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Abstract

Osteosarcoma is one of the most genomically complex cancers and as result, it has been 

difficult to assign genomic aberrations that contribute to disease progression and patient outcome 

consistently across samples. One potential source for correlating osteosarcoma and genomic 

biomarkers is within the non-coding regions of RNA that are differentially expressed. However, 

it is unsurprising that a cancer classification that is fraught with genomic instability is likely to 

have numerous studies correlating non-coding RNA expression and function have been published 

on the subject. This review undertakes the formidable task of evaluating the published literature 

of noncoding RNAs in osteosarcoma. This is not the first review on this topic and will certainly 

not be the last. The review is organized with an introduction into osteosarcoma and the epigenetic 

control of gene expression before reviewing the molecular function and expression of long non-

coding RNAs, circular RNAs, and short non-coding RNAs such as microRNAs, piwi RNAs, and 

short-interfering RNAs. The review concludes with a review of the literature and how the biology 

of non-coding RNAs can be used therapeutically to treat cancers, especially osteosarcoma. We 

conclude that non-coding RNA expression and function in osteosarcoma is equally complex to 

understanding the expression differences and function of coding RNA and proteins; however, with 

the added lens of both coding and non-coding genomic sequence, researchers can begin to identify 

the patterns that consistently associate with aggressive osteosarcoma.
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Introduction

Osteosarcoma is the most common form of bone cancer and is the third most common 

cancer among adolescents. It is an aggressive cancer that frequently metastasizes within 

a year of forming (Faisham et al., 2017; Herzog, 2005; Mirabello et al., 2009; Tang 

et al., 2008). Over 40 years ago, long-term, disease-free survival of patients with high-

grade osteosarcoma radically improved from less than 20% to greater than 60% with the 

advent of combinatorial, cytotoxic chemotherapy (Link et al., 1986). The most common 

cocktail of adjuvant chemotherapy to treat high-grade osteosarcoma consists of cisplatin, 

methotrexate, and doxorubicin (Carrle and Bielack, 2006). Despite the herculean reversal in 

dismal outcomes 40 years ago, there remains an enigmatic fraction of patients who fail to 

exhibit a durable response. Efforts have been made to genomically identify responders vs. 

non-responders in attempts to guide non-responders early to other therapeutic alternatives. 

However, due to the high level of genomic complexity, this has largely been unproductive. 

Osteosarcoma is the quintessential example of genomic instability, with numerous point 

mutations, INDELS, and structural variants throughout the entire genomic landscape. Most 

of the identified genomic variations are seen as inconsequential; although, the non-coding 

variants might hold the key to unlocking the mystery underlying the differences between 

survivors and non-survivors. Herein this review, the most common epigenetic mechanisms 

that can contribute to chemosensitivity are discussed; including numerous mechanisms that 

involve non-coding RNAs.

Epigenetic Control of Gene Expression

Precision medicine is centralized around the dogma of molecular biology. This states that 

DNA is the fundamental coding material that transcribes sequences into RNA, and RNA 

is translated into protein resulting in phenotypic cellular behavior (Crick, 1970). Thus, 

changes in any step along the process can impact how cells act. While DNA mutations can 

alter this pattern, factors outside of DNA mutations can equally impact gene expression 

levels to change cell behavior. This is referred to as epigenetic control (Baylin and Jones, 

2016). Although DNA methylation and histone modifications are the most commonly 

studied and well-understood mechanisms of epigenetic control over gene expression, another 

new angle that has been under investigation in recent times is regulation by non-coding 

RNAs (Yang et al., 2020). With progress made in personalized medicine and epigenetic 

therapeutics in cancer, harnessing this unique interplay between non-coding RNAs and 

the other epigenetic enzymes might be an excellent alternative to address the therapeutic 

challenges in osteosarcoma.

Non-coding RNAs

The entire mammalian genome can be transcribed to some level, yet there remain thousands 

of RNA transcripts that do not code for proteins. These are known as non-coding RNAs 

(ncRNAs) (Palazzo and Lee, 2015; Yan and Bu, 2021; Yang et al., 2020; van Bakel et al., 

2010). Their expression level and the function are very controversial. Previously known 

as non-functional, ‘noise’ or ‘junk’ of transcriptome, according to recent reports, much 

of those transcriptions are likely functional (Richard Boland, 2017) and associated with 
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disease pathogenesis and progression, especially in cancers and neurodegenerative disorders. 

They can alter gene expression at pre-transcription, transcription, and posttranscription 

levels and regulate numerous cellular processes related to cancer initiation and progression 

(Schmitt and Chang, 2016; Yang et al., 2020; Zhu et al., 2019). A growing body of 

evidence emphasize that ncRNA’s control over genes and chromosomal modifications are 

attributed to their interactions with the chromatin remodeling complexes, histone modifiers, 

or DNA methyltransferases (Chen and Xue, 2016; Costa, 2008; Peschansky and Wahlestedt, 

2014; Ramassone et al., 2018; Yu, 2009). Differential expression and stability of ncRNAs, 

especially in blood or urine hold great diagnostic and prognostic biomarker potential in 

various cancer types including osteosarcoma (di Fiore et al., 2013; Wu et al., 2019). Indeed, 

some ncRNAs have already been proposed to be the circulating biomarkers owing to 

their correlation with osteosarcoma progression and metastasis, clinical stage, and patient 

outcome (Botti et al, 2019).

