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Abstract: Signalling pathway analysis is a popular approach that is used to identify significant cancer-related pathways
based on differentially expressed genes (DEGs) from biological experiments. The main advantage of signalling
pathway analysis lies in the fact that it assesses both the number of DEGs and the propagation of signal perturbation
in signalling pathways. However, this method simplifies the interactions between genes by categorising them only as
activation (+1) and suppression (−1), which does not encompass the range of interactions in real pathways, where
interaction strength between genes may vary. In this study, the authors used newly developed signalling pathway
impact analysis (SPIA) methods, SPIA based on Pearson correlation coefficient (PSPIA), and mutual information
(MSPIA), to measure the interaction strength between pairs of genes. In analyses of a colorectal cancer dataset, a lung
cancer dataset, and a pancreatic cancer dataset, PSPIA and MSPIA identified more candidate cancer-related pathways
than were identified by SPIA. Generally, MSPIA performed better than PSPIA.
1 Introduction

With the establishment of pathway databases, including the KEGG,
BioCata, and Reactome databases, analysis of differentially
expressed genes (DEGs) has become a dominant analytical method
in systemic biological research. In such analysis, the first step is to
list DEGs according to gene expression profiles. Next, pathways
with significant number of DEGs are identified, after which gene
ontology functional enrichment analysis is performed on sets of
DEGs in affected pathways, allowing researchers and clinicians to
better understand interactions between diseases and genes. Early
methods of pathway analysis mainly included techniques based on
overexpression analysis (ORA) and functional class scoring (FCS)
[1–3]. ORA methods, such as Onto-Express [4, 5] and GOEASE
[6], determine differentially expressed pathways mainly according to
the number of DEGs (NDE). FCS methods, such as gene set
enrichment analysis (GSEA) [7], take into consideration coordinated
variation of DEGs in each pathway. The main disadvantage of ORA
and FCS methods is that they do not consider the position and
interaction (activation or inhibition) of genes in signalling pathways.
In order to overcome this disadvantage, Tarca et al. [8] introduced
signalling pathway impact analysis (SPIA), which was the first
signalling pathway analysis method to consider the impact of DEGs
on pathway perturbation. Voichita et al. [9, 10] proposed a gene
weighting method to avoid human participation in significance
determination during DEG screening, after which they applied SPIA
to determine the importance of individual genes in signalling
pathways. Ullah [11] improved the SPIA method by substituting the
fold-change used in SPIA with the t-value produced by the limma
software package to increase the accuracy of SPIA. Korucuoglu
et al. [12] depicted gene relationships within signalling pathways as
directed acyclic graphs (Bayesian network) and proposed Bayesian
pathway analysis (BPA). Li et al. [13] integrated SPIA with
subpathway recognition, proposing a subpathway recognition
method based on a minimum spanning tree. Additionally, Zhao
et al. integrated information related to protein–protein interactions
and microRNAs to identify disease-associated pathways [14–16].

In a signalling pathway, the effect of upstream gene perturbation
on downstream genes is closely related to the intensity of the
interaction between such pairs of genes. In order to simplify
model parameters, SPIA only considers the relationships of
activation and inhibition; it does not consider the intensity of
interactions between genes. However, interaction intensity can be
measured by Pearson correlation analysis or mutual information
computation for gene expression profiles. Therefore, we developed
modified SPIA methods based on Pearson’s correlation coefficient
(PSPIA) and mutual information (MSPIA). Through the
application of PSPIA and MSPIA to colon cancer, lung cancer,
and pancreatic cancer datasets, we found that, in comparison with
SPIA, GSEA, and BPA, proposed PSPIA and MSPIA recognise
more pathways related to diseases and have more stable
performance.
2 Materials and methods

2.1 Data sets

In this paper, we use the following three cancer data sets: a colon
cancer dataset, a lung cancer dataset, and a pancreatic cancer
dataset. The colon cancer dataset included 12 colon cancer
samples and 10 normal samples (the identification of the datasets
in Gene Expression Omnibus dataset (ID) = GSE4107) [17]. The
lung cancer dataset obtained by Li-Jen et al. (ID = GSE27262)
[18, 19] included 25 lung cancer samples and 25 normal samples.
The pancreatic cancer dataset obtained by Pei et al. [20] (ID =
GSE16515) included 36 pancreatic cancer samples and 16 normal
samples.
2.2 Signal pathway conversion

