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Abstract

Precision medicine will revolutionize the way we treat and prevent disease. A major barrier to the implementation of
precision medicine that clinicians and translational scientists face is understanding the underlying mechanisms of disease.
We are starting to address this challenge through automatic approaches for information extraction, representation and
analysis. Recent advances in text and data mining have been applied to a broad spectrum of key biomedical questions in
genomics, pharmacogenomics and other fields. We present an overview of the fundamental methods for text and data
mining, as well as recent advances and emerging applications toward precision medicine.
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Introduction

Technologies that resulted in the successful completion of the
Human Genome project and those that have followed it afford an
unprecedented breadth of data collection avenues (whole-genome
expression data, chip-based comparative genomic hybridization
and proteomics of signal transduction pathways, among many
others) and have resulted in exceptional opportunities to advance
the understanding of the genetic basis of human disease.
However, high-throughput results are usually only the first step in
a long discovery process, with subsequent and much more time-
consuming experiments that, in the best of cases, culminate in the
publication of results in journals and conference proceedings.
Rather than stopping at the publication stage, the challenge for

precision medicine is then to translate all of these research results
into better treatments and improved health. To achieve this goal,
a range of analytic methods and computational approaches have
evolved from other domains and have been applied to an ever-
growing set of specific problem areas. It would be impossible to
enumerate the numerous biological questions targeted by
computational approaches. We will focus here on an overview of
text and data mining methods and their applications to discovery
in a broad range of biomedical areas, including biological pathway
extraction and reasoning, gene prioritization, precision medicine,
pharmacogenomics and toxicology. The advances are plenty and
the specific areas of application diverse, but the fundamental
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motivation is to aid scientists in analyzing available data to sug-
gest a road to discovery, to precise predictions that lead to better
health.

Background
Data mining

Data mining is the act of computationally extracting new infor-
mation from large amounts of data [1], and the biological sci-
ences are generating enormous quantities of data, ushering in
the era of ‘big data’. Stephens et al. state that sequencing data
alone constitutes �35 petabases/year and will grow to �1 zetta-
base/year by 2025 [2]. This creates a large opportunity for the
development and deployment of novel mining algorithms, and
two recent reviews on data and text mining in the era of big
data are found in Che et al. [3] and Herland et al. [4]. A wide
variety of methods for extracting value from different types and
models of data fall under the umbrella of ‘data mining’.
Classification algorithms (decision trees, naı̈ve Bayesian
classification and other classifiers), frequent pattern algorithms
(association rule mining, sequential pattern mining and others),
clustering algorithms (including methods to cluster continuous
and categorical data) and graph and network algorithms have
all evolved to present a diverse landscape for research and an
arsenal to deploy against the toughest data challenges. Most
researchers consider some other areas, including text mining,
as being under the data mining umbrella. For example,
Piatetsky-Shapiro state: ‘Data Mining in my opinion includes:
text mining, image mining, web mining, predictive analytics,
and much of the techniques we use for dealing with massive
data sets, now known as Big Data’ [5]. The methods applied to
text mining, however, are specialized to such a degree that it is
common to view it as a separate area of specialty. Data mining
courses do not usually include any text mining material, but ra-
ther there are separate courses dedicated to it, and the same
applies to textbooks.

A complete coverage of data mining techniques is beyond
the scope of this article though we have included some import-
ant resources that cover this topic. Kernel Methods in
Computational Biology by Schölkopf, Tsuda and Vert [6] covers
methods specific to Computational Biology. Introduction to Data
Mining [7] and Data Mining: Concepts and Techniques, 3rd edn [8] are
two popular textbooks in data mining and give an excellent
overview of the field. A more concise presentation can be found
in the paper by Xindong Wu et al., Top 10 algorithms in data mining
[9], which were identified in December 2006 as C4.5, k-Means,
SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes and
CART, covering clustering, classification and association
analysis, which are among the most important topics in data
mining research:

• According to Jain et al. in ‘Data clustering: a review’, ‘Clustering is

the unsupervised classification of patterns (observations, data

items, or feature vectors) into groups (clusters)’ [10].
• Classification is akin to clustering because it segments data into

groups called classes, but unlike clustering, classification

analyses require knowledge and specification of how classes are

defined.
• Statistical learning theory seeks ‘to provide a framework for

studying the problem of inference that is, of gaining knowledge,

making predictions, making decisions or constructing models

from a set of data’ states Bousquet et al. [11]. A textbook on statis-

tical learning expands on these notions [12].