Based on their size, shape and genomic location, ncRNAs are divided into three major 

classes, long ncRNAs (lncRNAs), circular RNAs (circRNAs) and short ncRNAs (micro 

RNAs, short interfering RNAs, piwi RNAs) (Palazzo and Lee, 2015; Wu et al., 2019; Yan 

and Bu, 2021). Long ncRNAs (lncRNA) are the linear gene transcripts with limited protein-

coding capacities, over 200 NT long and regulate gene expression at pre-transcriptional, 

transcriptional, and post-transcriptional levels (Yan and Bu, 2021). Depending on their 

expression pattern and biological function, lncRNAs can be classified as sense, antisense, 

bidirectional, intron, intergenic, or enhancer-lncRNAs (Al-Rugeebah et al., 2019; Palazzo 

and Lee, 2015). Circular RNAs (circRNA) are another long transcript type but unlike 

lncRNAs, these single-stranded RNAs form a covalently closed continuous loop (Chen and 

Huang, 2018). Regulation of gene expression by both lncRNAs and circRNAs includes 

miRNA decoy/sponging, therefore interacting with DNA, RNA, and proteins (Zhang et al., 

2020c). MicroRNAs (miRNA) are the small, 19 to 22 nucleotide base pair sequences, they 

can inhibit translation or result in the degradation of target mRNA by forming RNA-induced 

silencing protein complex (RISC) (Llobat and Gourbault, 2021). PIWI-interacting RNAs 

(piRNA) are the 24 to 32 long transcripts mainly expressed in the germline, derived from 

single-stranded RNA, and processed by Dicer-independent process. piRNAs are very well 

known for their function in repressing transposable elements and epigenetic regulation of 

gene expression (Costa, 2008; Zeng et al., 2020).

Non-coding RNAs and genomic instability

DNA damage response, mediated by a well-constructed regulatory network, is a vital part 

of maintaining genomic integrity. Decades of research in ncRNAs led to a significant 

bidirectional regulatory loop between the differential expression of ncRNAs and regulation 

of DDR-associated genes expression (Malakoti et al., 2021; Zhang and Peng, 2015). 

ncRNAs, especially lncRNAs, miRNAs and circRNAs, have been found to play multifaceted 

roles in DDR such as acting as DDR sensor or transducer; thereby, repairing DNA, causing 

cell cycle arrest, or inducing apoptosis (Khanduja et al., 2016; Malakoti et al., 2021; Zhang 

and Peng, 2015). It is not surprising that many of these pathways are also interlinked with 

chromatin remodeling or histone modifications. However, even with most extensive research 

and understanding of ncRNAs and DDR pathways, it remains questionable how ncRNAs 
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and DDR pathways align together in maintaining cellular integrity. Thus, in this review, we 

sought to understand whether there is any correlation between epigenetic regulation of the 

ncRNAs with one of the major hallmarks of cancer: genomic instability.

Long Non-Coding RNAs

lncRNAs can directly or indirectly affect almost all of the hallmarks of cancer (Hanahan 

and Weinberg, 2011; Yan and Bu, 2021) and their oncogenic or tumor-suppressive 

role can be regulated genetically and/or epigenetically (Zhang et al., 2020c). Since 

discovery of the regulatory mechanisms of the earliest lncRNAs (Lo et al., 2014), many 

functional lncRNAs were found to work through epigenetic mechanisms, such as, H19 

(imprinted maternally expressed transcript), Xist (X-inactive-specific transcript), HOTAIR 

(Hox transcript antisense intergenic RNA), etc. (Chan et al., 2014; Clemson et al., 1996; 

Fazi et al., 2018; Zhang et al., 2015; Zhang et al., 2020c; Zhao et al., 2008).

The expression pattern of lncRNAs and their function in tumorigenesis is well investigated 

in osteosarcoma (Table 1). A recent transcriptome profiling study based on the TARGET 

data detected a total of 13,903 expressed lncRNAs and their integrative gene expressions 

and SCNA analysis revealed 167 novel driver lncRNAs (including 2 previously reported 

lncRNA PVT1 and ZFAS1) to be associated with osteosarcoma (Luo et al., 2019). Another 

microarray analysis noted 25,733 expressed lncRNAs in human osteosarcoma, among 

which 403 were upregulated and 798 were downregulated when comparing osteosarcoma 

tissues to adjacent normal tissues (Li et al., 2018). Some lncRNAs were also highlighted 

as circulating biomarkers due to their stability, significantly higher expression in body 

fluids (especially in serum/plasma of osteosarcoma patients) and their correlation to disease 

stage or metastatic potential; for example, lncRNA TUG1, UCA1, HNF1A-AS1, MALAT-1, 

FAL-1 and ATB, etc. (Botti et al., 2019). All of these data imply that many lncRNAs 

are involved in osteosarcoma occurrence, chemoresistance and metastasis or relapse which 

could be exploited as potential diagnostic, prognostic biomarkers, and therapeutic targets.

Until recently, several differentially expressed lncRNAs have been identified in different 

cancers owing to their association and interaction through epigenetic modifications such 

as histone modification and/or chromatin remodeling (e.g., lncRNA XIST, MALAT1, 

HOTAIR, ANRIL, HULC, GCLnc1, FENDRR, UCA1, TCF7, GAS5, NEAT1, PVT1); 

DNA methylation (e.g., lncRNA H19, DACOR1, PTENP1); and CpG Island methylation at 

the Imprinting Control Regions (e.g., lncRNA TP53TG1, MEG3), competing endogenous 

RNA (ceRNA) networks (e.g., lncRNA CASC2/miR-183/Sprouty2; NKAPP1-miR-21-5p-

PRDM11, MSTO2P-miR-29c-3p-EZH2 and RPLP0P2-miR-29c-3p-EZH2) (Gao et al, 

2019; Lou et al, 2020; Wei et al, 2017). lncRNAs are generally found to carry 

out their epigenetic modifications via-(a) chromatin modification and remodeling, (b) 

histone modification and nuclear body localization, (c) altering chromosome structures by 

interacting with the SWI/SNF complex, (d) inducing DNA methylation and/or (e) through 

interactions with micro RNAs by acting as miRNA sponges or via ceRNA (competitive 

endogenous RNA) networking (Shin et al, 2020; Zhang et al, 2020c) (Fig. 1).