In the KEGG database (http://www.kegg.jp/kegg/xml/), every
pathway corresponds to an XML document stored in KGML
format. There are two main types of nodes in the KGML format:
gene product and compound. To compare with SPIA method, we
analyse the 137 signalling pathways listed in the SPIA R package.
First, we downloaded the signalling pathways from the KEGG
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database one by one. Next, the graphite package [21] was used to
reconstruct each signalling pathway into a gene network. Finally,
the DEGs identified using the limma package for R were mapped
onto each gene network.

2.3 Significance analysis of signalling pathways [8]

Tarca et al. argued that the results of expression profile differences in
one signalling pathway mainly include the overrepresentation of
DEGs and the abnormal perturbation in a given subpathway. SPIA
defines a new significance evaluation index, PG, which is
calculated by the following formula

PG = c− c ln (c) (1)

where c = PNDE × PPERT, and PNDE and PPERT represent the
significance of the DEG number and differential signal-induced
perturbation, respectively, in a given pathway.

The first probability PNDE = P(X≥Nde|H0) captures the significance
of a given subpathway Pi by an over-representation analysis of the
NDE contained in the pathway. H0 represents the null hypothesis, in
which random DEGs appear in a given subpathway. The probability
PNDE is obtained by assuming that the NDE follows a
hypergeometric distribution. If the whole genome has a total of m
genes, of which t are involved in the pathway under investigation,
while the set of genes submitted for analysis has a total of n genes,
of which r are involved in the same pathway, then the p-value can
be calculated to evaluate the significance of the enrichment of a
group of DEGs for that pathway as follows

PNDE(x . r) = 1−
∑r−1

x=0

t
x
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m− t
h− x

( )
/ m

h

( )( )
(2)

The second probability PPERT is calculated based on the amount of
perturbation measured in each pathway. The gene perturbation
factor is defined as

PF(gi) = DE(gi)+
∑k
j=1

bij ·
PF(gj)

Nds(gj)
(3)

where the term ΔE(gi) represents the signed, normalised, measured
expression change of gene gi (log fold-change if two conditions
are compared). The second term in (3) is the sum of the
perturbation factors of the gene gj directly upstream of target gene
gi, normalised by the number of downstream genes of each such
gene Nds(gj). βij quantifies the interaction between genes gi and gj
(activation or inhibition). SPIA uses all |β| = 1 in order to minimise
the number of model parameters. Detailed information can be
found in [8].

To consider the influence of the interaction strength between two
adjacent genes with different intensities on perturbation, formula (3)
was modified as follows

PF(gi) = DE(gi)+
∑s

j=1

bij · wij

PF(gj)

Nds(gj)
(4)

where wij represents the intensity of the interaction between two
genes. For PSPIA, the interaction intensity is represented by
Pearson’s correlation coefficient and wij is calculated as follows

wij =
1

n− 1

∑n
k=1

Eik − Ei

sEi

( )
Ejk − Ej

sEj

( )∣∣∣∣∣
∣∣∣∣∣ (5)

where n represents the sample size of the expression profiles, Eik
represents the expression value of gene gi in the kth sample; Ei
represents the average expression value of gene gi; and sEi represents
the standard deviation of the expression values of gene gi.
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For MSPIA, mutual information is used to describe the non-linear
interaction strength of two genes and wij is calculated as follows:

wij =
∑
y[Y

∑
x[X

p(x, y) lg
p(x, y)

p(x)p(y)
(6)

To calculate mutual information, we binarised the normalised
microarray data as 1 (overexpression) and 0 (underexpression). X
and Y represent the binarised expression value space of genes gi and
gj, respectively, such as X = {1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0}.
Then, the probability space of X is as follows

X
P

[ ]
= 0 1

p(x = 0) p(x = 1)

[ ]
(7)

Moreover, the probability space of Y is as follows

Y
P

[ ]
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p(y = 0) p(y = 1)