• Association analysis facilitates the unmasking of hidden

relationships in large data sets. The discovered associations are

then expressed as rules or sets of items that frequently occur to-

gether. Challenges to association analysis methods include that

discovering such patterns can be computationally expensive

given a large input data set and that there could potentially be

many spurious associations ‘discovered’ that simply occur by

chance. A well-known introduction to the topic is found in [13],

and in particular, a seminal paper on mining association rules

from clinical databases is found in Stilou et al. [14].
• Link analysis analyzes hyperlinks and the graph structure of the

Web for the ranking of web search results. PageRank is perhaps

the best-known algorithm for link analysis [15].

In a notable transition showing the power of new algorithms
and data, data mining approaches are now being used to learn,
not just the primary features but also context-specific features.
For example, initial data mining approaches that constructed
gene–gene networks built a single network [16]. In contrast,
recent approaches learn multiple context-specific networks,
allowing the construction of process-specific [17] and
tissue-specific networks [18–20]. An individual is made up of a
personalized combination of such context-specific networks, so
we anticipate that continued advances in the context specificity
of data mining approach will play an important role in the
broad implementation of precision medicine.

Text mining

Text mining is a subfield of data mining that seeks to extract
valuable new information from unstructured (or semi-
structured) sources [21]. Text mining extracts information from
within those documents and aggregates the extracted pieces
over the entire collection of source documents to uncover or de-
rive new information. This is the preferred view of the field that
allows one to distinguish text mining from natural language pro-
cessing (NLP) [22, 23]. Thus, given as input a set of documents,
text mining methods seek to discover novel patterns, relation-
ships and trends contained within the documents. Aiding the
overall goal of discovering new information are NLP programs
that go from the relatively simple text processing tasks at the
lexical or grammatical levels (such as a tokenizing or a part-
of-speech tagger), to relatively complex information extraction
algorithms [like named entity recognition (NER) to find concepts
such as genes or diseases, normalization to map them to their
unique identifiers or relationship extraction and sentiment ana-
lysis systems, among others]. The greater the complexity of the
task, the more likely it is to integrate methods from data mining
(such as classification or statistical learning).

Although there is no current textbook that can be considered
the definite guide on text mining as defined above, there are a
couple of classic textbooks that cover fundamental NLP
techniques and at least the first covers some of the analytics
required to discover information: Speech and Language Processing
by Jurafsky and Martin [24] and Foundations of Statistical Natural
Language Processing by Manning and Schuetze [25]. The biomed-
ical domain is one of the most interesting application areas for
text mining, given both the potential impact of the information
that can be discovered and the specific characteristics and
volume of information available. The textbook Text mining for
biology and medicine [26] offers an overview of the fundamental
approaches to biomedical NLP, emphasizing different sub-areas
in each chapter, although overall it does not totally adhere to the
definition of text mining as a means for discovery given by
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Hearst [23]. A good non-textbook review of the different subareas
is the article ‘Frontiers of biomedical text mining: current
progress’ [27]. For those just starting in the area, the article
‘Getting Started in Text Mining’ [28] is a good starting point. A
more in-depth treatment of automated techniques applied to
the biomedical literature and its contribution to innovative
biomedical research can be found in ‘Text-mining solutions for
biomedical research: enabling integrative biology’ [29].

Text mining sub-areas, briefly summarized, include:

• Information Retrieval deals with the problem of finding relevant

documents in response to a specific information need (query).

An overview of tools for information retrieval from the biomed-

ical literature can be found in [30].
• NER is at the core of the automatic extraction of information

from text and deals with the problem of finding references to

entities (mentions) such as genes, drugs and diseases present in

natural language text and tagging them with their location and

type. NER is also referred to as ‘entity tagging’ or ‘concept extrac-

tion’. This is a basic building block for almost all other extraction

tasks. NER in the biomedical domain is generally considered to

be more difficult than other domains, such as geography or news

reports. This is owing to inconsistency in how known entities,

such as symptoms or drugs, are named (e.g. nonstandard abbre-

viations and new ways of referring to them). An open-source

NER engine, BANNER [31], with models to recognize genes and

diseases mentioned in biomedical text, is currently available for

gene and disease NER, and LINNAEUS is available for species

[32]. Rebholz-Schuhmann et al. [33] present an overview of the

NER solutions for the second CALBC task, including protein,

disease, chemical (drug) and species entities. Campos et al. [34]

discuss a recent survey of tools for biomedical NER. A system

assigning text to a wide range of semantic classes using linguis-

tic rules is presented in [35], illustrating a slightly different than

standard NER because classes potentially overlap. Verspoor et al.

[36] use the CRAFT corpus to improve the evaluation of gene NER

(and some lower-level tasks like part-of-speech and sentence

segmentation). Recent work in [37] presents an NER system for

extracting gene and protein sequence variants from the

biomedical literature. For locating chemical compounds,

Krallinger et al. [38] summarize the task that was part of

BioCreative IV and give a short overview of some of the

techniques used.
• Named Entity Identification allows the linkage of objects of

interest, such as genes, to information that is not detailed in a

publication (such as their Entrez Gene identifier) [39]. Two open-

source systems using largely dictionary-based approaches to

normalize gene names appear in [39–41]. For normalizing disease

names, [42] introduces DNorm, a new normalization framework

using machine learning, with strong results.
• Association extraction is one of the higher-level tasks still

considered purely an information extraction application. It uses

the output from the prior subtasks to produce a list of (binary or

higher) associations among the different entities of interest.

