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Background: Acute complications of type 1 diabetes mellitus such as diabetes
ketoacidosis (DKA) and hypoglycemia (HG) are detrimental in a short- and long-term
perspective. Restoration of normoglycemia and correction of pH do not mean that all
metabolic disturbances caused by HG or DKA are immediately reversed.

Aim: This study aimed to identify serum metabolic changes caused by an episode of DKA
and HG that may indicate the mechanisms contributing to long-term consequences of
DKA/HG.

Materials andmethods: Four groups of children with type 1 diabetes were recruited. The
first two study groups included patients after an episode of DKA or HG, respectively.
Additionally, two comparative groups were recruited—children with established type 1
diabetes (EDM) and patients with newly diagnosed diabetes without diabetes ketoacidosis
(NDM). Serum samples were collected in three group-specific time points (since the
hospital admission): HG 0h-12h–48h; DKA or NDM 0h-24h–72 h; and one random fasting
sample from patients with EDM. Two batches of 100 samples each were created: for DKA
batch 20 × 3 DKA patients, 10 × 3 NDM and 10 EDM; for HG batch: 10 × 3 HG patients, 25
EDM and 15 × 3 NDM. All patients within the batches were age and sex matched.
Metabolic fingerprinting was performed with LC-QTOF-MS.
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Results: Four metabolites were associated with a DKA episode occurring in the preceding
72 h: three were found higher after the DKA episode versus comparative groups:
lysophosphatidylcholine (LPC) (18:1), sphingomyelins (SM) (34:0 and d18:0/15:0), and
one was found lower: LPC (18:0). Similarly, four metabolites were identified for the HG
episode in the last 48 h: three were found higher after the HG episode versus comparative
groups: two lysophosphatidylethanolamines (LPE) (18:2 and 20:3) and one LPC (18:2);
and one was found lower after the HG episode: oxy-phosphatidylocholine (PC O-34:4).

Conclusions: We found eight metabolites whose levels may be traced in the serum,
indicating the DKA or HG episode for up to 72 h and 48 h, respectively. Acute
complications of diabetes may cause persistent metabolic disturbances long after pH
and glucose level normalization.

Keywords: diabetes ketoacidosis (DKA), hypoglycemia, LC-MS, metabolomics, serum, type 1 diabetes

1 INTRODUCTION

Diabetes ketoacidosis (DKA) and hypoglycemia (HG) are typical
acute complications of type 1 diabetes. The key challenge for
patients with type 1 diabetes, their guardians, and healthcare
personnel is to identify DKA/HG risk factors, predict their
imminent onset, and counteract them rapidly.

DKA most commonly accompanies newly diagnosed type 1
diabetes and typically affects 15%–70% of new diabetic cases
(Wolfsdorf et al., 2018), with substantial variability between
countries. Among patients with established type 1 diabetes
(EDM), DKA occurs with a frequency of 1–10 episodes/100
patients per year. The most serious aftermath of DKA is brain
oedema (BO). Clinical symptoms of BO are present in 0.5–0.9%
of DKA cases, but impaired consciousness appears in 4–15% and
is associated with BO features observed by neuroimaging (Glaser
et al., 2006; Glaser et al., 2008). Regardless of BO, every episode of
DKA should be considered a life-threatening condition
(Cameron et al., 2014). DKA is the main cause of death
among children with type 1 diabetes younger than 15 years of
age (Morgan et al., 2018). DKA is accompanied by dehydration
which is typically corrected within 12 h; however, fluid therapy is
maintained for 24–48 h (Fiordalisi et al., 2007). There is much
evidence that DKA episodes disturb metabolism and neurological
functions for an extended period of time, resulting in severe
neurological sequelae in 35% of DKA with BO survivors (Edge
et al., 2001). Additionally, patients with DKA at the onset of
diabetes show a further worse metabolic control of diabetes in
comparison to patients without DKA (Duca et al., 2017; Shalitin
et al., 2018).

HG is the most common acute diabetes complication (Kapoor,
2016) for established type 1 diabetes. Among adults, severe HG is
defined as an episode requiring the help of others. In children,
most episodes require assistance, so for this population, seizures
or loss of consciousness define severe HG (Clarke et al., 2009).
The frequency of severe HG is estimated at 5–20 episodes per
100 patient-years (Ly et al., 2014). The risk of HG is the main
limiting factor for achieving good metabolic control and remains
the heaviest psychological burden for type 1 diabetic patients and
their families (Abraham et al., 2018). Each HG episode may exert

a lasting negative effect on the patient’s neurological functions,
e.g., spatial long-term memory performance (Hershey et al.,
2005), cognition (Asvold et al., 2010; Rovet and Ehrlich,
1999), and vestibular organ function impairment (Gawron
et al., 2002). Also, metabolic aftermaths are common and
include: reactive hyperglycemia (Clayman, 1970), increased
insulin resistance (Lucidi et al., 2010), increased pro-
inflammatory state (Kiec-Wilk et al., 2016), and increasing
hypoglycemia unawareness (Peczyńska et al., 2004).

The aim of this study was to identify serum metabolic changes
caused by an episode of DKA and HG, that can be detected
despite normalization of parameters typically changed during the
episodes and that may indicate on mechanisms contributing to
long-term consequences of DKA/HG episodes.

