process. The results have
shown that HAR-SR can classify activities with 93% accuracy when using a leave-one-subject-out
cross-validation procedure (LOSO).

Keywords: human activity recognition; symbolic representation; discrete domain; time series
classification; information theory; inertial sensors

1. Introduction

Recent advances in sensing technologies have made smartphones one of the most promising
devices to the real-time monitoring of human behaviors in different domains such as health care,
fitness track, behavior detection, elderly care, and rehabilitation [1–4]. In the health area, for instance,
the recognition of physical activities from smartphone sensor data have contributed to avoiding
negative outcomes linked with a sedentary lifestyle. For example, monitoring of time a person
spends sitting can be a useful parameter for treating diseases such as obesity, diabetes, cancer,
and cardiovascular disease [3].

In general, the task of human activity recognition (HAR) consists mainly of four steps: sensing
(data acquisition), segmentation, feature extraction, and classification [2,5,6]. While all these steps
are important, feature extraction and selection are the core of most studies in the HAR area [1,6,7].
The feature extraction phase aims to find a high-level data representation from sensors signals which
are used by machine learning methods to generate activity recognition models [8].

Early researches have focused on shallow machine learning methods that use a hand-crafted
process to obtain significant features from sensors data. In this process, the data gathered from sensors
should be transformed by a specialist into a new domain that represents the data into a high-level
representation [2,5,9,10]. A disadvantage of these shallow approaches is that feature extraction depends
on the expertise of an expert and therefore is a lengthy process [11].

The need for more robust techniques for learning features automatically from sensor data
and minimizing the participation of the specialist is a trending topic in HAR. In this context,
Deep Neural Networks (DNNs) have been used [11–16]; however, although this approach is promising,
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DNNs present high computational cost when compared with traditional approaches, which makes
them unfit for real-time applications implemented on mobile devices with limited processing, memory,
and battery resources [4,17].

Alternatively, symbolic representation algorithms are used to overcome problems mainly related
with high computation cost in time series domain [18]. The symbolic algorithms transform raw sensor
data into useful and compact information to facilitate the learning process of machine learning
algorithms. The advantages of discrete domain features include the ability to reduce the data
dimensionality and data numerosity naturally during the feature extraction, allowing a massive
amount of data to be reduced to a reasonable and representative number of symbols. This contributes
to reducing the complexity and computational cost of HAR solutions, opening doors for the use of
new HAR strategies in the context of smartphones with limited memory and processing resources.

Examples of these algorithms are Symbolic Aggregate Approximation (SAX) proposed
by Lin et al. [19,20], Symbolic Aggregate Approximation in Vector Space Model (SAX-VSM)
proposed by Senin and Malinchik [21], Symbolic Fourier Approximation (SFA) proposed by
Schäfer and Högqvist [22], Bag-of-SFA-symbols (BOSS) proposed by Schäfer [23] and Multivariate
Bag-Of-SFA-Symbols (MBOSS) proposed by Montero Quispe et al. [24].

In this article, we propose a low-cost solution called Human Activity Recognition based on
Symbolic Representation HAR-SR), which is capable of extracting features from sensors data using
symbolic representation algorithms by transforming a time series, represented by real values obtained
from sensors, into a set of symbols belonging to the discrete domain. Unlike the approaches that
use the Term Frequency – Inverse Document Frequency (tf-idf) model [25], e.g., SAX-SVM model,
BOSS model and MBOSS model, which generally have a larger feature set, the advantage of our method
is that the feature set is significantly smaller. The data representation in the discrete domain [19,23] is
combined with information theory techniques [26,27] which arrange the input signals in a much
smaller space than the original one. This generates a low-cost classification model in terms of
computational performance.

The objective of this article is to improve Human Activity Recognition (HAR) solutions based
on smartphones instrumented with inertial sensors with the use of scalable and low-cost strategies.
The main contributions of this article are: (a) a low-cost feature learning approach to transform
time-series into a symbolic domain; (b) new features introduced to the HAR domain based on
complexity measures from information theory that characterizes properties of a time series; (c) a feature
set significantly smaller than those generated by the similar models found in the literature [21,23,24].
The results show that HAR-SR performs similarly to the state-of-the-art. However, it presents a low
computational cost when compared to other traditional models [9,10].

The remainder of this paper is organized as follows: Section 2 presents the background for
Human Activity Recognition. Section 3 details the concepts related to the symbolic representation
of sensor signals. In this section, we discuss the discretization algorithms and the process of feature
extraction of the discrete domain. Section 4 presents the proposed method. Sections 5 and 6 presents
the experimental protocol and the results. Section 7 presents the work related to this research. Finally,
Section 8 presents the conclusions of this work.

2. The Human Activity Recognition Process Overview

The smartphones are devices capable of real-time monitoring of human behaviors through several
embedded sensors such as accelerometer, gyroscope, microphone, camera, and GPS [1]. In general,
the methodology used to find patterns in the sensors signals and associate them to human activities is
divided into four main stages [2,5,6,24], as shown in Figure 1.

In the data acquisition stage, the motion sensors are often used (e.g., accelerometer and gyroscope)
because they give information about the angle, vibration, rotation, and oscillation of a smartphone.
These data can be considered a direct reflection of a user’s actions and/or of the physical environment
in which the device is located [28–30]. The data are collected continuously and should be divided into
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smaller segments in a process called segmentation. The segment size influences the amount of data
needed to represent the activities.

Feature 

Extraction
Classification

Data acquisition 

and preprocessing
Segmentation

• Min 
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• Mean

• Standard 

Deviation

• Correlation

Figure 1. The common methodology used in HAR: data acquisition, segmentation, feature extraction,
and classification.

The windowing approaches are normally used for segmentation. In the simplest segmentation
technique, the signals are split into windows of a fixed size, and with no overlap in the
between-segments data collected; however, the data associated with a particular activity can be
split between different segments, which can result in the loss of important information. To overcome
this problem, the sliding window segmentation techniques are used to add some overlap in the process
of segmentation.

Subsequently, each segment is transformed into a high-level representation of sensor signals in a
process called feature extraction. This process is essential because the classifiers do not work very well
if they are applied directly to the sensor signal data [8,31,32]. There are two ways of extracting features
from sensors signals data: hand-crafted feature extraction and automatic feature extraction (feature
learning). In the first approach, the features are manually engineered by the data scientist, while in
the second approach, the features are automatically obtained from a machine learning algorithm,
using deep neural networks, for example.

In general, the shallow networks are modeled by features extracted from time, frequency,
or discrete domain. These features are simple to understand and have low computational complexity,
very suitable for mobile devices [7,13]. The disadvantage of hand-crafted feature extraction is
that resources created or selected manually are time consuming, domain-specific, and they require
specialized knowledge. On the other hand, these features can be generated automatically by using
deep structured models. Most feature learning approaches used in the feature extraction phase are
based on autoencoders and Convolutional Neural Networks (CNNs) [4,15,17,33].

The features extracted are used by machine learning algorithms to generate an activity recognition
classification model [8]. Different machine learning algorithms can be used to create the recognition
models such as decision tree, naive Bayes, support vector machine (SVM), artificial neural networks
(ANNs), logistic regression, KNN (K-Nearest Neighbors) and Deep Neural Networks (DNNs) [8,34].

The DNNs are a more recent class of machine learning algorithms used in HAR systems. As a
feature learning method, the DNNs eliminate or minimize the need for a dedicated feature extraction
phase because the entire process of feature extraction and classification is performed within the
network hidden layers. The DNNs have a high computational cost when compared with traditional
approaches, which makes them unfit for real-time applications implemented on mobile devices with
low computational power (CPU and low-performance GPU) [35].