FATEMA et al. Page 4

Biocell. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chromatin modifications and DNA methylation patterns

Around 25% of all the intergenic lncRNAs have been found to interact with the chromatin-

modifying proteins especially via interacting with Histone modifying enzymes (e.g., histone 

acetyl transferases, histone deacetylases) and/or incorporating PRC2 complex members 

(e.g., EED, SUZ12 and EZH2), and facilitate transcriptional and post-transcriptional 

regulation of target genes (Cantile et al., 2020; Ren et al., 2019a). EZH2 (Enhancer of 

Zeste Homolog 2), which is a histone methyltransferase, a critical element of the multiplex-

suppression complex called Polycomb Repressive Complex 2 (PRC2). EZH2 functions 

through the trimethylation of lysine in histone H3 and its aberrant expression has been 

heavily investigated in cancers (Czermin et al., 2002; Yang et al., 2018). Several studies 

have documented the involvement of EZH2 with lncRNAs in osteosarcoma. In addition 

to these, the alteration in the methylation patterns (by binding DNMTs, e.g., DNMT1, 

DNMT3A, and DNMT3B) mediated by lncRNAs have also been associated with the 

pathogenesis and progression of osteosarcoma. Other mechanisms involve ubiquitination 

or phosphorylation in important onco- or tumor suppressor genes, and a strong regulatory 

network amongst the lncRNAs and miRNAs could also be exploited given their implicit 

regulation of genes expression. The following sections list some of the most significant 

lncRNAs in osteosarcoma that have been implicated for their biomarker potential.

lncRNA HOTAIR is one of the broadly studied ncRNAs HOTAIR is an important 

EMT regulator and has been implicated in the pathogenesis of several cancers. HOTAIR 

inhibits HOXD transcription through PRC2 recruitment, forming a heterochromatin 

and transcriptional gene suppression via H3K9 trimethylation (Zhang et al., 2015). In 

osteosarcoma, HOTAIR was found to positively regulate the global DNA methylation 

level and specifically DNMT1 expression, making it an interesting diagnostic marker 

and therapeutic target (Li et al., 2017b). lncRNA MALAT1 (Metastasis Associated Lung 

Adenocarcinoma Transcript 1) located at chromosome 11q13.1, is suggested to be an 

oncogenic lncRNA in other cancers. Epigenetic regulation of MALAT1 in osteosarcoma 

has been investigated (Zhang et al., 2018b) especially with respect to the expression pattern 

of EZH2 (Li et al., 2017a). Zhang et al. (2018b) identified that MALAT1 regulates the 

expression of β-catenin and E-cadherin via the MALAT1/EZH2 axis which in turn changes 

the gene expression downstream of β-catenin. In another latest study, MALAT1 was also 

found to serve as a ceRNA network for HDAC4 (histone deacetylase 4), where it regulates 

osteosarcoma proliferation and apoptosis by upregulating HDAC4 via decoying miR-140-5p 

(Sun and Qin, 2018).

A majority of the antisense-lncRNAs influenced dysregulation by either methylation pattern 

or chromatin conformational changes, typically found to regulate expression of their 

opposite strand gene. For instance, lncRNA KCNQ1OT1 (KCNQ1-opposite strand/antisense 

transcript-1) negatively regulates KCNQ1 gene via promoting DNMT1 expression in the 

KCNQ1 gene promoter region (Qi et al., 2019). lncRNA FOXD2-AS1 (FOXD2 Adjacent 

Opposite Strand RNA 1) is robustly expressed in the osteosarcoma tissue specimens and cell 

lines (induced by transcription factor HIF-1α). FOXD2-AS1 was found to play a critical 

role in hypoxia-induced osteosarcoma tumorigenesis by interacting with the EZH2 and 

repressing p21 protein expression (Ren et al., 2019b; Zhang et al., 2021). The oncogenic 
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lncRNA DANCR (Differentiation Antagonizing non-coding RNA) is overexpressed in many 

cancers and also promotes proliferation, migration and invasion in osteosarcoma (Pan et 

al., 2020). Several studies found the interaction between DANCR and EZH2 in many 

tumor types including osteosarcoma (Cheng et al., 2021; Wang et al., 2019; Zhang and 

Peng, 2017). When DANCR was knocked down, it lowered the EZH2 expression and 

activated both p21 and p27, hence inhibiting the osteosarcoma cell proliferation, migration, 

and invasion (Zhang and Peng, 2017). lncRNA HOXD-AS1 epigenetically inhibits p57 

by interacting with EZH2, thereby repressing the expression of p57 and aggravating 

osteosarcoma oncogenesis (Gu et al., 2018).

lncRNA interactions with EZH2 were seen again with FOXP4-AS1 (forkhead box P4-

AS1). Overexpression of FOXP4-AS1 was found to regulate osteosarcoma progression by 

downregulating LATS1 (large tumor suppressor 1) through binding LSD1 (lysine-specific 

demethylase 1) and EZH2 (Yang et al., 2018). The oncogenic lncRNA MIR100HG is 

another potential prognostic marker that promotes osteosarcoma progression via interacting 

with EZH2. MIR100HG epigenetically silences both LATS1 and LATS2 kinases by binding 

with EZH2 and thereby inactivating the Hippo signaling pathway (Su et al, 2019).

Hippo is an evolutionarily highly conserved pathway for the control of organ development 

and other cellular functions that are vital in oncogenesis (Calses et al., 2019; Harvey et al., 

2013). The transcriptional activity of one of the downstream effectors of Hippo signaling, 

YAP (Yes-associated protein 1) was proved to be governed by lncRNA B4GALT1-AS1 
(Li et al., 2018) and XIST to maintain osteosarcoma tumor progression. Interestingly, 

YAP overexpression is also induced by aberrant Hedgehog signaling, which in turn causes 

overexpression of lncRNA H19 and is responsible for the pathogenesis of osteoblastic 

osteosarcoma (Chan et al., 2014). Recently, in a comprehensive study characterizing 

prognostic lncRNA, correlation analysis of copy number alteration (CNA) and lncRNA 

expression identified AC011442.1, predicted to regulate AMPK and hedgehog signaling 

pathway thereby acting as an oncogenic driver in osteosarcoma (Gao et al., 2020).

Oncogenic lncRNA ZEB1-AS1 (ZEB1 Antisense-1) has been implicated as a potential 

biomarker and therapeutic target due to its association with the opposite strand gene, 

ZEB1. ZEB1-AS1 can recruit histone acetyltransferase p300 to the promoter region of 

ZEB1 that results in an open chromatin structure and active transcription of ZEB1 

promoting osteosarcoma proliferation and migration (Liu and Lin, 2016; Cheng et al., 

2020). lncRNA HIF1α-AS1 (hypoxia-inducible factor 1α-antisense-1) interacts with BRG1 

(Brahma-related gene-1), this was suggested as a novel therapeutic agent for bone diseases 

as it was found to be an essential mediator of osteoblast differentiation regulated by 

acetylation (histone deacetylase sirtuin 1) (Xu et al., 2015).