2 MATERIALS AND METHODS

2.1 Patient Recruitment
The study was approved by the Institutional Bioethical
Committee (RNN/71/14/KE) and patient recruitment was
performed between 30.10.2014 and 07.10.2016 in the
Department of Pediatrics, Diabetology, Endocrinology and
Nephrology of the Medical University of Lodz. The study
protocol and its scientific purposes were explained to the
patients and their legal guardians. Patients meeting the
inclusion criteria were asked to participate in the study.
Written consent to participate in the study was obtained from
the patients and/or their legal guardians. We prospectively
recruited patients who met the following inclusion criteria: age
between 2 and 19 years old; diagnosis of type 1 diabetes according
to ISPAD 2014 criteria (Rubio-Cabezas et al., 2014); lack of
known concomitant genetic disorders; and diabetes treatment
with insulin alone. Additionally, group-specific inclusion criteria
were as follows: for the HG group—glucose concentration below
70 mg/dl during the episode and being unconscious or seizures;
for DKA group—pH < 7.30 and HCO3

− <15 mmol/L at diabetes
diagnosis; for NDM group—pH > 7.35 and HCO3

− >21 mmol/L
at diabetes diagnosis; and for EDM group—diabetes duration
above 6 months and lack of DKA or HG episodes within last
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FIGURE 1 | Protocol for sample collection for each study group (DKA, diabetes ketoacidosis, HG, hypoglycemia) and each comparative group (NDM, new onset of
diabetes mellitus with DKA and EDM, established diabetes mellitus). Red droplets indicate the time points of blood withdrawal (A). The principal component analysis of
metabolic features passing technical data filtering for the DKA batch (B) and HG batch (C). Metabolite Set Enrichment Analysis results based on results from the DKA
batch (using metabolites from combined comparison between DKA-2&DKA-3 and NDM-4&NDM-5 groups with p < 0.15) (D) and the HG batch (using metabolites
from combined comparison between HG-1&HG-2&HG-3 and EDM with p < 0.15) (E).
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3 months. Clinical data were collected from the hospital
information system. All patients within the batches were age-
and sex-matched.

2.2 Sample Collection
The sample collection protocol is shown in Figure 1A. For the HG
group, the first sample was collected right after hospital admission
(0 h), the second sample was collected 12 h after the admission, and
the third sample was collected 48 h after the admission. For theDKA
and NDM groups, the first samples were collected at hospital
admission (0 h), the second—after 24 h admission, and the third
ones—after 72 h after admission. Different protocols of the sample
collection for HG and DKA/NDM patients arose from different
dynamics of metabolic disturbances typical for the evaluated groups
and the fact that HG patients were admitted after the episode and
DKA/NDM were admitted with an ongoing disturbance and
different hospitalization time: 2–3 days for the HG group and up
to 2 weeks for the DKA–NDM group. Also, a limiting factor was the
availability of an intravenous line in patients which is usually kept up
to 3 days. For the EDM group only one sample was collected during
routinely performed control laboratory tests as we did not assume a
dynamic change in their metabolomic profile. Due to ethical issues,
blood samples were collected only from already installed intravenous
catheter or during routinely performed blood collections. Each time,
a sample of 4 ml was collected from the patient to the vial with a clot
activator (silica particles) (Becton Dickinson, New Jersey, NJ,
United States). In order to standardize the sample processing
protocol, we used vials from the same manufacturer (series
8516328 BD/REF 369032/2015–08/4113194). Between 60 and
120min after the blood collection, serum isolation was performed
by centrifugation for 10min with 800 g. After serum separation, the
biological material was frozen in -80°C degree until metabolic
fingerprinting.

2.3 Serum Sample Preparation Before
Metabolomics Fingerprinting
On the day of themetabolomic analysis, samples were thawed on ice.
Protein precipitation and metabolite extraction were performed by
vortex-mixing (for 1min) one volume of the serum sample with four
volumes of freeze cold (–20°C) methanol/ethanol (1:1) mixture
containing 1 ppm of zomepirac (IS). After extraction, the samples
were stored on ice for 10 min and centrifuged at 21,000 × g for
20 min at 4°C. The supernatant was filtered through a 0.22-µmnylon
filter into glass vials.

Quality control (QC) samples were prepared by mixing an
equal volume of all samples. The obtained mixture was prepared
following the same procedure as the rest of the samples. QC
samples were used at the beginning of the analysis (10 injections),
in order to obtain the system stability, and then after every nine
samples, in order to control the system stability and
productiveness of the sample measurements.

2.4 Used Chemicals and Reagents
Blank samples included mixtures of methanol/ethanol (1:1) that
were prepared in the same way as biological samples. Zomepirac
sodium salt (used as the internal standard (IS), arachidonic acid,

docosahexaenoic acid, lysophosphatidylethanolamine (LPE) 18:0,
phosphatidylethanolamine (PE) 16:0/22:6, LS-MS-grade
acetonitrile, methanol, LC-grade formic acid, and ethanol were
purchased from Sigma-Aldrich Chemie GmbH (Steinheim,
Germany). The API-TOF reference mass solution kit (G1969-
850001) and tuning solutions, ESI-L low-concentration tuning
mix (G1969-85000), and ESI-TOF Biopolymer Analysis reference
masses (G1969-850003) were purchased from Agilent
Technologies (Santa Clara, CA, United States). Purified water
was obtained using the Milli-Q Integral three system (Millipore
SAS, Molsheim, France) in order to prepare solution A.