An alternative to deal with the problems of high computational cost derived by the use of
deep structured models is to adopt a discrete representation of features. Symbolic representation
algorithms have been used to reduce data dimensionality and noise of the time series to improve the
classification stage of the machine learning algorithms [18–20,22,36]. These algorithms are also known
as histograms-based or codebook based, which use frequency counts of recurrent patterns and then
build classifiers based on the resulting histograms [18,21,24,37,38]. This is a recent approach that has
shown good results in problems involving time series classification.
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3. The Discrete Domain of Sensors Data

The discrete domain algorithms can transform the sensor signal, represented by a time-series,
into a set of symbolic patterns. The symbolic patterns can be interpreted as frequency distribution,
a new high-level representation of the signals. This new form of representation has some advantages
that are intrinsic to its transformation processes, such as dimensionality reduction and noise reduction.
In literature, the discrete domain algorithms more used are the Symbolic Aggregate Approximation
(SAX) [19] and Symbolic Fourier Approximation (SFA) [22]. These algorithms are divided into
two phases:

These algorithms are divided into two phases that are represented by two parameters:

(a) Approximation: it is a mapping of a time series in a low dimension space, represented by real
values. This parameter consists on word size, ω ∈ N, which represents the number of values
for the approximation. The smaller the word size, the greater the reduction of noise, but the
loss of information increases;

(b) Quantization: Each real value obtained in the approximation process is mapped to a discrete
value, which is interpreted as a symbol. This parameter is defined as the alphabet size α ∈ N,
which is used in quantization. A small alphabet also results in a strong noise reduction.

The approximation and quantization can result in different types of representations for the same
time series, depending on the algorithm adopted. These processes will be described with more details
in the next sections.

3.1. Symbolic Aggregation Approximation

The Symbolic Aggregation Approximation (SAX) is a discretization algorithm that transforms an
arbitrary time series T of size N, represented by real values, into a set of arbitrary symbols of size M in
a discrete domain [19].

In the approximation phase, the SAX applies the standard normalization on time series and use
the numerical approximation algorithm Piecewise Aggregate Approximation (PAA) for dimensionality
reduction. A time-series T of size N is divided into M subsequences of equal size, where each
subsequence is represented by the mean of values. Since transformed a time series into the PAA
representation, we apply a further transformation to obtain a discrete representation.

Finally, in the quantization phase, each of PAA coefficients is mapped into a letter ω of an alphabet
α using a lookup table (Figure 2a) which defines a set of breakpoints that divide the normalized time
series values distribution space into α equal-sized regions, assuming the Gaussian distribution [19,39].
Figure 2b shows the statistical table used in the definition of breakpoints.

The SAX word generation process is considered a simple and computationally inexpensive process
when compared to more robust algorithms, such as SFA, presented in the next section.
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Figure 2. (a) The lookup table shows the breakpoints that divide the Gaussian distribution into an
arbitrary number of equiprobable regions. (b) The application of the PAA in a time series (N = 160)
resulting in a new signal (M = 8). The new signal is composed of all values t̄i, which are computed at
each interval.
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3.2. Symbolic Fourier Approximation

The Symbolic Fourier Approximation (SFA) is one of the most sophisticated discretization
algorithms for time-series found in the literature [18,22].

In the approximation phase, the SFA algorithm uses the first coefficients of the Discrete Fourier
Transform (DFT). The number of Fourier coefficients is associated with the SFA word parameter,
l ∈ N. Dynamically adding or removing Fourier coefficients adapts the degree of approximation of the
algorithm. The first coefficients are the ones that capture the most important frequency components.
For this reason, adding more coefficients will not affect the approximation accuracy significantly.
In addition, the coefficients are calculated only once, and there is no need to recalculate them unless it is
necessary to change the approximation level. Figure 3a shows the original subsequence transformation
into the real and imaginary coefficients extracted from DFT [22].

In the quantization phase, the SFA algorithm uses a technique called Multiple Coefficient Binning
(MCB) to generate a lookup table, which is based on a set of time series samples. The MCB define
a set of regions, where each DFT coefficient represents a breakpoint. Each region of the breakpoint,
called bin, has different intervals for each column of coefficients. These differences make the SFA better
adapt to the data variation and also reduce the risks of information loss [22]. Figure 3b shows the
quantization phase which uses the MCB table to define the best breakpoints and generate the symbolic
representation of a time series.

After the training, the MCB can be used in the process of transformation of a time series in a
symbolic representation. In practical terms, the SFA algorithm works similarly to SAX, but in the
approximation phase, it uses the Fourier transform instead of the PAA algorithm. Besides, the SFA
breakpoint table is dynamic, which fits the data based on the training set, instead of SAX that uses a
fixed and predefined table. The mentioned changes generate an additional cost to the method and an
additional step to generate the lookup table. However, this additional cost is offset by better results
compared to the SAX in several scenarios [18,23].
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Figure 3. A time series T is approximated using the Discrete Fourier Transform (DFT) coefficients.
In the quantization phase, the SFA uses the Multiple Coefficient Binning (MCB) to define the best
breakpoints and finally generate the word ‘DAAC’ of size 4 and alphabet of size 6 [22].

3.3. Time-Series Bag-of-Patterns Representation

For finding the most representative patterns in time series, it is common to use a methodology
called Bag-of-Patterns (BOP) [20,37]. The BOP combines the symbolic representation algorithms
with the sliding window techniques. This allows the symbolic algorithms, such as SAX, to extract
substructures and more representative patterns from the same time-series. The result of this
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combination becomes a set of symbols (frequency distribution) and not a single representation,
as shown in Figure 4.
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Figure 4. The discretization process of a time series to obtain a frequency distribution. The time
series is segmented through the sliding window technique, and then discretized by some symbolic
representation algorithm such as SAX or SFA.

As shown in Figure 4a, the algorithm begins by extracting the sliding windows of size w from the
time series T. Then, each sliding window is normalized by z-score. Finally, the symbolic transformation
is applied in each of the values obtained in the sliding window process. A histogram is constructed
based on the frequency of symbols. The histogram P : αω → N is a function of the space of symbols
αω for natural numbers. The numbers represent the occurrences of a symbol. This unordered symbol
histogram is known in other domains as bag-of-words (BOW).

A Probability Distribution Function (PDF) is commonly used to quantify a frequency distribution
that represents the time series. The distribution can be treated as a set of features by the classification
methods. From the same distribution, it is also possible to apply other techniques to obtain new
characteristics of higher quality.

For example, the vector space model called Term Frequency – Inverse Document Frequency
(tf-idf) [25] can be used to obtain the vector of weighted frequencies (or weights) from a histogram.
In this model, the words that are syntactically similar and the furthest words are syntactically distant.
In the model tf-idf, each of the symbols receives a weight according to its importance in the syntactic
context. This model succeeds in representing the syntactic relationship between symbols and their
importance since the weight applied to each symbol generates a vector of characteristics better than
that presented only by the frequency of symbols [40].

Adaptations of this model applied in the discrete domain that applies tf-idf in the frequency
distribution are presented in Senin and Malinchik [21] with SAX-SVM model; Schäfer [37]
with the Bag-of-SFA-symbols (BOSS) model; Montero Quispe et al. [24] with Multivariate
Bag-Of-SFA-Symbols (MBOSS) model. Each one of these methods uses different techniques that
result in different representations.

This work proposes another solution that introduces information theory quantifiers as a new
feature extracted from a frequency distribution. These quantifiers of information theory can be defined
as measures that characterize properties of a distribution, allowing the extraction of information from
time series, where determinism and stochastic are two extremes of the process [27]. The statistical
complexity measure of a probability distribution can be used as a feature by machine learning
algorithms. Unlike the approaches that uses tf-idf models, e.g., SAX-SVM model, BOSS model
and MBOSS model, the advantage of our method is that the feature set is significantly smaller.

4. HAR-SR: Human Activity Recognition Based on Symbolic Representation

The HAR-SR (Human Activity Recognition based on Symbolic Representation) was designed
to classify multivariate time series. The multivariate time series are collections of univariate time
series that arise when multiple interconnected data sources captured over time. The HAR-SR maps
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the implicit features of sensor’s signals to a discrete domain as a frequency distribution. From this
distribution, this research presents a new feature set for classification models, derived from information
theory, such as Shannon’s Entropy, Jensen-Shannon Divergence, and the Statistical Complexity
Measure [27,41]. By the end, a supervised learning algorithm is used to create a model for activity
recognition.

The HAR-SR recognition process has five main steps, as shown in Figure 5. (a) data acquisition;
(b) signal segmentation phase, which makes use of data fusion techniques; (c) the symbolic
representation phase, which learns patterns from time series; (d) the feature extraction stage presents
new features, that are not yet explored in the HAR literature; (e) the classification phase creates a
classification model using a machine learning method for activity recognition.
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Figure 5. Overview of the HAR-SR method.