[ ]
(8)

The joint probability space of X and Y is as follows

X , Y

P

[ ]

= 0, 0 0, 1 1, 0 1, 1

p(x=0, y=0) p(x=0, y=1) p(x=1, y=0) p(x=1, y=1)

[ ]
(9)

Finally, the mutual information between genes gi and gj can be
caculated as formula (6).
3 Results and discussion

In this section, we compared the proposed PSPIA and MSPIA
methods with the SPIA method by analysing three cancer data sets.
Additionally, we also presented the results of the GSEA method and
the recently proposed BPA method. The SPIA R package developed
by Tarca et al. was applied directly to perform SPIA. GESA was
performed using the enrichment analysis software developed by
Subramanian. BPA was performed with software developed by
Korucuoglu et al. We used the limma software package to identify
DEGs as genes with a p-value <0.05.

Fair comparisons of methods are difficult because of the
unavailability of gold standard cancer-pathway association data. In
addition to the differences in the techniques used in the compared
methods, the calculations of the significance of the identified
pathways are also performed differently. Therefore, one common
method of comparison is to evaluate them using a specific p-value
threshold for significance. In the PSPIA, MSPIA, SPIA, and BPA
results, signalling pathways with p-values (false discovery rate
(FDR)) <0.01 were considered as significant pathways. In the
GSEA results, signalling pathways with q-values <0.01 were
considered significant.

Tables 1–3 list the significant pathways possibly related to cancer
that were identified via PSPIA, MSPIA, and SPIA, respectively, in
the colon cancer, lung cancer, and pancreatic cancer datasets, as
well as the PG(FDR) of each pathway. In addition, pathways
identified via GSEA and BPA are also indicated. Table 4 lists the
number of significant pathways identified in each cancer dataset
using the five tested methods.

3.1 Comparison of PSPIA, MSPIA, and SPIA results

First, the number of significant pathways identified via PSPIA and
MSPIA was much greater than that identified via SPIA. This result
suggests that consideration of the interaction intensity of genes
improves the sensitivity of SPIA, i.e. the proposed methods can
identify more potential disease-related pathways.
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Table 1 Significant pathways identified by PSPIA, MSPIA, and SPIA in the colon cancer dataset

No Pathway name PSPIA MSPIA SPIA GSEA BPA Ref

1 Parkinson’s disease 1.48 × 10−6 1.23 × 10−9 3.02 × 10−9

2 MAPK signalling pathway 1.48 × 10−6 5.18 × 10−4 7.14 × 10−4 [46]
3 Alzheimer’s disease 2.43 × 10−5 1.43 × 10−9 3.57 × 10−9

4 focal adhesion 2.34 × 10−4 1.23 × 10−9 1.72 × 10−9 [39, 40]
5 Huntington’s disease 2.48 × 10−4 2.02 × 10−5 1.85 × 10−5

6 pathways in cancer 2.48 × 10−4 9.98 × 10−5 1.9 × 10−4

7 axon guidance 0.0082 2.04 × 10−5 1.44 × 10−4 [51]
8 protein processing in endoplasmic reticulum 5.37 × 10−4 0.51 0.51
9 dilated cardiomyopathy 9.71 × 10−4 1.12 × 10−4 0.22
10 transcriptional misregulation in cancer 0.0023 0.035 0.063
11 colorectal cancer 0.0037 0.10 0.15
12 bacterial invasion of epithelial cells 0.0066 0.10 0.47
13 calcium signalling pathway 0.0082 0.21 0.37 [23]
14 salmonella infection 0.0087 0.024 0.11 [24]
15 ECM-receptor interaction 0.042 5.03 × 10−6 5.00 × 10−6 [37]
16 PPAR signalling pathway 0.088 1.23 × 10−5 3.18 × 10−5 [38]

*p-value <0.01.
Second, some pathways identified via PSPIA and MSPIA, but not
via SPIA, were related to particular type of cancer (see the last column
of Tables 1–3). For example, among the seven pathways identified
through PSPIA, but not through SPIA, in the colon cancer dataset,
four pathways were related to colon cancer: colorectal cancer
pathway [22], calcium signalling pathway [23], transcriptional
misregulation in cancer, and salmonella infection [24]. The
colorectal cancer pathway is directly related to colon cancer [22].
The calcium signalling pathway plays an important role in
proliferation and migration of colon cancer cells [23]. Salmonella
infection can reduce the risk of cancer migration, including that of
colon cancer [24]. One pathway was identified via MPSIA in the
colon cancer dataset that was not identified by SPIA.