Catalysts for advances in this area have been the Biocreative and

BioNLP shared tasks, with excellent teams from around the

world putting their systems to the test against carefully

annotated data sets. A survey of submissions to Biocreative III

[43] and BioNLP [44, 45] shows a good overview of approaches re-

sponsive to the respective shared tasks. Putting together associ-

ations into networks of molecular interactions that can explain

complex biological processes is the next logical step, and one

that still is considered the ‘holy grail’ of automatic biomolecular

extraction. Ananiadou et al. [46] and Li et al. [47] discuss

comprehensive surveys of methods for the extraction of network

information from the scientific literature and the evaluation of

extraction methods against reference corpora. Semantic-based

approaches such as [48] will make their mark in the coming

years.
• Event extraction is similar to association extraction but instead

of separately extracting various relations between different

entities in text, this task focuses on identifying specific events

and the various players involved in it (arguments). For instance,

the arguments of a transport event will include the molecule

being transported, the cell to which it is being transported and

the cell from which it is being transported. Event extraction was

a key component of the BioNLP Shared Tasks in both 2011 [45]

and 2013 [49], challenging the biomedical community to expand

and cultivate their approaches in this area and leading to stead-

ily improving results.
• Pathway extraction is a budding branch of biomedical text

mining closely following the footsteps of event extraction. It

involves the automated construction of biological pathways

through the extraction and ordering of pathway-related events

from text. Although, like [50] and [51], the majority of researchers

in this domain have been focusing their efforts on supporting

pathway curation through event extraction, rather than entirely

automating the process. Tari et al. was able to achieve promising

results for the automated synthesis of pharmacokinetic

pathways by applying an automated reasoning-based approach

for event ordering [52]. The first shared task on Pathway

Curation was organized by BioNLP in 2013 [49] to establish

the current state-of-the-art performance level for extract-

ing pathway-relevant events such as phosphorylation and

transport.

In the end, a set of the different subtask solutions are used
in a pipeline that allows information to be integrated and
analyzed toward knowledge discovery. However, this multiplies
the effects of errors down the pipeline, leaving systems highly
vulnerable.

An overarching challenge for biomedical text mining is to
incorporate the many knowledge resources that are available to
us into the NLP pipeline. In the biomedical domain, unlike the
general text mining domain, we have access to large numbers
of extensive, well-curated ontologies and knowledge bases.
Biomedical ontologies provide an explicit characterization of a
given domain of interest. The quality of data mining efforts
would likely increase if existing ontologies (e.g. UMLS [53] and
BioPortal [54]) were used as sources of terms in building
lexicons, for figuring out what concept subsumes another, and
as a way of normalizing alternative names to one identifier. For
example, using ontologies as described enabled the use of
unstructured clinical notes for generating practice-based
evidence on the safety of a highly effective, generic drug for
peripheral vascular disease [55].

Today, the data being generated is massive, complex and
increasingly diverse owing to recent technological innovations.
However, the impact of this data revolution on our lives is
hampered by the limited amount of data that has been
analyzed. This necessitates data mining tools and methods that
can match the scale of the data and support timely decision-
making through integration of multiple heterogeneous data
sources.

Finally, another area in which the field has fallen short is
that of making text mining applications that are easily
adaptable by end users. Many researchers have developed
systems that can be adapted by other text mining specialists,
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but applications that can be tuned by bench scientists are
mostly lacking.