4.1. Data Acquisition, Segmentation and Data Fusion

Some discretization methods, such as SAX, do not accept multidimensional time series and
therefore cannot directly receive data from motion sensors. The choice of a data fusion technique on
the segmentation process of the multidimensional time series should resolve this problem. In the data
fusion process, we have used different techniques, such as magnitude and the Principal Component
Analysis (PCA), both aggregation methods [42]. In addition to these methods, a simple concatenation
technique is used to obtain a unidimensional signal T = (ti, ..., tn), ti ∈ R, but with the same size as
the original signals. A limitation of this approach is that no dimensionality reduction is applied in this
concatenation method.

4.2. The Symbolic Representation of Sensors Signals

We use the following steps in the discretization process of a time series: (a) using the sliding
window technique for extracting substructures, or segments, from a time series. Given a time series
T, a segment S is a time series with w contiguous values starting at offset a in T, where S(a, w) =

(ta, ..., ta+w−1), with 1 ≤ a ≤ n− w + 1. In this process, n− w + 1 sliding windows of length w can be
extracted from a time series T of length n; (b) each segment of the time series goes through a process
of symbolic approximation, whose objective is to reduce the dimensionality of the segment and to
remove noises. (c) then, a search table is used in the discretization process to obtain the symbolic
representation of the segment; (d) finally, each discretized segment is used to obtain a frequency
histogram of the symbols.

The result of the discretization process is a frequency distribution for each time series from
the dataset. The histogram feature space is formed by all combinations of letters that generate a
word. It can be visualized as a matrix where rows are related to the words space and the columns
to the segments. If a specific word is already in a histogram, then the frequency value is nonzero.
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Otherwise, the value is equal to zero. Each histogram has an activity label that will be used for
classification purposes.

When all histograms are computed, they can be used directly by a classification model as a feature
set. In this work, we employ a new feature set based on metrics extracted from information theory as
statistical quantifiers such as entropy, divergence, and complexity for the classification task.

4.3. A New Feature Set from Information Theory

The HAR-SR presents a new feature set for classification algorithms using information theory
concepts. In the HAR domain, the Statistical Complexity Measure (SCM) is expressed in the amount
of information stored by the time series. Through this measure, it is possible to define quantifiers
associated with the activities performed. If the time series is transformed into a symbolic histogram,
then the complexity of the time series can be accessed by the information contained in any symbol.
This information is used to quantify the degree of order and disorder of the time series.

There are different measures of complexity to compare and distinguish behaviors in time series,
such as periodic, chaotic, and random behaviors, as shown [41,43]. These measures should be selected
according to characteristics of the data, such as stationarity, size of the time series, parameters variation,
and noise level. In all the cases, the global aspects of the time series are captured in some way, but the
different methods are not equivalent in discerning all the relevant physical details [44]. The SCM
adopted in this work uses the measures suggested in Rosso et al. [44], which combines the concept of
disorder, obtained with the Shannon entropy, and the concept of imbalance, obtained by the divergence
of Jensen-Shannon.

The Shannon entropy and the divergence of Jensen-Shannon characterize properties of a
probability distribution, which can be obtained using the BOP-SAX model, for example. Choosing a
proper method for obtaining probability distribution from time series is not trivial since each method
uses different techniques that result in different representations that must be chosen according to
problem domain [27,44].

The Shannon’s entropy [45] is commonly adopted in dealing with information content. It measures
the information contained in a distribution related to a time series. To compute the entropy,
the histogram P must be normalized, as shown in Equation (1), where pi is the frequency value
of the ith symbol of the word space Ω of size η.

P =
pi

∑
η
i=1 pi

(1)

Defining the probability distribution, where P = {pi; i = 1, ..., η} with ∑
η
i=1 pi, where Ω is the

word space of size η. Then, the Shannon Entropy is defined as shown in Equation (2).

H[P] = −
η

∑
i=1

pi ln(pi), (2)

where pi represents the relative frequencies of all possible symbols of the space Ω. When H[P] =
Hmin = 0, the prediction that the result i will occur is of complete certainty. Figure 6a shows an
example where the value H[P] = 0, since the occurrence of the ‘ab’ symbol, has a maximum probability
value. On the contrary, we have the least knowledge in the case of a uniform distribution Pe = {pi =
1
η ; i = 1, ..., η}, since each result has the same possibility to occur, and the uncertainty is maximum,
H[Pe] = Hmax = ln η (Figure 6b).
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(a) Minimum entropy (b) Maximum entropy
Figure 6. The minimum entropy can be represented by the distribution on the left, where H[P] =
Hmin = 0. The uniform distribution Pe, right in the figure, also called the uniform histogram (Hre f ),
represents a random series in which all occurrences have the same probability value (e.g., a random
noise). In the example there are four symbol possibilities, each with probability p = 1

4 .

Given the two extreme situations, it is interesting to use the normalized Shannon entropy defined
in Equation (3), where 0 ≤ H ≤ 1, and Smax is the word space of the histogram P.

H[P] =
H[P]
Smax

(3)

In some cases, two different distributions P and Q may have the same entropy value, as shown in
Figure 7. To solve this problem, we use the divergence calculation, which will be the second statistical
measure adopted in this research to calculate the SCM. In the theory of probability and statistics,
the Jensen-Shannon divergence is a measure of similarity between two probability distributions P and
Q [44]. 05101520 aa ab ba bbEspaço de amostrasFrequência

Word space

Fr
eq

ue
nc

y

(a) Distribution P

05101520 aa ab ba bbEspaço de amostrasFrequência
Word space

Fr
eq

ue
nc

y

(b) Distribution Q
Figure 7. The distributions P and Q are different but have the same entropy value H = 0.875
(normalized entropy value).

The unbalance term is used to refer to the divergence between two histograms. The first histogram
P represents a time series and the second is the uniform histogram Pe = {pi =

1
η ; i = 1, ..., η} that is the

stationary state of the system. After this definition, the divergence is defined according to Equation (4).

Qj[P, Pe] = Q0H[P, Pe] = Q0H
{
[ P+Pe

2 ]− H[P]
2 −

H[Pe ]
2

}
, (4)

where Q0 is a normalization constant such that 0 ≤ Qj ≤ 1, which can be obtained through Equation (5).
This value is obtained in a totally deterministic situation.

Q0 = −2
{

η+1
η ln(η + 1)− ln(2η) + ln(η)

}−1
(5)

Finally, the complexity C combines the theory of disorder, from Shannon H entropy, with the
concept of imbalance Qj, from Jensen-Shannon divergence [46]. It assigns low values to both
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uncorrelated random data (maximum Shannon entropy) and perfectly ordered data (Shannon’s null
entropy). So, if we have an ordered sequence, such as a simple oscillation or trend, the statistical
complexity would be low, and so would an unordered sequence, such as uncorrelated white noise (a
random signal with equal intensity at different frequencies). The characterization of the data is more
difficult for series located between the two given extremes and, therefore, the complexity would be
greater [27]. Thus, the statistical complexity is defined according to Equation (6).

C[P] = Qj[P, Pe]H[P] (6)

For multiclass classification problems using only the three statistical measures may not be
enough for good classification performance. To resolve this problem, this research also uses other
interpretations for divergence measures beyond the uniform. Now the divergence value will be
influenced by the number of problem classes, as shown in Figure 8. The measure of entropy remains
unchanged because it depends only on the frequency distribution of a given series.

The process of generating new reference histograms for each class follows the following steps: (a)
all time-series that belonging to a specific class are grouped into a set. For example, the time series
of class A are grouped RA = {TA

1 , TA
2 , ..., TA

N}; (b) the frequency histogram PA = {PA
1 , PA

2 , ..., PA
N} of

each time series of the set RA are obtained, according to Figure 8; (c) the frequency values of each P
symbol are summed, resulting in a single histogram: the reference histogram for class A. For example,
all frequencies for the ′aa′ symbol of the set PA are summed, then for the ′ab′ and so on; (d) This
process is repeated in all classes of the problem. For example, a problem with two classes results in the
reference set REF = {Pe, PA, PB, ..., PN}.
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Figure 8. Process of generating the reference histograms for N classes.