Crosstalk between lncRNAs and miRNAs

One of the MEG3 (maternally expressed gene 3) gene transcripts, a 1.6 kb lncRNA 

situated in 14q32, is a very well-known tumor suppressor lncRNA in many cancer types 

(Li et al., 2013; Shen et al., 2019). The lost or reduced expression of MEG3 in different 

cancers has been associated with promoter hypermethylation and hypermethylation of the 

intergenic region (Al-Rugeebah et al., 2019; Modali et al., 2015; Sellers et al., 2019; Zhou 

FATEMA et al. Page 6

Biocell. Author manuscript; available in PMC 2022 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2012). In osteosarcoma, MEG3 expression and function were mainly associated with 

ceRNA network or miRNA sponging mechanisms, e.g., sponging onco-miR664a, MEG3/

miR-361-5p/FoxM1 axis, MEG3/miR-127/ZEB1 axis, etc. In most of the cases, MEG3 

was suggested to be acting as a tumor suppressor and thereby a potential prognostic 

biomarker for osteosarcoma. Its overexpression was also able to prevent cell growth and 

metastasis by targeting oncogenes or by inhibiting signaling pathways like Notch and 

TGF-β (Shen et al., 2019; Sun et al., 2020; Zhang et al., 2017a). lncRNA CEBPA-AS1 
(CCAAT enhancer-binding protein alpha, aka LOC80054), that is usually downregulated in 

osteosarcoma (GSE16088) and other cancers (Ke et al., 2017), has recently been reported to 

inhibit osteosarcoma cell proliferation, differentiation, and enhance apoptosis by repressing 

the Notch signaling pathway via upregulating the expression of miR-10b-5p-mediated 

nuclear receptor corepressor 2 (NCOR2) (Xia et al., 2020). lncRNA-p21 (also known as 

TRP53COR1-tumor protein p53 pathway corepressor 1) has been reported to have in vivo 
and in vitro antitumor properties against wide range of tumors especially via cell cycle 

checkpoint regulation or regulating energy metabolism, or p53 and B-catenin pathway 

(Dimitrova et al., 2014; Wang et al., 2014; Yang et al., 2014; Yang et al., 2015; Yang et al., 

2016). In osteosarcoma it was downregulated, and when overexpressed, it could upregulate 

the tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 

ten) level (Han and Liu, 2018). The tumor suppressor function of p-21 was via sponging 

miR-130b that significantly inhibited osteosarcoma proliferation (Han and Liu, 2018). The 

lncRNA SNHG10 (lncRNA small nucleolar RNA host gene 10) plays an important role in 

osteosarcoma growth via miR-182-5p sponging and the SNHG10/miR-182-5p/FZD3 axis 

maintain the activation of the Wnt/β-catenin signaling pathway (Zhu et al., 2020).

The oncogenic lncRNA AFAP1-AS1 (actin fiber-associated protein 1 antisense RNA 1) 

has been proposed as a promising therapeutic target in osteosarcoma as it is found to 

be overexpressed and promoting the epithelial-mesenchymal transition of osteosarcoma 

through RhoC/ROCK1/p38MAPK/Twist1 signaling pathway (Shi et al., 2018). Recently, 

Fei et al. (2020) further strengthened this fact showing that AFAP1-AS1 promotes 

osteosarcoma progression by regulating the miR-497/IGF1R axis and targeting it could 

inhibit tumorigenesis both in vitro and in vivo. The lncRNA NBAT1 (neuroblastoma-

associated transcript 1), is recognized as a tumor suppressor lncRNA in some cancers. 

In osteosarcoma, the lower NBAT1 expression was associated with distant metastasis and 

poor prognosis, as it interacts with miR-21 and its downstream gene targets including 

PTEN, PDCD4, TPM1 and RECK (Yang et al., 2017). lncRNA PVT1 (Plasmacytoma 

Variant Translocation 1) is a well-studied oncogenic lncRNA that was found to function as 

competing endogenous RNA or interact and stabilize the MYC protein (Sun et al., 2019; 

Tseng et al., 2014). Recently Chen et al. (2020) investigated the regulatory mechanism 

of PVT1 in osteosarcoma and identified that m6A demethylase ALKBH5-mediated 

demethylation of the PVT1 promotes osteosarcoma growth. The authors proposed PVT1 

as a potential prognostic marker and ALKBH5-PVT1 to be a promising therapeutic target.

A novel interplay between lncRNA HOTAIR, miR-126, and DNA methylation in 

osteosarcoma has been reported by Li et al. (2017b), where they found that HOTAIR can 

repress CDKN2A gene expression through DNA hypermethylation by suppressing miR-126 
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expression (a negative regulator of DNMT1). Therefore, the lncRNAHOTAIR-miR126-

DNMT1-CDKN2A axis was proposed to be a novel therapeutic alternative, especially 

targeting HOTAIR due to its potential to increase osteosarcoma chemosensitivity toward 

DNMT1 inhibitors (Li et al., 2017b). lncRNA ANRIL (antisense non-coding RNA in the 

INK4 locus) is upregulated across many cancers. It is a 3.8 kB-long transcript expressed in 

the opposite direction from INK4A-ARF-INK4B which represses the expression of tumor 

suppressor gene p15 (INK4B) via recruiting PRC2 complexes (Kotake et al., 2011). The 

epigenetic crosstalk between ANRIL and the microRNAs was first documented in gastric 

cancer (Zhang et al., 2014a), its overexpression affects osteosarcoma cell proliferation, 

invasion, apoptosis (Cheng et al., 2017; Yu et al., 2018) and metastasis (Guan et al., 

2018). Knockdown of ANRIL in the osteosarcoma cell lines was able to increase the 

Cisplatin-induced chemosensitivity via the upregulation of miR-125a-5p and reduction 

of its target gene STAT3 (Li et al., 2019). Consistent with other studies, this research 

indeed reveals the potential for targeting lncRNA-ANRIL/miR-125a-5p axis in the treatment 

of the chemoresistant osteosarcoma. The lncRNA DANCR has been documented to 

function by decoying miR-335-5p and miR-1972 in osteosarcoma and to facilitate ROCK1-

mediated proliferation and metastasis (Pan et al., 2020). The major signaling pathways and 

ceRNA network that have been found to be associated with lncRNA MALAT1 are the 

PI3K/AKT pathway, RhoA/ROCK signal transduction pathway, MALAT1/miR-509/Rac1 

axis, MALAT1/miR-142-3p/miR-129-5p/HMGB1 axis (Cai et al., 2016; Dong et al., 2015; 

Liu et al., 2017a; Zhang et al., 2018a).