Application areas
Pathway extraction and reasoning

Analyzing the intricate network of biological pathways is an
essential precursor to understanding the molecular mechan-
isms of complex diseases affecting humans. Without acquiring
a deeper insight into the underlying mechanisms behind such
diseases, we cannot advance in our efforts to design effective
solutions for preventing and treating them. However, given the
vast amount of data currently available on biological pathways
in biomedical publications and databases and the highly inter-
connected nature of these pathways, any attempt to manually
reason over them will invariably prove to be largely ineffective
and inefficient. As a result, there is a growing need for computa-
tional approaches to address this demanding task through
automated pathway analysis. Pathway analysis can be either
quantitative or qualitative and is a key focus of the growing field
of Systems Biology. Quantitative pathway analysis uses dy-
namic mathematical models for simulating pathways and can
be especially useful in drug discovery and the development of
patient-specific dosage guidelines [56]. Some examples of tech-
niques used in this form of analysis include ordinary differen-
tial equations [57], Petri Nets [58], and p-calculus [59].
Qualitative pathway analysis uses static, structural representa-
tions of pathways to answer qualitative questions about them;
for instance it may be used to explain why a certain phenom-
enon occurs in the pathway based on existing pathway know-
ledge. Artificial intelligence paradigms, such as symbolic (i.e.
explicit representations) or connectionist (i.e. massively paral-
lelized) approaches, can greatly inform this type of pathway
analysis [60]. Although some of the techniques principally ad-
dressing quantitative pathway analysis, such as Petri Nets and
p-calculus, may also be used to perform qualitative pathway
analysis, they typically tend to provide limited functionality
[61]. Therefore, richer languages such as Maude [62], BioCham
[63] and action languages [52, 64, 65] are more popular in this
domain. In recent years, hybrid approaches have been applied
for qualitative pathway reasoning. For instance, [66] presents a
qualitative pathway reasoning system that uses Petri net se-
mantics as the pathway specification language and action lan-
guages as the query language. Pathway reasoning, as a
technique, relies on either humans defining the pathway
information needed or the development of new algorithms to
extract, represent and reason over biological pathways, which is
an area of growing interest.

Gene prioritization and gene function prediction

Complex diseases present diverse symptoms because they are
caused by multiple genes and environmental factors that differ
for each individual and can diverge at different stages of the
disease process. This complexity is reflective of epistatic effects
where causative genes have an impact on the expression of
many other genes. Because variant expression levels vary
across the genome, it is difficult to determine true causative
genes or distinguish key sets affected by the disease from high-
throughput experiments. For example, the Affimetrix U133 Plus
2.0 microarray chip from the Repository of Molecular Brain
Neoplasia Data shows >7500 2-fold differentially expressed
genes in brain cancer tissue when compared with normal brain

tissue [67]. The validation of a single causative gene is a long
and expensive process [68], often taking up to a year and even
longer, which necessitates using gene prioritization to pare
down the list of potential gene targets to a manageable size.
Gene prioritization methods that suggest the most significant
prospects for further validation are critically needed, and
method development in this area would greatly facilitate
discovery.

Many gene prioritization algorithms have been developed to
address this problem, such as GeneWanderer [69], GeneSeeker
[70], GeneProspector [71], SUSPECTS [72], G2D [73] and
Endeavour [74], among others [75, 76]. A comparative review of
these methods can be found in Tranchevent et al. [77]. The gen-
eral premise of these methods is to rank genes based on the
similarity between a set of candidate genes compared with
genes already known to be associated with the disease (usually
called the training set). Similarity is established based on
different parameters (depending on the specific method) and
may include purely biological measures (such as cytogenetic
location, expression patterns, patterns of pathogenic mutations
or DNA sequence similarity), biological measures plus
annotation of the genes using different protein databases (for
example, UniProt [78] and InterPro [79]), or other vocabularies
and ontologies (such as the Gene Ontology [80, 81], eVOC [82],
MeSH [83] and term vectors from the literature). In these
methods, the closer a gene in the candidate list coincides with
the profile of the training genes, the higher it is ranked.

Gene prioritization includes the areas of gene function
prediction. The Critical Assessment of protein Function
Annotation experiment was the first large community-wide
evaluation of 54 methods that were compared on a core set of
annotations using evaluation metrics to ascertain the top meth-
ods [84]. Earlier computational methods for prioritization were
compared through a large-scale biological assay of yeast
mitochondrial phenotypes and found to be effective [85, 86]. A
related but distinct gene prioritization problem is the identifica-
tion of genes with tissue-specific expression patterns [87].
Existing webservers such as GeneMANIA [88, 89] and IMP [90]
allow biologists to perform gene prioritization by network
connectivity, and servers such as PILGRM allow for prioritiza-
tion directly by gene expression [91]. Predicted functions, in
addition to curated functions, have also shown promise for in-
terpreting the results of genome-wide association studies,
which aim to pair genetic variants with associated genes and
pathways [92].

Precision medicine and drug repositioning

Precision medicine is determining prevention and treatment
strategies based on an individual’s predisposition in an effort to
provide more targeted and therefore effective treatments [93].
This area is poised for intense growth based on the ease of
obtaining patient data and the development of computational
methods with which to analyze this personalized data. While
precision medicine is a nascent field, there have been many ad-
vances in the personalized treatment of cancer. Some hospitals
are already using genetic data to direct treatment options for
cancer patients (e.g. BRCA1 and BRCA2 [94], BRAF [95] testing),
though drugs targeted to specific mutations lag behind and is
an area where computational drug repositioning will potentially
have a strong impact [96].