In addition to the measures of entropy, divergence, and complexity generated from the uniform
histogram Pe, for each new class, there will be an additional measure of divergence and complexity.
For example, in the problem of two classes, class A and class B, with their respective histograms of
references PA and PB, the values of the measure of divergence can be obtained by the formulas of
Table 1.

Table 1. Calculation of the divergence based on N classes.

Divergence Complexity

QA[P, PA] = Q0H[P, PA] = Q0H
{
[ P+PA

2 ]− H[P]
2 − H[PA ]

2

}
C[P] = Qj[P, PA]H[P]

QB[P, PB] = Q0H[P, PB] = Q0H
{
[ P+PB

2 ]− H[P]
2 − H[PB ]

2

}
C[P] = Qj[P, PB]H[P]

... ...
QN [P, PN ] = Q0H[P, PN ] = Q0H

{
[ P+PN

2 ]− H[P]
2 − H[PN ]

2

}
C[P] = Qj[P, PN ]H[P]
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The process ends when all the reference histograms are used to calculate the divergence and
complexity measures. The set of characteristics obtained for a multiclass problem is similar to that
shown in Table 2.

Table 2. Table of values obtained by calculating the entropy, divergence and complexity for a problem
with multiclasses.

Hs Qre f QA QB ... QN Cre f CA CB ... CN Class

0.54 0.07 0.10 0.06 . . . 0.06 0.04 0.05 0.03 . . . 0.03 A
0.49 0.08 0.06 0.08 . . . 0.02 0.04 0.03 0.10 . . . 0.02 B
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.49 0.08 0.12 0.10 . . . 0.01 0.04 0.05 0.15 . . . 0.03 A

In the example of Table 2, the complexity values are calculated based on three classes.
The complexity values will decrease for a specific class, for example, the class A, if the reference
histogram used is related to class A. This happens because the calculation of divergence between the
histograms that belong to the same class results in lower complexity values. These differences are
caused by each reference histogram, although small, are fundamental for the learning methods to find
patterns and generate classification models with good performance. This methodology also results in
a reduced number of features for learning algorithms.

4.4. Classification Model

The problem addressed in this research is a classification problem. Several classification methods
can be used, such as decision tree, neural networks, SVM, naive Bayes, among others. However,
this work has chosen the KNN method to facilitate the comparison and evaluation of the HAR-SR
with other similar works in the literature. As a measure of KNN distance, the similarity of cosines
commonly used by classification methods based on symbolic representation.

The classification process consists of associating a label of an existing class with a new time series
Tu as yet unlabelled. For this task, the model goes through two steps:

1. The training

(a) A time series dataset D = {(T1, y1), (T2, y2), ..., (TN , yk)} is an unordered set of N time
series, k is the number of classes, Ti is the time series, and yi is the label associated with
the series Ti;

(b) Creation of a reference histogram for each of the classes. For example, for two classes,
REF = {Pe, PA, PB}, where Pe is the uniform histogram and PA and PB are the reference
histogram for class A and class B, respectively;

(c) For each time series Ti, apply the segmentation S(a, w) = (ta, ..., ta+w−1), with 1 ≤ a ≤
n− w + 1, the data fusion, perform the discretization to obtain the histogram Pi;

(d) Calculation of statistical measures using each reference histogram.
(e) Generation of the training set from the statistical measures.

2. The classification

(a) Given a new series not labeled Tu;
(b) Apply the segmentation, the data fusion, and the discretization to obtain the histogram Pu;
(c) Calculate the statistical measures that use the reference histograms obtained in the training

phase, resulting in the feature vector of the Tu series;
(d) The label associated with the series Ti ∈ D closest to the Tu series will be assigned to the

uncollected series Tu, using the cosine similarity metric.
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Figure 9 shows an example of the feature extraction process in the training phase for a multiclass
problem. To classify a new non-labeled series Tu, the procedure is similar to that performed in the
training phase. The difference is that there is no need to obtain new reference histograms. The process
of extraction of characteristics is shown in Figure 9b. Finally, the label associated with the nearest
series will be assigned to the non-labeled series using a cosine similarity metric, using Equation (7).
With the new classified activity, the classification process is finalized.

argmax =

{
similarity(Ti, Tu) =

Ti.Tu

‖Ti‖ . ‖Tu‖

}
, (7)

where Ti belongs to the training set and Tu the non-labeled series.
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Figure 9. (a) The feature extraction process adopted by the HAR-SR method. (b) To classify a new
non-labeled series Tu, the procedure is similar to that performed in the training phase. The difference
is that there is no need to obtain new reference histograms.

4.5. Computational Analysis

The SAX algorithm is based on average calculations and therefore its implementation is very
simple. The approximation process uses the PAA algorithm to divide the series T into ω parts.
The quantization process consists of a search in the quantization table β, which is fixed and predefined
for all domains. In this way, the complexity of the SAX is dominated by the complexity of the PAA
algorithm, as shown in Equation (8), which is linear in n [19,21,22]:

SAX(Tn) = O(n) (8)

The SFA approach process is dominated by the computational complexity of a single DFT for
a Tn series, resulting in complexity O log(n). If the sliding window technique of size w is used in
the Tn series, the complexity of a subsequence using DFT will be Ow log(w), and for all n− w + 1
windows it will have computational complexity O(nw log(w)). However, optimizations in the SFA
algorithm allow the MFT to be used to deal with the problem of significant overlap of the windows
w calculations. In this way, the DFT is applied only in the first window O(w log(w)) and all other
windows (n− w) are calculated through the MFT O(ω). Thus, the new computational complexity of
the method is reduced according to Equation (9):

MFT(Tsw) = O(ω(n− w) + w log(w)) (9)

For the set D of size N, the computational complexity is O(N(ωn + w log(w)). The application of
the MFT throughout the set completes the approach process. Subsequently, the quantization process
consists of using the MCB table as a search table, which contains quantization intervals. First, the set
D is used, represented by an array containing all N Fourier transformations of size ω. Then, given this
array, the columns are ordered and partitioned at evenly spaced intervals. The ordering of ω columns
with N values has complexity O(ωN log(N)), using merge sort, for example. The equidistant intervals
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applied to the ordered columns require a search on each column, adding a complexity of O(ωN). Thus,
the total complexity of the process of approximation and the creation of the MCB table is defined by
sort(FTn) + quantization(FTn) + SFA(FTn) according to Equation (10). The complexity of DFT and
MFT are shown in Figures 11 and 12.

MCB(FT) ∈ O(ωN log(N)) + O(ωN)) + O(Nn log(n)) (10)

DFT(FT) = O(N(ω log(N) + ω + n log(n))) (11)

MFT(FT) = O(N(ω log(N) + ω + n) + w log(w)) (12)

The result of the computational complexity shows that the discretization step (calculation of the
MCB table) of the preprocessing phase is dominated by the N-size Fourier transform and the ordering
to obtain the equidistant intervals.

The transformation phase of the SFA, which takes place after the preprocessing phase, consists of
the discretization of a T series using the MCB table. Then, to transform a T series using the MFT, an SFA
word of size ω requires ω searches in the MCB table containing α ranges. This results in O(ω log(α) O)
operations (using binary search). Thus, the total complexity in the process of transforming the SFA
into a T series, given the MCB table is:

SFA(T) ∈ SFA(T) + search(T). (13)

The HAR-SR works similarly to the BOP model and the BOSS model. These (structure-based)
models extract a vector of high-level characteristics to construct a classification model from learning
algorithms such as KNN, decision tree and SVM. The process of extracting substructures is simple.
Applies to the sliding window technique in a time series T extract w subsequences. Then each
subsequence is discretized through SAX or SFA, whose complexities are already known. Therefore,
the complexity of the HAR-SR to extract substructures depends on the discretization method used.

In both cases, to transform a series T using the search table β, a word of size ω requires ω searches
containing α ranges. This results in O(ω log(α)) operations (using binary search). Thus, it is possible
to calculate the complexity adopted in the HAR-SR method if the discretization algorithm is the SAX
or SFA through the Table 3:

Table 3. Complexity of Bag-of-patterns using SAX and SFA algorithms.