Other epigenetic signatures

lncRNA EPIC1 (Epigenetically Induced lncRNA-1), despite playing an oncogenic role in 

other cancers through interacting with the oncogenic c-MYC protein (Wang et al., 2018), it 

has shown to have an opposite effect on osteosarcoma. It is able to inhibit the cell viability 

and invasion in vitro as well as suppress tumor growth in the osteosarcoma xenograft model 

by ubiquitin-mediated degradation of myocyte-specific enhancer factor 2, MEF2D (Zhao 

et al., 2019). lncRNA BLACAT1 (Bladder cancer associated transcript 1) interacts with 

STAT3 and regulates the phosphorylation of STAT3 and contributes to the proliferation and 

migration of osteosarcoma cells (Dong and Wang, 2019).

Circular RNAs

Another emerging new class of biomarkers for cancer development and progression are the 

circular RNAs (circRNAs). CircRNAs are the covalently closed/looped single-stranded non-

coding RNA molecules, created by back-splicing of the pre-mRNA regulated by specific 

RNA-binding proteins (Bach et al., 2019; Zhang et al., 2020b). Previously they were 

considered as splicing errors, but recently many circRNAs are being discovered taking part 

in the post-transcriptional regulation of gene expression via different mechanisms.

In osteosarcoma, circRNAs modulate cell proliferation, migration and invasive properties 

mostly via circRNA-miRNA-mRNA interaction to regulate expression of specific onco- 

or tumor suppressor genes; for example, hsa_circ_0001564 (sponge miR-29c-3p), hsa-

circ-0016347 (sponge miR-214), circGLI2 (sponge miR-125b-5p), circ-03955 (sponge 
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miR-3662), circ-0001785 (sponge miR-1200), circPVT1 (circPVT1/miR-52b/FOXC2 axis), 

circ-NT5C2, hsa_circ_0092509, hsa_circ_0009910 (Chen and Huang, 2018; Fatema and 

Barrott, 2022; Jin et al., 2017; Liu et al., 2021; Wu et al., 2021; Wu et al., 2019). 

However, their function is not confined to sponging miRNA or proteins only. Accumulating 

evidence suggests a clear connection between the differential expression of circRNAs and 

the enzymes regulating DNA methylation or histone proteins (Bach et al., 2019; Chen and 

Huang, 2018; Jin et al., 2017; Lee et al., 2019) (Fig. 2).

A comprehensive characterization of circRNAs in around 1000 human cancer cell lines 

identified a strong association between the circRNAs and drug response, especially 

circMYC (associated with breast cancer cell proliferation) has shown a great sensitivity 

towards the drugs targeting histone acetylation (i.e., HDAC inhibitors Belinostat and 

Vorinostat) (Ruan et al., 2019).

Positive correlation between the histones and circRNAs has also been documented in several 

osteosarcoma cases (Table 2). For example, novel circRNA, circHIPK3 (homeodomain 

interacting protein kinase-3) which has been found to promote HDAC4 expression via 

sponging of miR-637 to regulate osteosarcoma cell proliferation, migration, and invasion 

(Wen et al., 2021). However, earlier reports of circHIPK3 state that it has a tumor suppressor 

function and a clinical correlation where decreased expression associates with shorter overall 

survival (Long et al., 2018). Oncogenic circLRP6 is highly expressed in osteosarcoma 

and its overexpression was associated with shorter patient survival (both disease-free and 

overall). Functionally, circ-LRP6 binds to both LSD1 and EZH2 and inhibits APC and 

KLF2 expression thereby promoting osteosarcoma progression (Zheng et al., 2019). In 

another study, Wu et al. (2019) focused on the underlying mechanism of circTADA2A 
which is abundantly expressed in osteosarcoma. TADA2A gene is part of the PCAF 

histone acetyltransferase complex and plays important role in chromatin remodeling, TP53 

transcriptional activity, and regulating apoptosis via XRCC6 acetylation (Huang et al., 

2012). This group concluded that circTADA2A targets an oncogene, CREB3 to promote 

osteosarcoma progression and metastasis via sponging to miR-203a-3p and emphasized 

circTADA2A-miR-203a-3p-CREB3 axis as a potent osteosarcoma-targeted therapy.

Short Non-Coding RNAs–Micro RNAs

According to the miRBase v.22.1, the human genome encodes for approximately 2,654 

mature microRNAs (Gregorova et al., 2021) and any single microRNA is capable of 

regulating the expression of hundreds of different genes (Kim et al., 2008; Plotnikova et 

al., 2019). Depending on their expression pattern and molecular targets in different cancer 

types, miRNAs can have either oncogenic or tumor suppressive function in tumorigenesis 

(di Leva et al., 2014). miRNAs can regulate gene expression via RNA interference (RNAi) 

mechanism, miRNA sponging mechanism (ceRNA network), other epigenetic processes 

such as interfering with DNA methylation, especially targeting DNA methyltransferases 

(Fabbri et al., 2007; Garzon et al., 2009; Llobat and Gourbault, 2021) as well as the 

histonemodifying complex members (Alvarez-Saavedra et al., 2011; Garzon et al., 2009).
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miRNAs and epigenetics

miRNAs can initiate transcriptional gene silencing or induce re-expression of methylation-

silenced genes through restricting chromatin remodeling enzymes activity and/or altering 

DNA methylation status (Benetti et al., 2008; Fabbri et al., 2007; Wei et al., 2017; 

Yuan et al., 2011). Epigenetic mechanisms and chromosomal abnormalities have also 

been highlighted as the trigger to the aberrant expression of miRNAs in different cancers 