On the clinical side of translational research, the demand for
timely and accurate knowledge has the urgency of life itself.
Emily Whitehead was the first child with acute lymphoblastic
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leukemia to be treated and cured with an experimental T cell
therapy called CAR T cell therapy at the Children’s Hospital of
Philadelphia [97]. The therapy enables the patient’s T cells to
recognize and attack malignant B cells, but this treatment can
also trigger an intense immune reaction, which Emily experi-
enced. She suffered from a high level of the interleukin 6 pro-
tein, and her doctors suggested trying tocilizumab (Actemra), a
rheumatoid arthritis drug, to combat the extraneous protein
production [97, 98]. This drug returned Emily’s vital signs back
to normal. In this case, rather than relying on the serendipity of
a team member knowing about the right drug, specialized text
mining could have been used to mine the literature for the
relevant drugs. In such a scenario, either the literature would be
mined in advance, stored in a database that extracts relation-
ships between drugs and genes or proteins or it could be
searched in real time. As an example of this, Essack et al. created
a sickle cell disease knowledgebase by mining 419 612 PubMed
abstracts related to red blood cells, anemia or this disease [99].
Some databases (such as PharmGKB) store such relationships,
but are not the result of automatic extraction. Manual curation
is still the current standard for such databases, with the value
of text mining applications yet to be fully realized. Currently,
despite notable advances in entity mention extraction and
normalization, the use of text mining is mostly limited to aiding
curators to speed up the process.

Data and text mining methods are useful for biomedical
predictions and can be successfully extended to biomedical
discoveries as well. Sirota et al. used publicly available gene
expression data for both drugs and diseases to ascertain if Food
and Drug Administration-approved drugs could be repositioned
for use in new diseases [100]. They discovered and experimen-
tally validated the use of cimetidine, generally used for
heartburn and peptic ulcers, as a treatment option for lung
adenocarcinoma illustrating the use of a computational
approach as an efficient, yet powerful, approach to drug discov-
ery [100, 101]. Frijters et al. successfully found links between
genes, drugs, pathways and diseases through their tool CoPub
Discovery that mines the biomedical literature for the elucida-
tion of new relationships between these concepts [102]. Based
on their predictions, they validated two different drugs’ role in
cell proliferation through a cell assay to illustrate the validity of
their tool for finding novel associations. This tool may be useful
in finding new connections between drugs and their targets, as
well as the ability to repurpose drugs for disease treatment.

Data integration

Data integration represents a particularly important type of
computational approach. Integrative analyses can identify
patterns that are evident across many distinct experiments.
Patterns from imperfectly matched experiments are likely to be
general responses to a common environment as opposed to
unique features of an experiment [103–106]. Integrative
analyses, while they have substantial potential to identify
general principles, also raise specific challenges, largely driven
by potentially undesirable features of the data. For example,
Huttenhower et al. [107] found that the mutual information
between data sets was largely driven by the experimental
platform and not relevant biological signals.

To address this challenge, many integrative methods use
either carefully curated and selected data sets [100, 101, 108,
109] or supervised machine learning methods [19, 90, 110–118].
As an example of carefully selected data sets, Sirota et al. [100]
used a labeled compendium of gene expression experiments of

disease state and drug treatment to identify drugs that induced
an expression profile that was anti-correlated with disease. In
addition, gene expression values were analyzed using rank-
based statistics, which may also mitigate platform-specific
noise. Supervised analyses can mitigate the effects of technical
artifacts by grading each data set by how much information
each provides about different aspects of biology. Many methods
have been successfully applied to this challenge including
Bayesian [90] and ridge regression [118] approaches. For
example, Greene et al. [19] used a Bayesian approach to weigh
each of approximately 1000 data sets by how well they captured
tissue-specific functional relationships. This approach
produced tissue-specific networks for 144 human tissues, and
networks generated by the tissue-specific Bayesian integration
of the complete compendium outperformed an approach that
integrated only tissue-specific data sets on both coverage of
tissues and overall network metrics. To combat platform-
specific signals, Greene et al. [19] calculated the mutual informa-
tion across data sets for non-related pairs of genes to identify
and down-weight data set similarity that was independent of
biology.

In addition to approaches that rely on the curation of data
sets or supervised methods, new techniques based on advances
in deep learning are now also being applied to the challenge of
data integration [119]. For example, Tan et al. [119] performed an
analysis using denoising autoencoders of gene expression to
extract features from a set of �2000 breast cancer biopsies. In
this approach, a neural network model is trained to reconstruct
the observed data from data where noise has been added. The
identified features corresponded to subtype, estrogen receptor
status and other features that had a well-documented role in
the biology of breast cancer. Of particular note, the features
generalized to an independent data set generated on a distinct
platform without a loss in accuracy, suggesting that the model
had identified these biological features without overfitting to
the platform. Unsupervised methods capable of identifying
biological signals without confounding technical artifacts
present substantial opportunities for new algorithms that
integrate large-scale data compendia where the curated
knowledge required by supervised algorithms is limited or
unavailable.