Method Complexity

SAX(FTsw) O(Nnω log(α))
SFA(FTsw) O(N(ωn + w log(w) + ω log(α))

The statistical measures are used as new features obtained from the histogram Pη , where η is the
size of the sample space. The calculation of entropy, can be calculated in linear time in η, and thus,
its computational complexity is defined in Equation (14):

H(P) = O(η) (14)

The divergence can be calculated in linear time in η, and as the entropy had already been calculated
previously, its computational complexity is defined in Equation (15).

Q(P) = O(η) + O(η) = O(η) (15)

The HAR-SR classification process consists of associating an unlabelled Tu series using a training
set. For this task, the HAR-SR uses the KNN algorithm to perform a search between the new Tu series
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and the DS training set whose objective is to find the label for the Tu series. Then, the series Tu is
associated with the class of the series T that minimizes the value of the distance metric adopted

label(Tu) = argminT∈DS(Tu, T) (16)

This procedure has complexity O(N(k + n)), where N is the size of the training set, n is the size of
each instance of the set DS, and k is the parameter of the KNN. Each distance calculation requires O(n)
runs, and the cost of this calculation over the entire set DS is O(Nn). To select the k nearest values,
more O(kn) are required.

5. Experimental Protocol

This section presents the experiments used to evaluate the HAR-SR method in human activity
recognition. We compared the proposed method with different methods found in the literature in
different scenarios. The performance metric used was to measure F1 and accuracy. An important step
in this process is the use of leave-one-subject-out cross-validation (LOSO) as a validation procedure
applied in the datasets. This step is important as it influences the overall performance of the HAR-SR.
Finally, the method was compared with several related works and analyzes, and discussions about the
results are performed.

5.1. Datasets

5.1.1. SHOAIB Dataset

The first dataset (SH) was proposed by Shoaib et al. [47]. There were ten participants involved in
our data collection experiment, all male, between the ages of 25 and 30. These were walking, running,
sitting, standing, jogging, biking, walking upstairs and walking downstairs, which are mainly used
in the HAR related studies, and they are the basic motion activities in daily life. Each volunteer
performed eight activities for 3 to 4 min for each activity. The activities used were walking, running,
sitting, standing, jogging, upstairs, and downstairs. The experiments were carried out indoors in one
of the university buildings, except biking. For walking and running, the department corridor was
used. For walking upstairs and downstairs, a 5-floor building with stairs was used. Each of these
participants was equipped with five smartphones on five body positions. Data were collected from a
smartphone using the accelerometer, linear accelerometer, gyroscope, and magnetometer sensors at a
frequency of 50 Hz.

The selection of this dataset was motivated by the following aspects: (a) the SH dataset contains
data collected at five different body positions: right jeans pocket, left jeans pocket, belt position towards
the right leg using a belt clip, right upper arm, and right wrist. This allows the evaluation of different
scenarios of activity recognition depending on the smartphone position; (b) it contains six activities
with data collected from accelerometer, gyroscope and magnetometer sensors, which are mainly used
in the HAR studies; (c) the dataset is balanced and should represent a fairer evaluation, which means a
reduction in bias caused by individuals with more activity data and individuals with more activity
labels than others.

5.1.2. WISDM Dataset

We have also evaluated our method on the WISDM dataset, proposed by Kwapisz et al. [31].
The data collection was controlled by an application through a simple graphical user interface,
which allowed recording the user’s name, starting and stopping the data collection, and labeling the
activity being performed. It also allows controlling what sensor data (e.g., GPS, accelerometer) was
collected and how frequently it was collected. In all cases, the accelerometer data were collected every
50 ms, or 20 samples per second (20 Hz). The data collection was supervised by one of the WISDM
team members to ensure the quality of the data. Data were collected from 36 volunteers performing
six physical activities: walking, jogging, walking downstairs, walking upstairs, sitting, and standing.
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5.1.3. UCI Dataset

The last dataset is the UCI dataset, proposed by Anguita et al. [9], which contains data from
30 volunteers aged 19 to 48 years. Each volunteer was instructed to follow a protocol of activities
while wearing a waist-mounted smartphone. In the first test the smartphone was attached to the left
side of the belt and in the second test, the participant could choose a place of their choice. There is
also a separation of 5 seconds between each task where individuals are told to rest. This procedure
facilitates the repeatability and ground trough generation through the visual interface. The six activities
performed were walking, walking upstairs, walking downstairs, sitting, standing, and lying down.
The sensors used in the experiment was the accelerometer and gyroscope at a rate of 50 Hz. This rate
is sufficient for capturing human body motion since 99% of its energy is contained below 15 Hz.

5.1.4. Summarization of Datasets

Table 4 summarizes the characteristics of the datasets used in the experiments. In our experiments,
for the WISDM dataset, we only selected the users that had instances of all six activity classes,
totaling 19 individuals. For the SHOAIB dataset, we selected the six most similar activities with
WISDM and UCI-HAR dataset, so that all datasets had the same number of classes to compare results.
For this reason, the Jogging and Biking activities (marked with ∗ in Table 4) were removed from our
experiments. The sensors of all datasets, e.g., accelerometer and gyroscope, were selected according to
the evaluation scenario. In a given scenario all sensors were used, in others, only the accelerometer
sensor was selected, and so on.

Table 4. Summary of dataset characteristics used in experiments. The Jogging and Biking activities
(marked with ∗) were removed from our experiments. The gyroscope and magnetometer sensors were
used only in specific scenarios.

Dataset SHOAIB SH WISDM UCI

Individuals 10 19 (36) 30
Hz 50 20 50

Sensors
Accelerometer, Gyroscope *,

Magnetometer * Accelerometer Accelerometer, Gyroscope *

Location
Belt, Left Pocket, Right Pocket,

Upper Arm, Wrist Belt Belt

Activities used

Walking,
Running,
Sitting,

Standing,
Walking Upstairs,

Walking Downstairs,
Jogging *,
Biking *

Walking,
Jogging,
Sitting

Standing,
Walking Upstairs,

Walking Downstairs

Walking,
Lying Down,

Sitting,
Standing,

Walking Upstairs,
Walking Downstairs

5.2. Baselines

The baselines used for comparison included:

(a) a shallow approach based on hand-crafted feature extraction from the time and frequency
domain of the signal, called TF. The list of the mathematical functions used to create the feature
set is found in Table 5;

(b) a discrete domain classification method, SAX-VSM. SAX-VSM uses a technique called tf-idf in
the frequency histogram symbols of each activity class to obtain a weighted frequency matrix.
The result is an array that contains an instance for each activity and will be the feature set used
by the classification model;
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(c) a discrete domain classification method, BOSS-VS classifier. Like SAX-VSM, the BOSS-VS
uses tf-idf in the frequency histogram to obtain a weighted frequency matrix for each activity.
The parameters used in the comparison of the methods are shown in Table 6.

Table 5. List of all features used in the experiments with the baseline TF.

Domain Features

Time

min, max, amplitude, amplitude peak, sum, absolute
sum, Euclidean norm, mean, absolute mean, mean square, mean absolute deviation,

sum square error, variance, standard deviation, Pearson coefficient, zero
crossing rate, correlation, cross-correlation, auto-correlation, skewness,

kurtosis, area, absolute area, signal magnitude mean, absolute signal magnitude
mean, magnitude difference function

Frequency
Energy, energy normalized, power, centroid,

entropy, DC component, peak, coefficient sum

Table 6. The parameters used in HAR-SR, TF, SAX-VSM, and BOSS-VS algorithms. *TF is a classification
method that uses time and frequency domain features.

Algorithm Features Datasets Classification
Algorithm Distance Measure Parameters

HAR-SR 15
SHOAIB,
WISDM,

UCI

K-NN
(k = 3) Cosine similarity

Data Fusion = Concatenation
Symbolic = SAX

ω = 6
α = 6

T = 128
w = 50%

*TF 145
SHOAIB,
WISDM,

UCI

K-NN
(k = 3) Euclidean distance -

SAX-VSM 46.656
SHOAIB,
WISDM,

UCI

K-NN
(K = 1) Cosine similarity

Data Fusion = Concatenation
Symbolic = SAX

ω = 6
α = 6

T = 128
w = 50%

BOSS-VS 46.656
SHOAIB,
WISDM,

UCI

K-NN
(K = 1) Cosine similarity

Data Fusion = Concatenation
Symbolic = SAX

ω = 6
α = 6

T = 128
w = 50%

For symbolic representation algorithms, which have parameters such as word, alphabet, segment
size, and window size, the parameters chosen was with values attributed to ω = 6 and α = 6 based on
several experiments performed in the SHOAIB database because it has more diversity between the
position parameters and sensors. As demonstrated by Lin et al. [19] and Schäfer [37], the complexity
of these methods may evolve as the value of these variables increases. For example, with a sample
space of size 256 it is possible to generate a less complex model. However, the sample space of 46,656
may be necessary and more representative when more complex problems need to be solved.