2.5 Metabolic Fingerprinting
Metabolic fingerprintingwas performed using liquid chromatography
coupled to the tandem (quadrupole and time of flight, Q-TOF) mass
spectrometry (LC-MS) system following the previously described
protocol (Daniluk et al., 2019). Samples from the HG and DKA
groups were analyzed in the separate batches to ensure data quality.

Analyses were performed in compliance with the current
standards in force for the metabolomic measurements based
on mass spectrometry and quality control methodology (Dunn
et al., 2011; Godzien et al., 2015a).

Samples were randomly analyzed using the LC-MS system
consisting of 1290 Infinity LC with a degasser, two binary pumps,
and a thermostated (4°C) autosampler coupled to a 6550 iFunnel
Q-TOF-MS detector (both Agilent Technologies, Santa Clara, CA,
United States). Analyses were performed in positive (ESI+) and
negative (ESI-) ion modes, whereby 1 µL of the sample was
injected into a thermostated (60°C) Zorbax Extend- C18 RRHT
(2.1 × 50mm, 1.8-µm particle size, Agilent Technologies)
chromatographic column. The flow rate was 0.6ml/min with
solvent A (water with 0.1% formic acid) and solvent B
(acetonitrile with 0.1% formic acid). The chromatographic gradient
started at 5% of phase B for the firstminute, followed by an increase of
phase B to 80% (from 1 to 7min) and to 100% (from 7 to 11.5min).
After reaching 100%, the gradient returned to their initial conditions
(5% phase B) in 0.5min, which were kept from 12 to 15min.

Themass spectrometer operated in the full scanmode from 50 to
1,000 mass (m/z). The capillary voltage was set to 3,000 V for the
positive and 4,000 V for the negative ionization mode. Nozzle
voltage was 1,000 V. The drying gas flow rate was 12 L/min at
250°C and gas nebulizer at 52 psig; the fragmentor voltage was 250 V
for the positive and negative ionization modes. Data were collected
in the centroid mode at a scan rate of 1.5 scan per second. Accurate
mass measurements were obtained by means of a calibrant solution
delivery using a dual-nebulizer ESI source. A calibrating solution
containing reference masses at m/z 121.0509 (protonated purine)
and m/z 922.0098 (protonated hexakis [(1H,1H,3H-
tetrafluoropropoxy) phosphazine or HP-921] in the positive ion
mode or m/z 119.0363 (proton abstracted purine) andm/z 966.0007
(formate adduct of HP-921) in the negative ion mode was
continuously introduced by an isocratic pump (Agilent, Santa
Clara, CA, United States) at a flow rate of 0.5 ml/min (1:100 split).

2.6 Lecithin-Cholesterol-MS Data Curation
The raw data collected by the analytical instrumentation were
cleaned of background noise and unrelated ions by the molecular
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feature extraction (MFE) tool in the Mass Hunter Qualitative
Analysis Software (B.07.00, Agilent, Santa Clara, CA,
United States). The MFE creates a list of all possible
components described by mass, retention time (RT), and
abundance.

The limit for the background noise for data extraction by MFE
was set to 1,500 and 1,000 counts for the positive and negative ion
modes, respectively. To identify co-eluting adducts of the same
feature, the following adduct settings were applied: + H, + Na, and
+ K in the positive ion mode and −H, + HCOO, and + Cl for the
negative ion mode. Dehydration neutral losses were also allowed
in both ionization modes. Sample alignment and data filtering
were performed using Mass Profiler Professional 12.6.1 (Agilent,
Santa Clara, CA, United States). Parameters applied for the
alignment were 1% for RT and 15 ppm for the mass variation.
In the quality assurance (QA) procedure, metabolic features
detected in >80% in QC samples with the coefficient of
variation (CV) < 20% were kept for further data treatment.

2.7 Metabolite Identification
Accurate masses of features were searched against the
METLIN (http://metlin.scripps.edu), KEGG (https://www.
genome.jp/kegg/pathway.html), LIPIDMAPS (http://
lipidmaps.org), and HMDB databases (http://hmdb.ca),
which were simultaneously accessed by a CEU Mass
Mediator (http://ceumass.jpg.uspceu.es/mediator/). The
identity of the metabolites was confirmed by matching the
experimental MS/MS spectra to the MS/MS spectra from
databases or fragmentation spectra and retention time
obtained for the metabolite’s standard. Experiments were
repeated with identical chromatographic conditions to the
primary analysis. Ions were targeted for collision-induced
dissociation (CID) fragmentation on the fly based on
previously determined accurate mass and retention time.
Phospholipids were identified based on a previously
described characteristic fragmentation pattern (Godzien
et al., 2015b). Details on metabolite identification are
provided in Supplementary Table S1. Internal standard
verification of two metabolites for which IS was
commercially available is shown in Supplementary Table S2.