Pharmacogenomics

The field of pharmacogenomics has benefitted significantly
from recent progress in text and data mining for biomedical
discoveries. Pharmacogenomics studies the genetic basis of in-
dividual drug responses by exploring the relationship between
drugs, genes and diseases and analyzing pharmacokinetic and
pharmacodynamic pathways. Pertinent pharmacogenomics-
related information is typically extracted through the manual
curation of data from pharmacogenomics literature and stored
in the freely accessible PharmGKB database. However, the sub-
stantial level of advancement in the field of drug detection,
gene detection and disease detection along with the increased
efficacy of methods for the extraction of relations between
drugs, genes and diseases has now made it possible to use auto-
mated systems to help with this curation process [120]. Two
good reviews on pharmacogenetic text mining have been re-
cently published by [121] and [122], respectively, while in 2014,
Laiotaki et al. presented design specifications for building an
integrated information system for offering personalized drug
recommendations using genotype-to-phenotype knowledge on
pharmacogenomics [123]. Every year the field of

Rcent advances and emerging applications | 37

,
,
,
very 
FDA
,
.
d
which 
approximately 
,


pharmacogenomic text mining continues to expand in different
novel directions, gradually turning the vision of personalized
medicine into reality.

Toxicology

The field of toxicology has an increasing need for text and data
mining approaches capable of predicting chemical–biological
interactions of thousands of chemicals that humans are
exposed to either intentionally (via pharmaceuticals, diet) or
unintentionally (contaminated air, water and food). Substantial
data are required to identify potential toxicological effects of
each chemical, and for regulators, such as the US
Environmental Protection Agency (EPA) and European Chemical
Agency, to make decisions protective of human health. The EPA
inventories chemicals in commerce under the Toxic Substances
Control Act (TSCA) [124]. In a 2009 review, ‘The toxicity data
landscape for environmental chemicals’, Judson et al. reported
75 000 chemicals in the TSCA database and identified 9912
chemicals under prioritization for testing by the EPA [125]. A
lack of toxicity data limits the ability of regulators to make
informed decisions and for health agencies to assess risk and
respond in the case of exposure. Judson et al. further report that
evaluation of almost 10 000 chemicals under the current testing
paradigm would be both cost and time prohibitive, as in vivo
studies require 2–3 years and millions of dollars per chemical
[125]. The urgent need for more data has prompted develop-
ment of in vitro high-content and High-Throughput Screening
(HTS) methods to evaluate many biological endpoints relatively
inexpensively. Multiple data mining approaches will be
required to use these data to address the large knowledge gaps
in toxicology. These include both broad analyses that leverage
HTS and in vivo data across chemicals to predict biological
effects of new compounds, as well as deeper analysis of gen-
ome-wide data sets at multiple levels of biological organization
to predict how chemicals disrupt biological processes.

Regulatory agency research initiatives, combined with
increasing use of HTS and high-content approaches by
independent researchers, are rapidly expanding the universe of
toxicological data available to the public. A vast array of data is
currently being collected through Tox21, a multi-agency collab-
orative HTS effort to identify chemical–biological interactions
and chemical concentrations that cause toxic effects [126]. The
EPA ToxCast program is evaluating chemical toxicity with 700
biochemical and cell-based HTS assays and using this informa-
tion to identify chemical signatures that predict potential tox-
icity and prioritize chemicals for further testing. In parallel with
the expansion of pharmacogenomic approaches to pharma-
ceutical development, computational toxicology has used data
mining to identify features of environmental chemicals that
mediate activity leading to potential adverse effects. Ekins et al.
reviewed quantitative structure activity relationship and
machine learning models that have been developed to predict
specific toxicity endpoints such as hepatotoxicity, cardiotoxicity
and genotoxicity from HTS, molecule descriptor and literature
data compilations [127]. Predictive power of models developed
from the first ToxCast HTS data set (�300 chemicals) was
limited, potentially because of a lack of redundant chemicals
with positive signal to cover the array of mechanisms that lead
to toxic effects in vivo or the large chemical space between
training and test data sets [128, 129]. Prediction of whole animal
toxicity encompassing diverse biological endpoints presents a
particular challenge because a chemical can disrupt multiple
molecular pathways and have different effects depending on

the biological context. For example, 2,3,7,8-tetrachlorodibenzo-
p-dioxin is an activator of the aryl hydrocarbon receptor
pathway and tumor promoter [130]. Exposure during early
development, however, leads to developmental abnormalities,
including heart defects [131]. Accurate descriptors and
classification of chemicals in training sets is essential, but
depends on rich data sets as well as knowledge of biological
pathways [132].