5.3. Validation Procedures

Most studies in HAR use k-fold cross-validation (k-CV) as the default validation procedure to
validate the machine learning model performance [48]. To build a universal method in scenarios with a
group of individuals, the k-CV may not be the best solution because the segments belonging to a certain
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individual can be present in both the training set and the test set. In the HAR context, this means
that the model trained using k-CV may know the activity patterns of a specific individual that is
present in the test set, obtaining higher accuracy in the classification. In this scenario, this situation
may lead to overfitting problem. To minimize this problem, this work adopts the leave-one-subject-out
cross-validation (LOSO) as the default validation procedure. The LOSO considers the individual
information when split the training and test set, preventing that some data from the same individual to
be present in both sets [49]. The results presented in Ignatov, Lockhart and Weiss show that classifiers
tend to lose performance when using the LOSO instead of k-CV validation procedure. The higher
accuracy methods that use traditional k-CV do not always have good results in a real domain because
they are over-adjusted for the set in which they were trained. The LOSO procedure is also applied by
HAR-SR to generate the reference histograms. In this context, none of the histograms used to train the
model contain information about the test set.

5.4. Scenarios

We evaluated the performance of the proposed method on four evaluation scenarios:

(a) Scenario A evaluated the parameters used by the discretization methods. The symbolic
representation algorithms (SAX and SFA) had parameters such as the word, alphabet,
and window sizes. The complexity of these methods could evolve as the value of these
variables grew.

(b) Scenario B evaluated data fusion techniques, magnitude, PCA, and signal concatenation.
The data fusion techniques played an important role: providing the highest quality signal
compared to each signal individually. This study is important because the complex calculation
of the algorithms that make up the SAX and SFA are calculated based on the input data. In this
case, it was necessary for the chosen technique to transform a multidimensional signal into a
one-dimensional signal, preserving the characteristics of the signals;

(c) Scenario C evaluated the methods of symbolic representation by the position of the smartphone.
This scenario was useful for showing the differences between representations and their impact
on rating method performance. Four groups of different sensors (SG1, SG2, SG3, SG4) were
used to train and test the classification method. The idea was to show what the impact was
on the performance of the classification method when adding a new sensor. Another result
obtained in this scenario shows how each sensor group behaved according to the positions in
which the smartphone was located;

(d) Scenario D evaluated the performance of the proposed method HAR-SR with three works in the
literature. The first work, called TF method, used a total of 145 hand-crafted features belonging
to the time and frequency domain. The last two other works were feature learning approaches
of the discrete domain, similar to the proposed method.

6. Results

6.1. Scenario A: Parameter Evaluation

The experiments performed to select the best parameter set show that for the range of values
defined in Table 7, the best results were those whose value was assigned to ω = 6 and α = 6. This study
was performed in the SHOAIB database because it had more diversity between the position parameters
and sensors. The mean of the results for each position can be seen in Figure 10, which presents the best
parameters whose value was attributed to ω = 6 and α = 6. For this reason, the comparison of the
results presented in this section adopts by default ω = 6 and α = 6.
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Table 7. Parameter variation of word size and alphabet size.

Dataset SHOAIB

Data Fusion Methods Magnitude
Sensors Accelerometer, Gyroscope, Magnetometer

Symbolic Methods SAX, SFA
Word Size 4, 6

Alphabet Size 4, 6, 8
Window Size 50% (Slide Window)
Segment Size 2.5 s

Figure 10. Average performance of symbolic algorithms with variation in parameters ω and α for each
body position of SHOAIB dataset.

Table 8 shows the growth of the sample space according to the word and alphabet size values.
For performance reasons, this work limits the maximum value assigned to ω = 6 and α = 6.
For example, with a word space of size 256, it is possible to generate a very simple model in
terms of computational complexity, however, the word space of 46,656 may be necessary and more
representative when more complex problems need to be solved.

Table 8. Variation of word size and alphabet size parameters.

Word (ω) Alphabet (α) Word Space Interval

4 (a, b, c, d) 4 (a, b, c, d) 256 aaaa-dddd
4 (a, b, c, d) 8 (a, b, c, d, e, f, g, h) 4096 aaaa-hhhh

6 (a, b, c, d, e, f) 4 (a, b, c, d) 4096 aaaaaa-dddddd
6 (a, b, c, d, e, f) 6 (a, b, c, d, e, f) 46.656 aaaaaa-ffffff

8 (a, b, c, d, e, f, g, h) 4 (a, b, c, d) 65.536 aaaaaaaa-dddddddd
8 (a, b, c, d, e, f, g, h) 8 (a, b, c, d, e, f, g, h) 16777216 aaaaaaaa-hhhhhhhh

6.2. Scenario B: Data Fusion

This section aims to evaluate three data fusion techniques: magnitude, PCA, and signal
concatenation. The SHOAIB database was selected because it has data from three sensors
(accelerometer, gyroscope, and magnetometer). In addition, it has a variety of positions, thus allowing
many scenarios to be analyzed. The sensors available for testing were grouped and evaluated at each
available position in the base. Table 9 shows the sensors arrangement for evaluating scenario A.
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Table 9. Sensors arrangement for evaluating scenario A.

Sensor Group

SG1 Accelerometer
SG2 Accelerometer, Gyroscope
SG3 Accelerometer, Gyroscope, Magnetometer
SG4 Gyroscope

The results presented in Figure 11 are based on the average of LOSO results from the five-position
data of the SHOAIB dataset: belt, left pocket, the right pocket, arm, and wrist. The concatenation
technique presented the best results with 82% overall, with 73.77% for wrist position as the worst
result. The magnitude and PCA presented low performance, because the dimensionality reduction
applied in the signals, which implied a loss of information about the signals.

Comparison between data fusion methods

Belt Left Pocket Right Pocket Upper Arm Wrist

SG1 SG2 SG3 SG4 SG1 SG2 SG3 SG4 SG1 SG2 SG3 SG4 SG1 SG2 SG3 SG4 SG1 SG2 SG3 SG4
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Figure 11. Comparison between data fusion techniques. The dataset used was SHOAIB.
The discretization technique was SAX, with segmentation of 2.5 s, ω = 6 and α = 6.

The comparison between magnitude and PCA were similar for the group SG1 and SG2. However,
magnitude presented the worst results in the SG3 group when the magnetometer sensor was inserted
with 41.78% in the best result. Using only the gyroscope (SG4), the PCA presented, on average, 60% in
F1-score against 50% for magnitude with a 10% difference.

The results show that the accelerometer was the most suitable sensor for recognizing activities
in all positions, confirming results obtained in previous works. The addition or combination of new
sensors such as the gyroscope and magnetometer on average presented a gain on performance no
more than 5%, considering the margin of error, except in some cases when the inclusion of new sensors
began to degrade the performance of the method, as shown in Figure 10. The addition of new sensors
meant more cost of processing and more memory usage, which would only be relevant if the impact
on classification were noticeable.

6.3. Scenario C: Evaluation of Symbolic Algorithms by Position

This scenario will be useful to show the differences between the representations and their impact
on the overall performance. It shows how each sensor group behaves according to the positions in
which it is located on the smartphone. For this scenario, only concatenation was used as a fusion
method. The results presented in Figure 12 show some difference in classification performance for the
discretization algorithms with different behaviors according to the choice of the sensors. The results
of the SAX algorithm show that there was only some gain classification performance by adding new
sensors to recognize activities in the belt and arm position.
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Figure 12. Classification performance at each position of SHOAIB dataset. The discretization method
used in this experiment was SAX and SFA, with T = 2.5s, α = 6, ω = 6.