2.8 Statistical Data Analysis
A quality assurance procedure was performed and the
metabolomic features with RSD (relative standard deviation) for
QC samples ≥20% or detectable in more than 1/3 blank samples
were filtered out. Due to the high variance of a total signal obtained
from each sample (probably due to samples dilutions caused by
ongoing fluid therapy of the patients), the levels of themetabolomic
features were divided by the sample total signal and multiplied by
100,000,000. This should make the metabolomic feature levels
more comparable between samples with different dilutions. One
sample from the NDM group (X62-5—second time point) was
found to be an outlier in the negative ionization mode in the HG
batch due to very low total signal, and most metabolic features
undetectable—probably due to a problem with injection to the
analytical system (Supplementary Figure. S1). It was excluded
from further analysis.

For the statistical analysis, metabolomic features occurring in
at least 80% of samples from each group were selected. A
univariate comparison was performed with ANOVA and
Benjamini–Hochberg for multiple comparison correction. For
the DKA series, 48h and 72 h samples were compared with the
NDM group samples from respective time points. DKA samples
from the first time point were omitted here due to an ongoing
DKA state that greatly affected the results of this analysis. For HG
series, all time point samples were used to compare them with the
EDM group. In this analysis, each time point was kept as a
separate group decreasing statistical power thus for the post-hoc
analysis, features with FDR<0.15 were selected. A Bonferroni-
adjusted t-test was used for post-hoc pairwise comparisons. In the
univariate analysis, for the DKA batch, the NDM group was used
as control, while for the HG batch, the EDM group was used as
control.

An advanced statistical analysis was performed with the
Metaboanalyst 4.0 tool (Chong et al., 2018) with data filtered
in the same way as for a simple statistical analysis. Additionally,
missing data were filled with the K-NN (nearest neighbor)
method and were scaled with the Pareto algorithm. An MS
peak to Pathway analysis was performed with the GSEA
algorithm and with the MFN database. Two OPLS-DA
(orthogonal partial least square discriminant analysis) models
were built for each study group. The first one was to discriminate
between study groups from EDM samples, and the second one to
discriminate from all NDM samples. Metabolomic features
meeting the following criteria: p[1]>|0.4| and p(corr)[1]>|0.2|
from both models were selected.

For features meeting the selection criteria in the simple and
advanced analyses, an identification attempt was made.

Collected clinical data were compared between the groups by
parametric or non-parametric tests based on data distribution
and homoscedasticity. Metabolite levels were log-transformed
with base 10. Correlations between the metabolite levels and other
clinical data were performed with Pearson or Spearman
correlation—depending on the variable distribution. Diagnostic
utility of identified metabolites was performed with the ROC
curve analysis. Sensitivity and specificity along with 95%CI
(confidence interval) were calculated with VassarStats (http://
vassarstats.net/). A clinical data analysis was carried out with
STASTISTICA 13.1 (TIBCO Software, Palo Alto, CA,
United States).

3 RESULTS

3.1 Study Group Characteristics
For the DKA analysis, a batch of samples was collected from: 20
patients hospitalized due to DKA (with three samples collected
per patient 0h-24h–72h, Nsamples = 60), 10 patients with newly
diagnosed type 1 diabetes mellitus (NDM, with three samples
collected per patient 0h-24h–72h, Nsamples = 30), and 10 patients
with established diabetes mellitus (EDM, one sample collected
per patient Nsamples = 10). For the HG batch, we recruited 10
patients hospitalized after the episode of HG (with three samples
collected per patient 0h-12h–48h, Nsamples = 30), 25 patients with
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EDM (1 sample collected per patient Nsamples = 25), and 15
patients with NDM (3 samples collected per patient 0h-24h–72h,
Nsamples = 45). Data collection protocol for each group is shown in
Figure 1A. Study group characteristics for the DKA batch is
shown in Table 1 and for the HG batch in Table 2.

3.2 Technical Data Processing
The protocol of data filtering in both ionization modes for the
DKA batch and the HG batch is shown in Supplementary Figure
S2. After technical filtering in the DKA batch, 543 metabolomic
features (248 and 295 in positive and negative, respectively)
remained, while in the HG batch, 733 features were deemed
eligible for further analysis (359 and 374, respectively)
(Figure 1B,C).

3.3 Metabolite Set Enrichment Analysis
Initially, using all the metabolomic features passing technical data
processing, we searched for pathways disturbed by DKA/HG
beyond the acute phase of the episodes (Supplementary Tables
S3, S4). Thus, we performed the MS peak to Pathway analysis by
using theMetaboanalyst tool. By those means, we found that after
the DKA episode following pathways were enriched: “xenobiotic
metabolism”, “anti-inflammatory metabolites formation from
EPA”, “arachidonic acid metabolism”, and “prostaglandin

metabolism” and “glycerophospholipid metabolism” were
diminished (Figure 1D). After the HG episode, we detected
only down-regulated pathways and they were associated with
“hormone biosynthesis”, “hexose phosphorylation”,
“sphingolipid metabolism”’, and “arachidonic acid
metabolism” (Figure 1E).