Among the eight pathways identified through PSPIA, but not
through SPIA, in the lung cancer dataset, three pathways are
related to lung cancer: the natural killer cell-mediated cytotoxicity
[25], tight junction [26], and salmonella infection [27]. Natural
Table 2 Significant signalling pathways identified by PSPIA, MSPIA, and SPIA

No Pathway name PSPIA

1 pathways in cancer 1.82 × 10−11

2 protein processing in endoplasmic reticulum 1.07 × 10−6

3 fanconi anemia pathway 5.75 × 10−6

4 focal adhesion 1.29 × 10−5

5 chemokine signalling pathway 2.56 × 10−5

6 cell cycle 2.65 × 10−5

7 small cell lung cancer 3.50 × 10−5

8 HTLV-I infection 6.92 × 10−5

9 Wnt signalling pathway 1.20 × 10−4

10 osteoclast differentiation 3.68 × 10−4

11 vascular smooth muscle contraction 5.31 × 10−4

12 ECM-receptor interaction 6.77 × 10−4

13 bacterial invasion of epithelial cells 7.01 × 10−4

14 transcriptional misregulation in cancer 8.59 × 10−4

15 MAPK signalling pathway 8.65 × 10−4

16 RNA transport 0.0024
17 pancreatic cancer 0.0029
18 TGF-beta signalling pathway 0.0038
19 colorectal cancer 0.0092
20 melanogenesis 6.92 × 10−5

21 natural killer cell mediated cytotoxicity 2.70 × 10−4

22 amoebiasis 0.0014
23 melanoma 0.0029
24 tight junction 0.0057
25 Fc gamma R-mediated phagocytosis 0.0057
26 chagas disease 0.0092
27 salmonella infection 0.0098
28 calcium signalling pathway 0.018
29 cytokine–cytokine receptor interaction 0.011
30 chronic myeloid leukemia 0.012
31 glioma 0.023
32 Parkinson’s disease 0.010
33 salivary secretion 0.012

*p-value <0.01
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killer cell-mediated cytotoxicity pathway activation can aggravate
human lung cancer. Expression of tight junction proteins, such as
claudins, are up-regulated or down-regulated in lung cancer.
Among the five pathways identified through MPSIA, but not
through SPIA, in the lung cancer dataset, tight junction pathway
[26] and salmonella infection pathway [27] are related to lung
cancer.

Among the five pathways identified through PSPIA, but not
through SPIA, in the pancreatic cancer dataset, four pathways
are associated with pancreatic cancer: the gastric acid secretion
pathway [28], salmonella infection pathway [29], cell
cycle pathway [30, 31], and pathogenic Escherichia coli infection
pathway [32]. The pathological characteristics of pancreatic cancer
indicate that hyperchlorhydria is directly related to pancreatic
cancer. Activation of the cell cycle pathway can inhibit
proliferation of pancreatic cancer cells. Some experiments suggest
that A1-R, a Salmonella species, has a significant inhibitory effect
in the lung cancer dataset

MSPIA SPIA GSEA BPA Ref

8.93 × 10−9 8.86 × 10−9

1.06 × 10−6 3.19 × 10−6

2.48 × 10−6 3.16 × 10−6 [52]
7.60 × 10−7 7.54 × 10−7 yes [41, 42]
0.0010 1.60 × 10−5 [53]

1.29 × 10−5 7.36 × 10−5 yes [54]
5.86 × 10−6 3.19 × 10−6

1.37 × 10−4 3.78 × 10−4

5.12 × 10−5 3.39 × 10−4 [49]
0.0010 3.83 × 10−4 [55]