(di Leva and Croce, 2013; Vicentini et al., 2019). In 23 different types of tumors, 

12% of all the miRNA genes associated with CpG islands were found inactivated by 

methylation (Gregorova et al., 2021). Moreover, the epigenetic modulators, such as histone 

methyltransferases, methyl CpG binding proteins, chromatin domain proteins, and histone 

deacetylases are also identified as potential targets of the miRNAs (Gregorova et al., 2021; 

Kim et al., 2008; Plotnikova et al., 2019). They have been found to modulate components of 

Polycomb complexes, e.g., targeting the EZH2 (miRNA-101, miR-26a), inhibiting stem cell 

factor BMI-1 (miR-128, miR-200c), promoting skeletal muscle differentiation (miR-214) 

(Peschansky and Wahlestedt, 2014). Differentially expressed histone deacetylases are also 

targets of miRNAs, but the conclusions often vary among tumor types (e.g., miR-449) 

(Buurman et al., 2012; Noonan et al., 2009).

miRNA clusters and families in the cancer epigenetics

25% of all human miRNA genes are organized in clusters based on their genomic location 

(within <10 kB range) and expression profiles (kabekkodu et al., 2018). These clusters may 

contain the smallest to the highest number of miRNAs with similar biological function; 

whereby intergenic regions contain the most clusters compared to other locations. Two or 

more miRNAs with high sequence similarity are referred to as miRNA gene family and each 

family can be part of the same or different miRNA clusters depending on their function (Guo 

et al., 2014).

miRNAs within the same cluster regulate the expression of the onco-and tumor suppressor 

genes to promote carcinogenesis both genetically (e.g., SNPs) and epigenetically (e.g., 

CpG island hyper-and hypomethylation, etc.) (kabekkodu et al., 2018). Gregorova et 

al. (2021) highlighted the epigenetic mechanisms in different cancers that are found 

associated with the dysregulation of miRNA clusters or miRNA gene families such 

as-global or site-specific hypomethylation, CpG island promoter hypermethylation, and 

histone modifications, etc. According to that report, the most highlighted cancer associated 

miRNA clusters/families are-Let-7-5p/98-5p Family, miR-125-5p Family, miR-99-5p/

100-5p Family; miR-34-5p/449-5p Family, miR-34b-5p/449c-5p Family; The miR-141-3p/

200a-3p Family, miR-200ab-5p Family, miR-200bc-3p/429 Family, miR-200c-5p/550a-3p 

Family; miR-17~92a-1 Cluster, miR-106a~363 Cluster; miR-15-5p/16-5p/195-5p/424-5p/

497-5p Family; miR-23-3p Family, miR-23b~24-1 Cluster, miR-23a~24-2 Cluster; 

miR-130-3p/301-3p/454-3p Family and miR-29-3p Family (Gregorova et al., 2021).

miRNAs in osteosarcoma

Several miRNAs found deregulated in osteosarcoma compared to normal bone, osteoblasts, 

and mesenchymal stem cells, and some are also selectively expressed in osteosarcoma 

(Baumhoer et al., 2012; Jones et al., 2012; Llobat and Gourbault, 2021; Maire et al., 2011; 
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Ramassone et al., 2018; Sarver et al., 2010; Thayanithy et al., 2012; Ziyan et al., 2011). 

miRNAs may well play both oncogenic and tumor suppressive roles depending on their 

target genes and pathways in osteosarcoma (Llobat and Gourbault, 2021). In a recent review 

on miRNAs in human osteosarcoma, Llobat and Gourbault (2021) compiled the miRNAs 

involved in osteosarcoma progression, in particular the clusters which have pivotal role 

in cancer hallmarks, for example the miR-17-92 and miR-106b-25 clusters. In a global 

microarray analysis of a panel of 19 human osteosarcoma cell lines, Naml0s et al. (2012) 

identified 177 differentially expressed miRNAs relative to normal bone, nearly half of 

which overlapped with two earlier studies, including the common miR-150. Among these, 

miR-126/miR-126*, miR-142-3p, miR-150, miR-223, miR-486-5p, and members of the 

miR-1/miR-133a, miR-144/miR-451, miR-195/miR-497 and miR-206/miR-133b clusters 

were found to be downregulated; miR-9/miR-9*, miR-21*, miR-31/miR-31*, miR-196a/

miR-196b, miR-374a and members of the miR-29 and miR-130/301 families were found to 

be upregulated (Table 3).

All such differentially expressed miRNAs, miRNA clusters and families - having the 

similar biological function with the potential to regulate specific mRNAs of target genes-are 

promising diagnostic and prognostic markers for osteosarcoma (Lei et al., 2020; Ramassone 

et al., 2018; Zhang et al., 2015). A large number of miRNAs hold biomarker potential due 

to their differential expression in body fluids (especially in patients’ blood), their correlation 

with the response to chemotherapy and patient survival; for instance, miR-Let7A (Hua et 

al., 2018). Botti et al. (2019) recently in a review summarized the circulating miRNAs with 

biomarker potential in the diagnosis, prognosis, and clinical monitoring of osteosarcoma 

patients. According to them, miR-29 family members (miR-29a, miR-29b, miR-29c), 

miR-199a-3p, miR-196a, miR-196b, miR-214, miR-574, miR-335, miR-9, miR-191, 

miR-221, miR-148, miR-195-5p, miR 320a, miR-421, miR-542, miR-95-3p, miR-21, 

miR-27a and miR-253-p are found highly expressed in patient serum and the miR-34 family 

members (miR-34a and miR-34b), miR-124, miR-205-5p, miR-133b, miR-206, miR-195, 

miR-152, miR-326, miR-145, miR-558, miR-497, miR-491 and miR-375 are significantly 

downregulated. Zhang et al. (2020a); Wu et al. (2011) proposed a novel diagnostic marker 

for predicting osteosarcoma metastasis, the plasma EV-packaged miR-101 (EV-miR-101), 

which the author indicated might serve as a useful circulating biomarker. Furthermore, the 

following sections will delineate the major markers of epigenetic control of miRNAs in 

osteosarcoma.