3.4 Selection of Metabolic Features for the
Identification Procedure
For the DKA batch, after overlapping results of univariate and
advanced statistical modeling (both OPLS-DA models), 22
metabolomic features were selected as the fingerprint of the
DKA episodes (Figure 2A). Seven features were successfully
identified as four metabolites—two sphingomyelins with a
higher level after the DKA episode versus comparative groups:
SM (34:0) (Figure 2B) and SM (d18:0/15:0) (Figure 2C) as well as
LPC (18:1) (2 features) (Figure 2D) which had a lower level
during the episode but higher in the post-episode period. One
metabolite had a lower level after DKA—LPC (18:0) (2 features)
(Figure 2E). A group-specific time point-paired depiction of the
identified metabolite level is shown in Supplementary Figure S3.

For the HG batch, after overlapping results of univariate and
advanced statistical modeling (both OPLS-DA models), nine

TABLE 1 | Study groups’ characteristics selected for metabolomics fingerprinting of the past hypoglycemia episode.

Sex (% males) HG (N = 10) NDM (N = 15) EDM (N = 25) p

50% 53.33% 52% 1.0

Mean ± SD Mean ± SD Mean ± SD

Current age (years) 15.05 ± 2.74$ 9.26 ± 3.33*$ 15.00 ± 2.58* <0.0001 (K-W)
Age at diabetes onset (years) 9.10 ± 3.52 9.26 ± 3.33 9.76 ± 3.81 0.8553
Duration of diabetes (years) 5.95 ± 3.61$ 0.00 ± 0.00*$ 5.25 ± 3.55* <0.0001 (K-W)
HbA1c (%) 8.17 ± 2.07$ 11.26 ± 1.78*$ 7.31 ± 1.02* <0.0001 (K-W)
DDI (U/kg) 0.82 ± 0.16 0.57 ± 0.21 0.77 ± 0.27 0.0191
BMI z-score 0.38 ± 1.00 −0.50 ± 1.48 0.37 ± 0.85 0.0436
C-peptide (ng/mL) 0.13 ± 0.19$ 0.54 ± 0.42$ 0.26 ± 0.36 0.0230
Total cholesterol (mg/dL) 166.09 ± 31.70 162.81 ± 38.22 164.81 ± 28.23 0.9667
Triglycerides (mg/dL) 75.03 ± 19.98 79.38 ± 37.45 73.24 ± 21.74 0.9510
HDL (mg/dL) 60.91 ± 16.40 49.07 ± 12.34* 62.38 ± 13.60* 0.0149
LDL (mg/dL) 94.82 ± 23.46 104.33 ± 42.37 89.28 ± 21.10 0.4271 (Welch)
Hemoglobine (g/dL) 13.77 ± 1.14 13.96 ± 1.00 14.03 ± 1.19 0.8248
RBC (mln/mm3) 4.66 ± 0.42 4.95 ± 0.32 4.74 ± 0.37 0.1104
Hematocrit (%) 40.23 ± 3.00 40.57 ± 2.43 41.23 ± 3.32 0.6281
MCHC (g/dL) 34.23 ± 0.80 34.40 ± 1.00 34.04 ± 0.40 0.3900 (Welch)
MCV (fL) 86.60 ± 3.53$ 82.20 ± 2.76$* 87.00 ± 2.84* <0.0001
WBC (103/mm3) 10.62 ± 3.21# 8.39 ± 2.69* 6.18 ± 1.30#* 0.0006
Platelets (103/mm3) 251.40 ± 41.96 270.53 ± 89.23 250.20 ± 52.55 0.9831 (K-W)
Na+ (mmol/L) 139.05 ± 3.23$ 133.80 ± 5.42$ 138.23 ± 1.59 0.0188 (Welch)
K+ (mmol/L) 4.86 ± 0.39# 4.57 ± 0.41 4.24 ± 0.65# 0.0153 (K-W)
eGFR (mL/min/1,73m2) 109.05 ± 24.58 88.52 ± 25.14 94.55 ± 15.01 0.0548
pH 7.39 ± 0.03 7.39 ± 0.03 Within normal ranges (7.35−7.45) 0.6903
pCO2 (mm Hg) 38.61 ± 3.61$ 33.97 ± 4.40$ Within normal ranges (35−45) 0.0110
pO2 (mm Hg) 70.85 ± 10.68 71.97 ± 12.23 Within normal ranges (75−100) 0.8065 (UMW)
HCO3

− (mmol/L) 22.81 ± 1.75$ 20.93 ± 1.87$ Within normal ranges (21−27) 0.0191
O2sat. (%) 90.70 ± 12.07 93.23 ± 10.13 Within normal ranges (95−98) 0.2384 (UMW)
BE (mval/l) −1.41 ± 1.75$ −4.23 ± 2.55$ Within normal ranges (−2.3−2.3) 0.0036 (UMW)

*significant difference in post-hoc test between NDM, and EDM, #—significant difference in post-hoc test between HG, and EDM, $—significant difference in post-hoc test between HG,
and NDM. ANOVA p, value test was provided in the table, unless stated otherwise in round bracket: K-W—Kruskal-Wallis test, UMW,Mann-WhitneyU test,Welch—Welch’s ANOVA, test.
DDI, daily dose if insulin; BMI, body mass index; HDL, high density lipoprotein; LDL, low density lipoprotein; RBC, red blood cells; MCHC, mean corpuscular hemoglobin concentration;
MCV, mean corpuscular volume; WBC, white blood cells; eGFR, estimated glomerular filtration rate; BE, base excess. Values in boldface are significant at p < 0.05.
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metabolomic features were selected as a fingerprint of the HG
episodes (Figure 3A). From those, four features were identified as
four metabolites—3 with higher after the HG episode versus
comparative groups: two lysophosphatidylethanolamine: (LPE)
(20:3) (Figure 3B) and LPE (18:2) (Figure 3C) as well as LPC (18:
2) (Figure 3D); and one with lower level in HG group - oxy-
phosphatidylocholine [PC O-(34:3)] (Figure 3E). A group-
specific time point-paired depiction of the identified
metabolite level is shown in Supplementary Figure S4.