3.32 × 10−4 3.56 × 10−6 yes [56]
7.61 × 10−4 0.0041 yes
9.73 × 10−4 4.64 × 10−4

0.0010 6.73 × 10−4

7.61 × 10−4 3.19 × 10−6 [47]
0.0013 0.0023

9.70 × 10−4 0.0044 yes
0.0067 0.0019 yes [57]
0.0091 0.0066 yes

7.84 × 10−5 0.072 yes
0.14 0.13 [25]

0.0012 0.018
0.0012 0.012
0.0010 0.028 yes [26]
0.035 0.017
0.0023 0.022
0.0049 0.032 [27]

4.12 × 10−4 3.78 × 10−4 [58]
2.66 × 10−4 0.030
0.0046 0.049
0.0068 0.046
0.0097 0.013
0.012 7.36 × 10−5
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Table 4 Number of significant signalling pathways identified by all five methods

No dataset GEO control samples test samples PSPIA MSPIA SPIA GSEA BPA

1 colon cancer GSE4107 10 12 17 10 9 0 0
2 lung cancer GSE27262 25 25 24 31 21 2 29
3 pancreatic cancer GSE16515 16 36 11 15 8 0 0

GEO: gene expression omnibus

Table 3 Significant signalling pathways identified by PSPIA, MSPIA, and SPIA in the pancreatic cancer dataset

No Pathway Name PSPIA MSPIA SPIA GSEA BPA Ref

1 focal adhesion 8.07 × 10−9 6.74 × 10−7 1.01 × 10−6 [43]
2 ECM-receptor interaction 4.36 × 10−8 8.84 × 10−8 8.71 × 10−8

3 pathways in cancer 7.27 × 10−8 6.74 × 10−7 5.37 × 10−7

4 small cell lung cancer 4.03 × 10−7 6.74 × 10−7 5.37 × 10−7

5 regulation of actin cytoskeleton 9.33 × 10−5 1.50 × 10−4 2.74 × 10−5

6 arrhythmogenic right ventricular cardiomyopathy 1.68 × 10−4 2.70 × 10−4 2.50 × 10−4

7 endocrine and other factor-regulated calcium reabsorption 0.0023 0.0078 1.01 10−6

8 pancreatic secretion 0.0050 0.0076 0.0089
9 bacterial invasion of epithelial cells 1.54 × 10−6 1.56 × 10−6 0.020
10 gastric acid secretion 8.80 × 10−5 0.0097 0.020 [28]
11 salmonella infection 8.80 × 10−5 0.0076 0.057 [29]
12 cell cycle 0.0016 0.0014 0.020 [30, 31]
13 pathogenic Escherichia coli infection 0.0045 0.0078 0.028 [32]
14 p53 signalling pathway 0.042 0.0076 0.056 [33]
15 Wnt signalling pathway 0.012 0.0078 0.014 [34–36]
16 mineral absorption 0.011 0.0087 0.014

*P-value < 0.01
on low-passage pancreatic cancer cells. Among the eight pathways
identified through MPSIA, but not through SPIA, in the pancreatic
cancer dataset, seven pathways are associated with this cancer:
gastric acid secretion pathway [28], salmonella infection pathway
[29], cell cycle pathway [30, 31], pathogenic Escherichia coli
infection pathway [32], p53 signalling pathway [33], and Wnt
signalling pathway [34–36].

In comparison with PSPIA, the number of significant pathways
identified through MSPIA was larger in the lung cancer and
pancreatic cancer datasets, but smaller in the colon cancer dataset.
Apart from the quality of the data itself, one possible reason for
this difference is that PSPIA was conducted based on the intensity
of the linear correlations of genes, while MSPIA was based on the
intensity of the more common non-linear relationship (including
linear correlations). When the sample size is sufficiently large,
MSPIA can capture more non-linear interactions between genes
than can PSPIA. Conversely, in the case of a small sample size,
the linear correlation intensity of genes reflected by PSPIA is more
reliable than that provided by MSPIA.