The results for the SFA method show a drop in classification performance when new sensors were
introduced. The performance loss achieved 18% on the worst scenario for the right pocket. The SAX
algorithm, when using only the accelerometer sensor, had similar performance for the left and right
pocket positions with 86% and 91%, better performance for the arm position, and for arm position
exhibited worse classification performance with 73.77% against 78.01% for SFA. The conclusion of the
results presented in Figure 12 is that SAX presented the best results in most of the evaluated positions.

The results of the comparison between SAX and SFA are interesting because they show that in this
context of activity recognition, the SAX algorithm could extract patterns that were more general for
the whole set of individuals. In other domains, as shown in Schäfer and Bagnall et al., SFA presented
better results.

One of the possible reasons for these results is based on the creation of the MCB table, which is
responsible for determining the breakpoints according to the variables α and ω. The construction of the
MCB table is supervised and depends on the quality of the data. In this context, if the table is created
using only data from similar individuals, for example, it should produce a table that represents that
specific group very well. However, it should not perform well when individuals with particularities in
their activity patterns are entered into the test. This training process of the MCB table is dependent
on the training database. This influences the less representative discretization process for a more
generic group of individuals. The SAX algorithm uses a fixed breakpoint table, with values based on a
Gaussian distribution. For this reason, the generalization capability of the model must be greater than
in a model that takes information only from the knowledge of a limited dataset.

6.4. Scenario D: Comparison of HAR-SR with Other Studies

This scenario compared the classification performance of works found in the literature with the
HAR-SR method proposed in this paper. In this scenario, only the accelerometer sensor was used,
and the parameters chosen for the discrete methods were SAX as a discretization algorithm, with the
segmentation of T = 2.5s, α = 6 and ω = 6.

Compared with the BOSS-VS model and SAX-VSM model, the HAR-SR method presented the
best results in all positions analyzed. Figure 13 shows that HAR-SR outperformed SAX-VSM with
more than 80% against 55% for SAX-VSM. Besides, the performance difference between the BOSS-VS
and SAX-VSM was already expected, as presented in other studies [23].

Figure 14 shows that the TF method and the HAR-SR method had similar performance in the
classification of activity in all positions, both with 81% on average, considered a technical tie given
the confidence margin. This shows, at first, that the HAR-SR method had the same capabilities as
the TF method, but used a smaller number of features. For this reason, the confusion matrix will be
used in the next section to indicate which classes the algorithms have more difficulties in classification.
This analysis should show the particularities of these two methods and how new problems can be
addressed in the future.
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Comparison between baseline

Figure 13. The comparison between the TF, SAX-VSM, BOSS-VS methods and the proposed HAR-SR
method. Only the accelerometer sensor was used.
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Figure 14. Average performance in E1 scenario.

Confusion Matrix Analysis

The results presented in this section are based on the SHOAIB database, for belt position
and position-independent. At the belt position, the HAR-SR method performed with 83.21%,
with classification errors mainly in stationary activities (e.g., standing or sitting), as shown in Figure 15.
Another type of behavior was observed in the TF method, which found problems in differentiating
non-stationary activities (e.g., downstairs and upstairs).
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Figure 15. Confusion matrix for accelerometer sensor at belt position.

The confusion matrix presented in Figure 16 was position independent; that is, the position
labels were removed from the dataset, and the methods had to find the different types of patterns
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for each position. This additional work that classification algorithms had to recognize patterns of
activities where there was no explicit information about the position is a scenario compatible with what
happens in the real world. The HAR-SR method achieved 77.82% against 80.72% for the TF method.
The HAR-SR method, in general, had more difficulty in classifying between stationary activities.
However, it presented good results in the classification of non-stationary activities.
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Figure 16. Confusion matrix for accelerometer sensor at all positions (independent).

6.5. Discussion

To create a low-cost solution for HAR, the first way investigated in this research was by reducing
the data dimensionality from input data. The first evaluation was performed aiming the best symbolic
representation parameters for build the classification model since the discretization process is a critical
phase of our method. The results have shown that choosing larger or smaller parameters will adapt the
degree of approximation of the algorithm for the original signal. With smaller word space generates
very simple models in terms of computational complexity, however, they are not suitable for complex
problems, and tends to lose performance. The best results obtained are those whose value was assigned
to ω = 6 and α = 6.

Another conclusion of this study is that the quality of the symbolic representation of a time
series depends on the quality of the signals obtained in the data fusion process. The magnitude,
PCA, and simple concatenation techniques transform the sensor signals into a one-dimensional form
since the data collected from the motion sensors are multi-dimensional. This process is fundamental
to reduce the overall complexity of the algorithm, and at the same time enable the use of symbolic
representation methods, such as SAX and SFA.

The results have shown that the use of magnitude and PCA is insufficient to generate a
representative signal for physical activities. These methods resulted in poor classification performance,
which mostly did not exceed 60% in F1-Score. A possible explanation is that both magnitude and
PCA have a lot of data loss during the data fusion process. The simple concatenation method presents
the best results in all scenarios, although it is not a data fusion method itself, and for this reason,
the discretization algorithm will have a larger segment containing all the data collected.

After applying data fusion in the input signal, we evaluate the symbolic representation methods.
The dimensionality reduction is intrinsic to symbolic representation methods. These methods transform
the data represented by real values into a discrete domain. This allows the application of several data
mining techniques methods, such as the tf-idf model used by the SAX-VSM and BOSS-VS.

The SAX algorithm obtained the best results in all scenarios. The SAX is simpler than SFA because
of its approximation process which uses a pre-defined search table. The SFA has an extra step to
generate the search table, called MCB, which adds an extra computational cost to compute the search
table. The reason for the best results obtained by SAX is because the SFA tends to overfit its MCB
table based on the training database. If the table is created using only data from similar individuals,
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for example, it should produce a search table that represents that group of individuals very well.
This influences the less representative discretization process for a more generic group of individuals,
or it should not perform well when individuals with particularities in their activity patterns are entered
into the test. The SAX algorithm uses a fixed breakpoint table, with values based on a Gaussian
distribution. For this reason, the generalization capability of the model must be greater than in a model
that takes information only from the knowledge of a limited dataset.

An important finding in this research is that the position where the smartphone is located is related
to the number of sensors required for a good performance of the classification method. This analysis is
important so that in future research, the selection of sensors is performed according to the position of
the smartphone in the individual. The results have shown that the discretization algorithms present
different behaviors according to the choice of the sensors. For example, the results have shown that
there is some gain in method performance by adding new sensors to recognize activities in the waist
and arm position. In the positions of the left pocket there is no gain and for the positions of the right
pocket and pulse occurs a loss in the performance of the method. In addition, in the left and right
pocket positions, the gyroscope sensor performs well.

Some activities have the same results when a new sensor is added. In some cases, the difference
is very small, about 2%, which makes it unfeasible to use the sensor. Besides, a new sensor can
add unnecessary processing to the method, increasing its complexity, and can also result in a loss
of performance in the classification. For example, in the positions of the left pocket there is no gain
and for the positions of the right pocket and pulse occurs a loss in the performance of the method.
The overall results have shown that the accelerometer is the best sensor for activity recognition.

The HAR-SR method outperforms SAX-VSM and BOSS-VS in the HAR domain. In comparison
with the TF method, which uses time and frequency features, the HAR-SR results are similar with
no statistical difference considering the confidence margin. The HAR-SR also generates a smaller
number of features when comparing TF, BOP-SAX, and BOSS methods. This can be an advantage,
mainly because the classification model built is simpler. A negative characteristic of HAR-SR is the
search space for ideal parameters used by symbolic algorithms. Choosing incorrect values for window,
word and alphabet size can result in data representation loss, and this may impact directly in the
classification performance.

The use of LOOCV methodology has shown interesting results. First, a decrease in the
classification performance for the community methods, which has high levels of accuracy (above 90%).
The results have shown that classifiers tend to lose performance when using the LOSO validation
metric. In the HAR domain, the use of traditional cross-validation may not be a good way to represent
the real world, and consequently, the models obtained may not reflect reality. The use of LOOCV is
important because it is the indicator of the generalization potential of the application, without the need
to obtain data from the individual before using the system. However, high levels of accuracy using
traditional CV may be a good indication of personalization for the classification model, which can
extract well the data standards known by the model. This enables the creation of personalized models
that capture the characteristics of each user.