3.5 Correlations Between Identified
Metabolites
In the DKA batch, two sphingomyelins strongly correlated
with one another (r = 0.94, p < 0.0001) (Supplementary Figure
S5A) and their correlation with other metabolites: strong
positive correlation with LPC (18:0) and a lack of
correlation with LPC (18:1) were almost identical
(Supplementary Figures S5C–F). Thus, for further analysis,
we showed only results for one of them - SM (34:0). SMs’
strong correlations may indicate a similar mechanism leading
to their increased level after the DKA episode, however two
LPCs: (18:0) and (18:1) poorly correlated with each other (r =
0.18, p = 0.0180, Supplementary Figure S5B) suggesting
different origins of their serum levels.

In the HG batch, LPC (18:2) and LPE (18:2) were strongly,
positively correlated between each other (r = 0.80, p < 0.0001,

Supplementary Figure S6A), as well as LPE (18:2) and LPE
(20:3) (r = 0.49, p < 0.0001, Supplementary Figure S6B).
Additionally, LPE (20:3) and LPC (18:2) positive, weakly
correlated with one another (r = 0.37; p = 0.0003,
Supplementary Figure S6C). Negative correlations were
detected between: PC O-(34:3) and LPE (20:3) (R = -0.36;
p = 0.0003, Supplementary Figure S6D), PC O-(34:3) and LPE
(18:2) (R = -0.24, p = 0.0157, Supplementary Figure S6E), and
between LPC (18:2) and PC O-(34:3) which was at the
borderline of statistical significance (R = -0.17; p = 0.0902,
Supplementary Figure S6F).

3.6 Associations Between Identified
Metabolites and Patients’ Clinical Data
Clinical data were clustered to show common changing patterns
and help the interpreting correlations with metabolite levels
(Figure 4).

For the DKA markers, during the first 2 days, we found
that sphingomyelins correlated strongly and negatively with
all four DKA markers measured at admission (pH, pCO2,
HCO3

− and BE) (Figure 4A). This indicates that
sphingomyelin changes were associated with the depth of
ketoacidosis and thus strengthens their role as DKA
biomarkers. Additionally, we observed a positive
correlation between LPC (18:0) and MPV, which was
previously shown to be an indicator of the dehydration

TABLE 2 | Study groups’ characteristics selected for metabolomics fingerprinting of the past HG episode.

Sex (% males) DKA (N = 20) NDM (N = 10) EDM (N = 10) p

50% 50% 50% 1.0

Mean ± SD Mean ± SD Mean ± SD

Current age (years) 10.35 ± 3.54 9.91 ± 3.78 10.41 ± 3.41 0.9383
Age at diabetes onset (years) 8.06 ± 4.25 9.91 ± 3.78* 5.41 ± 2.65* 0.0388
Duration of diabetes (years) 2.28± 4.34# 0.0 ± 0.0* 5.00 ± 3.30*# 0.0001 (K-W)
HbA1c (%) 11.79 ± 2.59# 11.25 ± 1.62* 7.45 ± 1.33*# <0.0001
Glucose concentration at admission (mg/dL) 503.68 ± 205.55 468.16 ± 239.84 NA 0.6760
pH 7.18 ± 0.09$ 7.38± 0.02$ Within normal ranges (7.35–7.45) <0.0001 (Welch)
HCO3- (mmol/L) 10.59 ± 3.26$ 21.56 ± 1.21$ Within normal ranges (21–27) <0.0001 (Welch)
BE (mval/l) −18.20 ± 4.72$ −3.48 ± 1.79$ Within normal ranges (-2.3 – 2.3 <0.0001 (UMW)
pCO2 (mm Hg) 22.05 ± 7.79$ 35.47 ± 4.16$ Within normal ranges (35–45) <0.0001 (UMW)
pO2 (mm Hg) 72.40 ± 20.47 71.19 ± 14.94 Within normal ranges (75–100) 0.7457 (UMW)
O2 sat. (%) 87.57 ± 17.64 91.82 ± 12.36 Within normal ranges (95–98) 0.3282 (UMW)
eGFR (mL/min/1.73m2) 83.87 ± 16.80 91.65 ± 28.00 93.26 ± 16.78 0.4044
Na+ (mmol/L) 134.38 ± 5.80 133.82 ± 5.24 Within normal ranges 0.8008
Effective serum osmolality (mOsm/kg H2O) 296.75 ± 8.41 293.65 ± 8.13 Within normal ranges 0.3435
Hematocrit (%) 41.78 ± 2.96 40.96 ± 2.41 39.81 ± 1.73 0.1553
MCV (fL) 82.90 ± 5.18 82.60 ± 2.27 83.90 ± 2.18 0.7620 (K-W)
DDI (U/kg) 0.91 ± 0.31$ 0.59 ± 0.23$ 0.81 ± 0.30 0.0271
BMI z-score −0.62 ± 1.08 −0.94 ± 1.52* −0.42 ± 0.77* 0.0259
C-peptide (ng/mL) 0.30 ± 0.24# 0.67 ± 0.45* 0.02 ± 0.02*# <0.0001
Total cholesterol (mg/dL) 154.32 ± 39.77 149.26 ± 27.07 175.25 ± 29.44 0.1072
Triglycerides (mg/dL) 82.17 ± 29.57 70.18 ± 25.12 63.47 ± 16.16 0.1683
HDL (mg/dL) 55.11 ± 13.21 52.59 ± 12.81* 66.65 ± 8.70* 0.0327
LDL (mg/dL) 86.34 ± 29.78 85.47 ± 24.68 98.01 ± 28.87 0.5186