Transcriptomic, proteomic and metabolomics studies in the
context of chemical exposures are beginning to provide
biological pathway information that is critical to understanding
mechanisms of chemical-induced toxicity. Several projects,
lead by Tox21 collaborators and others, aim to identify and
classify signals of chemical exposure from transcriptome data
[133]. Gusenleitner et al. used the National Toxicology Program
DrugMatrix and the TG-Gates (Toxico genomics project-
Genomics Assisted Toxicity Evaluations) databases, which
contain over 5000 arrays of rat tissues and primary rat hepato-
cytes exposed to therapeutic, industrial and environmental
chemicals, to develop a predictive model of genotoxicity from
in vitro data [133]. An analysis of the same data by Tawa et al.
identified gene modules associated with liver toxicity [134]. The
ability to associate gene modules discovered in other tissues in
these data sets with toxicological endpoints is limited by the
available clinical pathology and histology annotation. Context-
specific algorithms and unsupervised methods therefore have
the potential to make great contributions to the field of
toxicogenomics.

In parallel with the expansion of pharmacogenomic
approaches to improve the development of pharmaceuticals and
personalized medicine, computational toxicology has used data
mining to identify features of environmental chemicals that me-
diate activity and cause potential toxicity. Several efforts aimed
at literature-based chemical annotation are underway, including
the Comparative Toxicogenomic Database, which leverages text
mining and manual curation to provide chemical–gene–disease
interaction data [135]. Accurate classification of new chemicals
depends on comprehensive annotation of previously studied
chemicals with toxicity information. Data mining across biolo-
gical contexts will identify the chemical–pathway interactions
that increase sensitivity of certain individuals, such as the young
or populations with particular genetic polymorphisms, to com-
plex chemical/stressor exposures.

Engagement of the broader scientific community is import-
ant for addressing the challenges of computational toxicology.
With the release of data from 1800 Toxcast chemicals in 2013,
the EPA hosted a series of challenges focused on method
development for chemical lowest effect level prediction from
HTS data [136]. Data mining tools and methods that can
integrate vast amounts of heterogeneous data will be needed to
prioritize genes, pathways and chemicals for further investiga-
tion. A key component to the success of computational
approaches in toxicology will be validation of model predictions
by scientists at the bench. Centralized model repositories,
databases such as the Comparative Toxicogenomics Database
and the admetSAR structure activity database [137] and web-
based analysis tools are essential to facilitate research
community access and leverage existing data to inform future
in vitro and in vivo toxicology research.

Conclusion

We have reviewed recent advances in text and data mining in
the context of emerging application domains in the biomedical

38 | Gonzalez et al.

-
 (ECA)
``
''
,
-
-
employed 
 (QSAR)
 (TCDD)
 (AHR)
,
employed 
-
-
-
-
-
very 
,
,


sciences. Computational methods contribute to this field by
bringing knowledge from literature, either extracted or curated,
together with high-throughput data sets to identify both known
and new relationships between genes, pathways, drugs, envir-
onmental contaminants and diseases. Different approaches are
often used for mining unstructured text and structured biomed-
ical data. For this reason, integrating across both unstructured
and structured resources presents additional challenges, but
combining these domains will also present new opportunities.
Systems that can extract relationships from both literature and
data simultaneously present the opportunity to identify
meaningful patterns from data, identify literature support for
those patterns, and where warranted, identify relationships
that are highly consistent in large-scale throughput data sets
but absent from literature. This presents the opportunity to
develop computational algorithms that not only identify
biological principles but also recognize when those principles
may represent novel discoveries.

Key Points

1. The era of ‘big data’ presents biomedical researchers
unprecedented challenges and opportunities for
discovery.

2. Automatic methods for text and data mining are essen-
tial tools that need to be deployed to deal with large
data sets of highly heterogeneous, but complimentary,
data.

3. Key advances in data and text mining will empower
bench scientists rather than replace them.

4. A major challenge in the big data era for text and data
mining is the integration of different sources such as
curated databases, biomedical literature and results
from assays to answer questions or generate novel
hypotheses.
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69. Köhler S, Bauer S, Horn D, et al. Walking the interactome for
prioritization of candidate disease genes. Am J Hum Genet
2008;82:949–58.

70. Van Driel MA, Cuelenaere K, Kemmeren PPCW, et al.
GeneSeeker: extraction and integration of human

40 | Gonzalez et al.



disease-related information from web-based genetic data-
bases. Nucleic Acids Res 2005;33:W758–61.

71. Yu W, Wulf A, Liu T, et al. Gene Prospector: an evidence
gateway for evaluating potential susceptibility genes and
interacting risk factors for human diseases. BMC
Bioinformatics 2008;9:528.

72. Adie EA, Adams RR, Evans KL, et al. Speeding disease gene
discovery by sequence based candidate prioritization. BMC
Bioinformatics 2005;6:55.