Third, all pathways identified in the three cancer data sets via
SPIA were also identified by MSPIA. In the colon cancer dataset,
only the ECM-receptor interaction pathway [37] and PPAR
signalling pathway [38], which have been reported to be related to
colon cancer, were not identified via PSPIA. In the lung cancer
dataset, only the calcium signalling pathway and salivary secretion
were not identified via PSPIA. The calcium signalling pathway
has been reported to be related to lung cancer. In the pancreatic
cancer dataset, PSPIA identified all pathways identified via SPIA.
Table 5 p-values of seven common signalling pathways related to cancer that

Colorectal cancer dataset

Pathway name PSPIA MSPIA SPIA PS

focal adhesion 2.3 × 10−4 1.2 × 10−9 1.7 × 10−9 1.3
pathways in cancer 2.4 × 10−4 9.9 × 10−5 1.9 × 10−4 1.8 ×
regulation of actin cytoskeleton 0.069 0.060 0.034 0
MAPK signalling pathway 1.4 × 10−6 5.2 × 10−4 7.1 × 10−4 8.7
ECM-receptor interaction 0.042 5.1 × 10−6 5.0 × 10−6 6.8
Wnt signalling pathway 0.059 0.02 0.017 1.2
p53 signalling pathway 0.33 0.65 0.59 0

150 This is an open access article publis
The pancreatic cancer pathway is obviously a significant pathway
associated with pancreatic cancer, but it could not be identified by
PSPIA, MSPIA, and SPIA with p-value <0.01. The p-values of
this pathway were 0.058, 0.059, and 0.13 by PSPIA, MSPIA, and
SPIA respectively. Therefore, the PSPIA and MSPIA methods
identified this pathway more significantly than the SPIA method.
This indicates that the two proposed methods are more efficient
than the SPIA methods.

Finally, some pathways were identified by PSPIA, MSPIA, and
SPIA that might have no association with the corresponding
cancer. For example, the Parkinson’s disease pathway, Alzheimer’s
disease pathway, and Huntington’s disease pathway were
identified in the colon cancer dataset by PSPIA, MSPIA, and
SPIA. These anomalous results might have been caused by the
quality of the microarray data set or by the inherent limitations of
SPIA-based methods. The anomalous pathways were easily
eliminated by the subpathway method [13].

3.2 Comparison of the capabilities of PSPIA, MSPIA, and
SPIA to identify common cancer pathways

Several pathways have been reliably associated with cancer,
including the focal adhesion pathway [39–43], regulation of the
actin cytoskeleton pathway [44], MAPK signalling pathway [45–
47], ECM-receptor interaction pathway, Wnt signalling pathway
[34, 48, 49], and p53 signalling pathway [33, 50]. Table 5 lists the
significance of these pathways in the PSPIA, MSPIA, and SPIA
results for the three tested datasets. The PSPIA, MSPIA, and SPIA
were identified using PSPIA, MSPIA, and SPIA

Lung cancer dataset Pancreatic cancer dataset

PIA MSPIA SPIA PSPIA MSPIA SPIA

× 10−5 1.5 × 10−6 1.5 × 10−6 8.1 × 10−9 6.7 × 10−7 1.0 × 10−6

10−11 8.9 × 10−9 8.9 × 10−9 7.3 × 10−8 6.7 × 10−7 5.4 × 10−7

.078 0.063 0.062 9.3 × 10−5 1.6 × 10−4 2.7 × 10−5

× 10−4 7.6 × 10−4 1.9 × 10−5 0.10 0.051 0.11
× 10−4 7.6 × 10−6 0.0041 4.4 × 10−8 8.8 × 10−8 8.7 × 10−8

× 10−4 5.1 × 10−5 0.0037 0.011 0.0078 0.014
.17 0.14 0.12 0.04 0.01 0.056
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methods identified most of the pathways listed above with p-values
smaller than 0.01, providing indirect evidence for the validity of the
SPIA and SPIA-based methods.