*significant difference in post-hoc test betweenNDM, and EDM, #—significant difference in post-hoc test betweenDKA, and EDM, $—significant difference in post-hoc test betweenDKA,
and NDM. ANOVA p, value test was provided in the table, unless stated otherwise in round bracket: K-W—Kruskal-Wallis test, UMW,Mann-WhitneyU test,Welch—Welch’s ANOVA, test.
BE, base excess; eGFR, estimated glomerular filtration rate; MCV, mean corpuscular volume; DDI, daily dose if insulin; BMI, body mass index; HDL, high density lipoprotein; LDL, low
density lipoprotein. Values in boldface are significant at p < 0.05.
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level during DKA (Małachowska et al., 2020). Also, a negative
correlation between both sphingomyelins and HDL were
found statistically significant.

For the HG markers, we noticed that positive markers
correlated positively with hematocrit, hemoglobin, and
RBC, and the negative marker correlated negatively with

FIGURE 2 | Twenty-two metabolic features selected in the statistical analysis as biomarkers of DKA occurrence (A). Between the group profile of identified
metabolites: SM (34:0) (B), SM (d18:0/15:0) (C), LPC (18:1) (D) and LPC (18:0) (E). Uncorrected t-test p values are shown in the graphs.
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them (Figure 4B). Those correlations strengthened over
time with the weakest being observed in time point just
after the episode. This might indicate that red blood

cells might be associated with the distorted
metabolism of those metabolites in the days following the
episode of HG.

FIGURE 3 | Nine metabolic features selected in the statistical analysis as the biomarkers of HG occurrence (A). Between the group profile of identified metabolites:
LPE (20:3) (B), LPE (18:2) (C), LPC (18:2) (D) and PC O(34:3) (E). Uncorrected t-test p values are shown in the graphs.
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3.7 Selected Metabolite’s Ability to
Diagnose Past Episodes of HG
To check if the selected metabolites could be used as biomarkers
of a past episode of the DKA/HG, ROC curve analysis was
performed (Supplementary Figures S7–8). The best
biomarker of the past DKA episode (after normalization of the
blood–gas test, so at least after 24 h since admission) would be
LPC (18:1) as it exceeded 0.8 threshold for AUC for the 48 h time
point and almost exceeded it for the 72 h time point (AUC =
0.789). For HG, the best diagnostic criteria in all time points were
attributed to LPE (20:3) with all AUC values exceeding 0.8 and
reaching 100% sensitivity.

4 DISCUSSION

Our study is the first comprehensive, multi-time point metabolic
fingerprinting of a post-episode period of acute diabetic
complications among children with type 1 diabetes. Our quest
to search for unique metabolic changes detectable long after the
resolution of the acute pathophysiological state, proved that
despite an alignment of typical parameters (pH and glucose),
acute diabetic complications exert profound metabolic effects
that can be traced in the serum up to 2–3 days after the episode.
Thus, we found four metabolites with changed levels up to 72 h
since the DKA episode (3 with higher level: LPC (18:1), SM (34:0)
and SM (d18:0/15:0); and one with lower level: LPC (18:0)) and
four metabolites disturbed by the HG episode up to 48 h (3 with
higher level: LPE (18:2), LPE (20:3) and LPC (18:2) and one with
lower level: PC O-(34:3).

Metabolomic studies of patients with type 1 diabetes mellitus
are scarce and usually involve only comparisons with healthy
controls (Balderas et al., 2013; Bervoets et al., 2017). The potential
of using the metabolomic approach for studying childhood

diabetes was summarized in a 2016 article by Frohnert and
Rewers (Frohnert and Rewers, 2016) and additionally, a broad
review of type 1 and type 2 diabetes mellitus metabolomic studies
was published by Arneth et al. (Arneth et al., 2019). The latter
highlighted that type 1 diabetes is associated with an elevated level
of LPEs and LPCs which was also shown in this study.