DNA methylation and chromatin modifying miRNAs

An assessment of the clinical utility of miRNA sets and their association with methylation 

status (Hill et al., 2017) found that most prognostic miRNAs affecting gene expression via 

DNA methylation, cluster in 14q32-a region which was also previously reported to encode 

more than 40 miRNAs including imprinted genes important in osteogenic differentiation 

and inhibiting cancer (Thayanithy et al., 2012). This report suggests that miRNAs and 

modulation in methylation patterns may offer prognostic and therapeutic strategies in 

osteosarcoma treatment (Lietz et al., 2020). The hypothesis that miRNA may regulate 

gene expression epigenetically was reinforced by the relationship of certain miRNAs and 

DNA methyltransferases, for example-miR-485-3p, MiR-370, miR-142, miR-7, miR-129-5p 
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(Ding et al., 2015; Du et al., 2018; Fabbri et al., 2007; Khraiwesh et al., 2010; Wu et al., 

2010; Zhang and Peng, 2017; Zhang et al., 2017a; Zhang et al., 2019) (Fig. 3).

Few other miRNAs have been found targeting the histone modifying enzymes such as 

HDAC4 or Sirtuin-1 and thus inhibiting proliferation, migration, invasion and epithelial-

mesenchymal transition of osteosarcoma cells, for example, miR-126, miR-133b, miR-204 

(Liao et al., 2021; Shi et al., 2017; Tang et al., 2017; Ying et al., 2017). Tumor 

suppressor miR-449a and miR-449b were epigenetically repressed in the osteosarcoma 

cell line via H3K27me3 resulting in E2F1 deregulation. And their expression could be 

restored when targeted with a combination of small-molecule histone methylation inhibitor 

Deazaneplanocin A (DZNep) and HDAC inhibitor trichostatin-A (TSA) (Yang et al., 2009).

Another proposed mechanism of action is through forming heterochromatin (e.g., miR-377, 

miR-17-5p and miR-20a) (Gonzalez et al., 2008; Xia et al., 2019). miR-377, which is a 

well-recognized tumor suppressor miRNA in many cancers, has been found to target HAT1 

(histone acetyltransferase 1) in osteosarcoma (Xia et al., 2019). And apparently upregulation 

of miR-377 or inhibition of HAT1 prevented osteosarcoma progression via inactivating Wnt 

pathway thereby providing a therapeutic alternative.

Interaction with lncRNA and circRNA

Several miRNAs have been reported to interact with the lncRNAs as well as circRNAs 

to serve their oncogenic or tumor suppressive role in osteosarcoma (described in the 

previous sections). Significantly reduced serum miR-425-5p expression makes it a potential 

prognostic marker in osteosarcoma, and when overexpressed it decreases the expression of 

very well-known oncogenic lncRNA MALAT1 and TUG1 in addition to suppressed tumor 

growth in-vivo (Yang et al., 2019).

Other signaling pathways governed by miRNAs

Several miRNAs have been reported to be involved in the Notch signaling pathway in the 

initiation and progression of osteosarcoma, of which some are tumor suppressor miRNAs 

such as miR-26a (targets Jagged1), miR-1296-5p (targets Notch2), miR-34 and miR-200 

(targets Notch1) and some play oncogenic role for example, miR-10b-5p (targets NCOR2) 

(Lei et al., 2020; Xia et al., 2020). miR-154-5p acts as tumor suppressor in osteosarcoma 

and its upregulation inhibits the proliferation, migration and invasion in vitro as well as 

in-vivo tumor growth via the dysregulation in the pro-apoptotic proteins’ expression and 

the cell cycle regulators such as E2F5, Cyclin E1 and CDK2 (Tian et al., 2018). Another 

miRNA, miR-524 activates PI3K/AKT pathway and induces proliferation in osteosarcoma 

via directly inhibiting PTEN expression (Zhuang et al., 2018). Some miRNAs such as 

miR-598, miR-143, and miR-23a, also found to play a role in osteoblast differentiation in 

osteosarcoma progression (Grilli et al., 2015; Liu et al., 2017b).

Short Non-Coding RNAs–piRNAs and siRNAs

piRNAs are approximately 26–30 NT long, consisting of more than 50,000 different 

species. Recent studies demonstrated possible involvement of aberrant piRNAs expression 

in tumorigenesis and all the hallmarks of cancer, and thereby suggested as a diagnostic and 
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prognostic marker (e.g., piR-L-163, piR-823) (Wei et al., 2017; Wu et al., 2020). piRNAs 

been speculated to have a role in epigenetic regulation as they bind to Piwi proteins, a 

known epigenetic regulator functioning by binding to Polycomb group genes (Lin, 2007). 

piR-39980, which has been reported to have an oncogenic function in human osteosarcoma 

cells (Das et al., 2020), has been found to have strong anti-tumor activity in fibrosarcoma 

(early metastatic lethal tumor) by repressing RRM2 (Das et al., 2019). siRNAs can result 

in transcriptional gene silencing via DNA methylation and histone modifications in cells 

especially through interfering with EZH2 (Bayne and Allshire, 2005; Morris et al., 2004; 

Zhou et al., 2015).

Non-Coding RNAs as Therapeutic Targets for Epigenetics-Driven 

Personalized Medicine

Epigenetic therapeutics in combination with the selective targeting of the ncRNAs might 

hold a great key for treating the cancers that are more chemoresistant and more prone 

to relapse after chemotherapy. In fact, studies focused on DNA methylation pattern 

for drug repurposing in osteosarcoma (Chaiyawat et al., 2020) identified a significant 

increase in DNMT1-dependent chemosensitivity toward Cisplatin therapies when treated 

with Decitabine (DNMT inhibitor).

The lncRNA HOTAIR (discussed in earlier sections) is an outstanding therapeutic target 

for anticancer therapies (Cantile et al., 2020; Li et al., 2017b). Recently, a computer-aided 

structure-based drug design method has been able to develop small molecule inhibitor 

of HOTAIR (e.g., AC1NOD4Q) which particularly interferes with the HOTAIR/EZH2 

interaction and prevents tumor metastasis in breast cancer models (Ren et al., 2019a). 