In the three data sets, all pathways had p-values below 0.1, with
the exception of the p53 signalling pathway, which had relatively
larger p-values in the significance analysis by each of the three
methods for the colon cancer and lung cancer datasets. In the
PSPIA results, the p-values for regulation of the actin cytoskeleton
(colon cancer dataset), ECM-receptor interaction (colon cancer
dataset), regulation of the actin cytoskeleton (lung cancer dataset),
MAPK signalling pathway (pancreatic cancer dataset), and p53
signalling pathway (pancreatic cancer dataset) were 0.068, 0.042,
0.078, 0.1 and 0.042, respectively. In the MSPIA results, the
p-values for regulation of actin cytoskeleton (colon cancer
dataset), regulation of actin cytoskeleton (lung cancer dataset), and
MAPK signalling pathway (pancreatic cancer dataset) were 0.063,
0.06, and 0.05, respectively. In the SPIA results, the p-values for
regulation of actin cytoskeleton (colon cancer dataset), regulation
of actin cytoskeleton (lung cancer dataset), MAPK signalling
pathway (pancreatic cancer dataset), and p53 signalling pathway
(pancreatic cancer dataset), were 0.034, 0.062, 0.11, and 0.056,
respectively. The number of pathways identified and corresponding
p-values show that MSPIA had the best performance among the
three methods, whereas SPIA performed slightly better than PSPIA.
3.3 Comparison with other methods

Classical GSEA and BPA methods were also selected for
comparison. As shown in Table 4, when the p-value or q-value
threshold was 0.01, the performance of the two methods was not
stable. In the colon cancer and pancreatic cancer datasets, the two
methods failed to identify any relevant pathway. In the lung cancer
dataset, GSEA identified only two significant pathways, while
BPA identified 29 significant pathways. In general, PSPIA,
MSPIA, and SPIA were all better than GSEA and BPA. The main
disadvantage of GSEA is that it only considers the total NDE in a
pathway, but neglects the perturbation induced by differential
signals. The major disadvantage of BPA is the loss of some
pathway information caused by deleting some relationships
according to the correlation of genes during the transformation of
the signal pathway into a directed acyclic graph. In addition, in the
case of a small sample size, the correlation may be distorted.
4 Conclusion

Recognition of pathways related to cancer or other diseases is of
great importance for understanding their pathogenetic mechanisms
and developing effective therapies. In recent years, researchers
have proposed many pathway analysis methods. The advantage of
SPIA and major reason for its popularity is the combination of
information regarding DEGs and their perturbation within
pathways. In real biological pathways, the transmission of a
perturbation signal is closely related to the intensity of the
interaction between genes. For this reason, in this article based on
the SPIA, we adopted PSPIA and MSPIA to obtain the interaction
intensity, which was integrated into the transmission process of the
perturbation signal. Thus, two signalling pathway analysis methods
based on Pearson’s correlation coefficient and mutual information
were proposed: PSPIA and MSPIA.

With the comparison of results from the colon cancer, lung cancer,
and pancreatic cancer datasets, we found that the modified PSPIA
and MSPIA methods recognised more signalling pathways
possibly related to cancer than did the original SPIA method. In
addition, among the significant pathways identified through PSPIA
and MSPIA, some pathways were not identified through SPIA, but
have been reported as related to some cancers in previous articles.
Among the three data sets, MSPIA identified more significant
pathways in lung cancer and pancreatic cancer datasets than did
PSPIA, but identified fewer significant pathways in the colon
cancer dataset. We believe that this difference may be related to
IET Syst. Biol., 2016, Vol. 10, Iss. 4, pp. 147–152
This is an open access article published by the IET under the Creative
(http://creativecommons.org/licenses/by/3.0/)
the sample size. In the case of a large sample size, mutual
information can better interpret the interaction between genes than
can Pearson’s correlation coefficient. In addition, through
comparison of the capacity of the three methods to identify seven
common cancer pathways, we found that MSPIA had the best
performance, whereas SPIA was slightly better than PSPIA.
Therefore, it can be concluded that consideration of the intensity
of the interaction between genes can further improve the capacity
of SPIA to recognise cancer-related pathways. In general, the
recognition capacity of MSPIA was better than that of PSPIA.

We also investigated the pathway recognition capacities of the
GSEA and BPA methods in the three cancer datasets. The results
of the analyses indicate that the recognition capacity and stability
of GSEA and BPA are inferior to those of SPIA and SPIA-based
methods.
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