The only available metabolomic studies of acute diabetic
complications thus far were carried out on the adult
population. The authors used metabolomic profiling to
characterized ketosis-prone diabetic patients and found that
during DKA, their metabolomic profiles started to resemble
patients with type 1 diabetes by having an impaired branched-
chain amino acids catabolism and an accelerated fatty acid flux to
ketones (Jahoor et al., 2021). A scenario resembling DKA onset
was simulated in the study by Dutta et al., in which they
characterized metabolomic profile patients with type 1 diabetes
after 8 h of insulin withdrawal (Dutta et al., 2012). Among 176
changed metabolites, 1-linoleoylphosphatidylcholine was
increased among patients without insulin treatment in
comparison to the treated ones. This metabolite might be the
same as LPC (18:2) (uncertain position of double bonds) which
was found in our study to be increased after the HG episode. As
after the HG episode, patients typically experienced reactive
hyperglycemia, and an increase of LPC (18:2) might reflect
that phenomenon in our study. LPC (18:2) was previously:
associated with increased incidence of T2D (among women)
and obesity (Bagheri et al., 2018), positively correlated with
gait speed (Gonzalez-Freire et al., 2019), and negatively with
impaired mitochondrial oxidative capacity among elderly
population (Semba et al., 2019); and additionally associated
with other pathological states like Alzheimer’s disease (Cui
et al., 2014), kidney dysfunction, heart failure (Marcinkiewicz-
Siemion et al., 2018), and colorectal cancer (Shen et al., 2017). All
these strongly suggest that the decrease of LPC (18:2) is not a
specific marker of the aforementioned states but is rather

FIGURE 4 | Clinical features correlations with DKA markers (A) and for HG markers (B). In order to ease the data interpretation, clinical features were clustered
based on Pearson’s correlation coefficient. Significant correlation coefficients are red.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 86911610

Małachowska et al. Metabolic Fingerprinting of Acute Diabetes Complications

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


associated with a broader mechanism linking all those
pathologies—aging. To answer what is a mechanism of LPC
(18:2) increase after the HG episode requires further studies
but would be interesting in order to search for mechanisms
responsible for long-term HG aftermaths.

Other interesting metabolites found in our study are two
sphingomyelins which are negatively correlated with pH
during the DKA episode (meaning deeper the acidosis was,
higher the SM level was observed). Enzymes responsible for
SM decay—sphingomyelinases—have a pH-dependent activity.
Neutral sphingomyelinase, commonly present in the cell
membrane, has its optimal pH equaling 7.5 (Nyberg et al.,
1996). Thus, it is tempting to speculate that due to altered pH,
the activity of this enzyme is diminished and that is the cause of
elevated SM levels observed in our study. Another possible
explanation of increased SM levels would be a release of SMs
from the membranous myelin sheath from the nervous system
(Kikas et al., 2018). More important than the origin of the
elevated level of SMs might be its consequences. SMs have an
ability to penetrate the aortic wall and accelerate atherogenesis
(Portman and Alexander, 1970) which indicates that the post-
episode period of DKA is characterized by a pro-atherogenic
serum profile. Interestingly, SMs are the main phospholipids in
HDL lipoproteins. It was previously proven that SMs inhibit the
activity of LCAT (Lecithin-Cholesterol Acyltransferase) enzyme
present in HDL which can produce LPCs (Martínez-Beamonte
et al., 2013). Negative correlations between SMs and LPC (18:0)
and HDL, might suggest that after DKA, an increased SM level is
up taken by HDL where SMs decrease the activity of LCAT and
by this contributes to a decreased level of LPA (18:0) after the
DKA episode.

Other metabolites found in our study are either unknown for
the literature—PC O-(34:3) - or little is known about their
biological properties (LPE) thus explaining the sources of their
altered levels or evaluation of the biological effect on the patients
is currently not possible and requires further studies.

There are some limitations to our study. As this is a
prospective, observational study and we do not have pre-
episode (baseline) samples from the study group, we cannot
rule out the possibility that observed differences are caused
solely by the DKA/HG episode rather than a pre-existing or
concomitant feature of patients experiencing them. For this, the
conduction of animal studies would be necessary in which DKA
and HG would be induced to prove a cause-and-effect
association. Moreover, due to the unknown nature of the
observed changes, it is not possible for us to assess observed
changes as harmful—meaning requiring treatment, or as
beneficial—meaning being part of a compensatory mechanism
that helps restoring normal body functioning after the episodes.
Here again, animal experiments would be invaluable to unravel
those mechanisms. Due to current technical limitations, it is not
possible to measure routinely selected metabolites in clinical
practice using a high-throughput method, but we believe that
future advancements will enable a cost-effective separation of
different LPC, LPE, SMs, and PC species in clinical laboratories.
Thus, the development of targeted techniques measuring the
levels of the aforementioned metabolites irrespective of patient

hydration status would be necessary to use in our results in
clinical practice and thoroughly validate our results. Eventually,
external validation on a new cohort of patient would be needed
before any such test could be used in a clinical scenario. Taking
into consideration the aforementioned limitations and available
sample size, we suggest that any attempts to explain the
mechanistic insights or to generalize the obtained results,
should be made with caution.

5 CONCLUSION

The post-episode period of DKA/HG is characterized by an
altered metabolism of LPCs, LPEs, SMs, and pC. We found
eight metabolites that different serum levels may be traced in
serum up to 72 h after the DKA episode and up to 48 h for the HG
episode. Acute complications of diabetes may cause persistent
metabolic disturbances long after pH and glucose levels
normalize.
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