Moreover, suppressing HOTAIR in combination with other epigenetic drugs (e.g., DZNep 

and AC1Q3QWB) showed a great promise in treatments for breast cancer and glioblastoma 

(Li et al., 2019; Sun et al., 2015). Its unique expression pattern in osteosarcoma, regulation 

of DNA methylation, exploiting chromatin remodelers, functioning via ceRNA network, and 

also promising outcomes in other cancers; all of these shows a great potential for HOTAIR 

to be an excellent candidate for epigenetic therapeutics in osteosarcoma (Cantile et al., 2020; 

Li et al., 2017b).

lncRNA NEAT1 (nuclear enriched abundant transcript 1) is another oncogenic transcript 

involved in the osteosarcoma metastasis and EMT regulation (Li and Cheng, 2018). 

NEAT1 induces epigenetic suppression of E-cadherin (CDH1) expression by mediating 

CDH1 promoter methylation via G9a methyltransferase. And when knocked down, it 

can significantly reduce G9a-DNMT1-Snail complex association in CDH1 promoter. 

Consequently, NEAT1 is yet another promising target in the treatment of metastatic 

osteosarcoma via epigenetic-derived therapeutics. Previously described lncRNA MEG3 was 

also suggested to be a potential therapeutic target in osteosarcoma due to its negative 

regulation of the well-known oncogene FOXM1 through sponging miR-361-5p (Shen et al., 

2019). Other oncogenic lncRNAs such as AFAP-AS1 and MALAT1 (discussed previously) 

have also been proposed to be a therapeutic target due to their effects on osteosarcoma 

progression and metastasis (Fei et al., 2020).
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Preclinical studies on osteosarcoma emphasized the potentials of different miRNAs as 

therapeutic targets (e.g., miR-146b-5p) (Jiang et al., 2019). Several miRNAs expression 

has also been associated with abnormal methylation that could be targeted with DNMT 

inhibitors to suppress osteosarcoma progression (e.g., miR-485-3p, miR-370, miR-142, 

miR-7, miR-129-5p) (Ding et al., 2015; Du et al., 2018; Long et al., 2015; Zhang and Peng, 

2017; Zhang et al., 2019). Indeed, osteosarcoma cells when treated with DNMT inhibitor 

DAC, increased the levels of tumor suppressor microRNA miR-370. Not only that, DAC 

treatment also enhanced its inhibitory effect on FOXM1 by suppressing FOXM1-β-catenin 

interaction and inhibiting Wnt/β-Catenin signaling (Zhang et al., 2017b).

In a recent review, Lei et al. (2020) outlined the miRNA-based therapeutics in clinical 

trials as well as the miRNA mimics that are currently under development for targeting 

osteosarcoma both in vitro and in vivo. These includes nanoparticles, bioengineered 

prodrugs, and exosome-mediated delivery of miRNA mimics of miR-199a-3p, let-7a, 

miR-34a, miR-145, miR-143, and miR-101. A prodrug designed for miR-34a (tRNA/

miR-34a) has shown substantial antitumor activity in preclinical canine model of 

osteosarcoma cell lines and in vivo xenograft model (Alegre et al, 2018), providing evidence 

for the potential of the miRNA-based therapies in the treatment of human osteosarcoma.

miR-101 is a well-known tumor suppressor miRNA in several cancers and in osteosarcoma, 

it was found functioning through repressing EZH2 expression to decrease metastasis (Zhang 

et al., 2014b). Recently, Zhang et al. (2020a) designed an exosomal delivery of miR-101 

with EV derived from engineered AD-MSCs, and their study showed that miR-101 had the 

potential to inhibit metastatic osteosarcoma, possibly via regulation of EZH2 and BCL6.

Conclusion

Identifying biomarkers that differentiate responders/survivors from non-responders remains 

enigmatic and could overcome the stagnate survival statistics that have persisted for the past 

40 years. While biomarkers in the coding RNA and DNA have been unreliable, there is 

potential to investigate the ncRNA for consistent biomarkers. As discussed in this review, 

there are a number of potential biomarkers among the different classes of ncRNAs that 

not only serve as biomarkers to differentiate more aggressive osteosarcomas, but help to 

explain the biological processes that drive the hallmarks of cancer. By understanding the 

underpinnings of how ncRNAs drive transformation and progression, they can then become 

pharmacological targets to modulate cancer pathways and drive favorable outcomes for 

patients. The most advanced therapeutics in this field involve the complementary targeting 

of miRNAs that regulate numerous cell processes that regulate protumorigenic behavior. 

Currently several clinical trials are underway to investigate their therapeutic potential. 

However, as with most targeted therapies already applied to osteosarcoma, these therapies 

will also likely fail unless combined with other approaches. The heterogeneity and genomic 

instability that exists in the DNA coding regions is likely to complicate the interpretation of 

the ncRNAs, but the potential is there to discover something truly ground-breaking.
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FIGURE 1. 
Epigenetic modifications of the lncRNAs to regulate gene expression: (a) via chromatin 

modification and remodeling by interacting with the epigenetic activator or repressive 

complex members, (b) histone modifications to alter chromatin structure, (c) via Promoter 

DNA methylation, (d) via ceRNA networking (miRNA sponging).
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FIGURE 2. 
CircRNAs in osteosarcoma regulate gene expression: (a) by interfering with DNA 

methylation (e.g., binding EZH2), (b) via circRNA-miRNA-mRNA interaction.
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FIGURE 3. 
miRNAs affect gene expression by (a) regulating histone modifying enzymes activity and 

DNA methylation, (b) altering chromatin structure, (c) ceRNA networking mechanisms, (d) 

regulating onco- or tumor-suppressor genes expression via miRNA sponging.
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TABLE 2

List of circRNAs in osteosarcoma

Oncogenic Tumor suppressor Targets (gene/protein/signaling pathway or miRNAs)

circ_TADA2A miR-203a-3p/CREB3

circ_CRIM1 miR-432-5p/HDAC4

circ-CRIM1 miR-513

circ_MYC HDAC

circ_HIPK3 miR-637/HDAC4

circ_HIPK3

circ_0001658 miR-382-5p/YB-1

circ-LRP6 EZH2 and LSD1; APC and KLF2
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