7. Related Works

This section presents a summary of the main works in HAR that use inertial sensors
of smartphones.

Kwapisz et al. [31] provide the WISDM dataset, containing 36-user accelerometer information,
which is used in many RAH works. The results show an accuracy of 91.7% for neural networks using
shallow features in the time domain. Anguita et al. [9] provide the UCI-HAR dataset, which contains
data from the accelerometer and gyroscope sensors extracted from 30 users who performed six physical
activities. In total, 561 features were extracted in the time and frequency domain. The results have
shown an accuracy of 96% using SVM. Shoaib et al. [47] provide a dataset with eight physical activities
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collected from four different body positions: belt, left pocket, the right pocket, arm, and wrist. The best
result is represented by the 98% accuracy when the smartphone is in the belt position.

Micucci et al. [50] provide a public dataset for the RAH domain, which contains physical activity
data and data representing falls. To recognize the nine types of physical activity, 453 features of the
accelerometer signal were extracted, and four classifiers were used: the KNN, SVM, ANN, and Random
Forest. In the best scenario, its method obtained 88% accuracy using the Random Forest method
(five-fold CV) and 73% using the random forest method with the Leave-one-subject-out cross-validation
(LOSO) metric.

For the symbolic domain, one of the first works that uses SAX to recognize activities based on
smartphones is described by Figo et al. [7]. However, the best outcome in terms of accuracy was 50.5%
for three activities (running, walking, and jumping). The second scenario consisted of two activities
(walking and running) and presented an accuracy of 84.17% using the Dynamic Time Warp (DTW).
The authors have shown that the discrete domain features are feasible for applications in mobile
devices. The investigation of preprocessing techniques to improve the results in a scenario with more
than two activities is given as future work.

Siirtola et al. [51] presented Symbolic Aggregate Approximation Similarity (SAXS), which is
based on the similarity calculation between words obtained through the SAX algorithm. The authors
also use a reference model for each activity, so that the similarity between the reference model and a
new activity instance is calculated. The SAXS was evaluated in five databases in different contexts.
The results showed an accuracy of 83.8% in swimming activity, 84.3% in gestures, 85.7% and 82.96% in
tool use, and 83.26% in sports.

Akimura et al. [52] propose the use of a lightweight compression technique to minimize the size
of the activity sensor data sent over a wireless link. The compressed sensing (CS) technique consists
of very simple matrix operations at the mobile side, and CPU-intensive reconstruction is performed
on the resource-rich machine on the network side. The method was evaluated by using activity
data consisting of six activities. The presented results shown a reduction in power consumption by
approximately 16% as compared with traditional ZIP compression, while keeping the reconstruction
error to less than 10% and the recognition accuracy of the six basic activities over 70%.

Lima et al. [36] present a comparative analysis of the symbolic representation algorithms in
HAR domain, such as SAX-VSM, BOSS MODEL, BOSS-VS and WEASEL, and the traditional shallow
features in time and frequency domain. The results have shown that the symbolic representation
algorithms are more accurate than the shallow algorithms, obtaining approximately 99% accuracy
when the validation metric used is the 10-fold CV. In addition, they are on average 84.81% faster in the
feature extraction step, and that they reduce on average 94.48% of the memory space consumption.

Quispe et al. [53] present an approach for HAR based on symbolic data representation of
time series. The Bag-Of-SFA-Symbols (BOSS) method is extended to multi-dimensional time series.
The proposed method MBOSS adopts a data fusion approach at the level of features extending the BOSS
model. It uses a histogram fusion process, concatenating the M characteristics (size of the histogram) of
dimension N (number of variables) into a single vector of characteristics of dimension MxN. The final
characteristic vector, called the MBOSS model, it is used for the classification task. Experiments
on accelerometer data from three publicly datasets have shown that the MBOSS achieve 99.37% in
subject-dependent evaluation and 87.49% in subject-independent evaluation in the best scenario.

Hur et al. [15] propose an efficient human activity recognition method, namely Iss2Image (Inertial
sensor signal to Image), an encoding technique for transforming an inertial sensor signal into an
image with minimum distortion and a convolutional neural network (CNN) model for image-based
activity classification. The Iss2Image converts real number values from the X, Y, and Z axes into
three color channels to precisely infer correlations among successive sensor signal values in three
different dimensions. The results have shown that the Iss2Image presents higher accuracy than
other state-of-the-art approaches, achieving 100% in MobiAct dataset, 97.11% in UCI-HAR and 100%
in UC-HAR.
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Gani et al. [54] present a lightweight smartphone method for human activity recognition based on
dynamical systems and chaos theory. The method is an alternative approach to widely used machine
learning techniques to recognize human activities. A reconstructed phase space is formed from the
accelerometer sensor data using time-delay embedding. A Gaussian mixture model is learned on
the reconstructed phase space. A maximum likelihood classifier uses the Gaussian mixture model to
classify ten different human activities. The proposed approach achieved 100% accuracy for individual
models across all activities and accuracy of 90% to classify six different activities of 30 participants.

Chung et al. [16] develop a Long Short-Term Memory (LSTM) network framework to support
training of a deep learning model on human activity data. The proposed method adopts a two-level
ensemble model to combine class-probabilities of multiple sensor modalities, and demonstrate that a
classifier-level sensor fusion technique can improve the classification performance. The results indicate
that applying sensor data from additional modalities can contribute to improving the recognition
accuracy of nine activities up to 93.07%. In addition, soft-voting achieves higher overall performance
(94.47%) than hard-voting (93.48%), because it can give more weight to highly confident votes.

In general, the works presented in the literature based on shallow features always uses the
same set of features, with some variations. For the classification task, it is common the use of a
framework, called the WEKA tool [34], which aggregates preprocessing techniques and machine
learning methods. Our approach is a lightweight version of the approaches that uses the tf-idf model,
e.g., SAX-SVM model, BOSS model, and MBOSS model. In these approaches, the tf-idf model is applied
over the frequency distribution generated by the discretization process. The result of this process is a
weighted frequency distribution that is used as features by machine learning algorithms. Alternatively,
our method uses information theory quantifiers as new features extracted from a frequency distribution,
but the resulting feature set is significantly smaller.

8. Conclusions

In this paper we have shown that HAR-SR presents a solution for human activity recognition
with low computational cost, being inferior to the quadratic order O(n2), making it feasible for
implementation in smartphones with limited resources.

The results obtained from four evaluation scenarios were used to observe the behavior of different
stages of the process of recognizing human activities. The fusion techniques magnitude and PCA
were insufficient to generate a representative signal for physical activities, presenting a lot of data
loss. These methods resulted in poor classification performance, which mostly did not exceed 60% in
F1-Score, which makes it unsuitable for our method.

The symbolic representation algorithms are critical in our model, and the parameters chosen
will impact directly on the recognition performance. We have found an intermediate, cost-benefit set
of parameters. Larger parameters are too expensive in terms of computational complexity and they
are not suitable for mobile devices. The SAX algorithm presents the best performance over the SFA
algorithm in most scenarios. In addition, the discretization algorithms have shown different behaviors
according to the choice of the sensors. For some activities, there is no difference in the results when a
new sensor is added. In some cases, the difference is very small, about 2%, which makes it unfeasible
to use the sensor. This result has shown that a new sensor can add unnecessary processing to the
method, increasing its complexity, and can also result in a loss of performance in the classification by
add unnecessary noise. The overall results have shown that the accelerometer is the best sensor for
activity recognition.

We have shown the HAR-SR method outperforms SAX-VSM and BOSS-VS in the HAR domain.
In comparison with the TF method, which uses time and frequency features, the HAR-SR results are
very similar but generate a smaller number of features when comparing TF, BOP-SAX, and BOSS
methods. A negative characteristic of HAR-SR is the search space for ideal parameters used by
symbolic algorithms. Choosing incorrect values for window, word and alphabet size can result in data
representation loss, and this may impact directly in the activity recognition performance.
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Future directions involve the study of new data fusion techniques that aggregate new information
to discriminate characteristic signals from stationary activities. This may improve recognition
performance, making the method even more robust.
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