73. Perez-Iratxeta C, Bork P, Andrade-Navarro MA. Update of
the G2D tool for prioritization of gene candidates to in-
herited diseases. Nucleic Acids Res 2007;35:W212–6.

74. Tranchevent L-C, Barriot R, Yu S, et al. ENDEAVOUR update:
a web resource for gene prioritization in multiple species.
Nucleic Acids Res 2008;36:W377–84.

75. Tiffin N, Kelso JF, Powell AR, et al. Integration of text- and
data-mining using ontologies successfully selects disease
gene candidates. Nucleic Acids Res 2005;33:1544–52.

76. Lombard Z, Tiffin N, Hofmann O, et al. Computational
selection and prioritization of candidate genes for fetal
alcohol syndrome. BMC Genomics 2007;8:389.

77. Tranchevent L-C, Capdevila FB, Nitsch D, et al. A guide to
web tools to prioritize candidate genes. Brief Bioinform
2011;12:22–32.

78. The UniProt Consortium. UniProt: a hub for protein informa-
tion. Nucleic Acids Res 2014;43:D204–12.

79. Mitchell A, Chang H-Y, Daugherty L, et al. The InterPro
protein families database: the classification resource after
15 years. Nucleic Acids Res 2014;43:D213–21.

80. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for
the unification of biology. The Gene Ontology Consortium.
Nat Genet 2000;25:25–9.

81. The Gene Ontology Consortium. Gene Ontology
Consortium: going forward. Nucleic Acids Res
2014;43:D1049–56.

82. Kelso J, Visagie J, Theiler G, et al. eVOC: a controlled vocabu-
lary for unifying gene expression data. Genome Res
2003;13:1222–30.

83. Lipscomb CE. Medical Subject Headings (MeSH). Bull Med Libr
Assoc 2000;88:265–6.

84. Radivojac P, Clark WT, Oron TR, et al. A large-scale
evaluation of computational protein function prediction.
Nat Methods 2013;10:221–7.

85. Hess DC, Myers CL, Huttenhower C, et al. Computationally
driven, quantitative experiments discover genes required
for mitochondrial biogenesis. PLoS Genet 2009;5:e1000407.

86. Hibbs MA, Myers CL, Huttenhower C, et al. Directing
experimental biology: a case study in mitochondrial
biogenesis. PLoS Comput Biol 2009;5:e1000322.

87. Ju W, Greene CS, Eichinger F, et al. Defining cell-type specifi-
city at the transcriptional level in human disease. Genome
Res 2013;23:1862–73.

88. Warde-Farley D, Donaldson SL, Comes O, et al. The
GeneMANIA prediction server: biological network integra-
tion for gene prioritization and predicting gene function.
Nucleic Acids Res 2010;38:W214–20.

89. Zuberi K, Franz M, Rodriguez H, et al. GeneMANIA
prediction server 2013 update. Nucleic Acids Res
2013;41:W115–22.

90. Wong AK, Park CY, Greene CS, et al. IMP: a multi-species
functional genomics portal for integration, visualization
and prediction of protein functions and networks. Nucleic
Acids Res 2012;40:W484–90.

91. Greene CS, Troyanskaya OG. PILGRM: an interactive data-
driven discovery platform for expert biologists. Nucleic Acids
Res 2011;39:W368–74.

92. Pers TH, Karjalainen JM, Chan Y, et al. Biological interpret-
ation of genome-wide association studies using predicted
gene functions. Nat Commun 2015;6:5890.

93. Collins FS, Varmus H. A new initiative on precision
medicine. N Engl J Med 2015;372:793–5.

94. Levy-Lahad E, Lahad A, King M-C. Precision medicine meets
public health: population screening for BRCA1 and BRCA2. J
Natl Cancer Inst 2015;107:420.

95. Gonzalez D, Fearfield L, Nathan P, et al. BRAF mutation
testing algorithm for vemurafenib treatment in melanoma:
recommendations from an expert panel. Br J Dermatol
2013;168:700–7.

96. American Cancer Society. Personalized Cancer Care: Where it
Stands Today. http://www.cancer.org/research/acsresearch
updates/more/personalized-cancer-care-where-it-stands-
today (22 July 2015, date last accessed).

97. The Children’s Hospital of Philadelphia. Relapsed
Leukemia: Emily’s Story. http://www.chop.edu/stories/
relapsed-leukemia-emilys-story#.Va_9QUV9Tlc (22 July
2015, date last accessed).

98. The New York Times. A Breakthrough Against Leukemia Using
Altered T-Cells. http://www.nytimes.com/2012/12/10/health/
a-breakthrough-against-leukemia-using-altered-t-cells.
html?_r¼0 (22 July 2015, date last accessed).

99. Essack M, Radovanovic A, Bajic VB. Information exploration
system for sickle cell disease and repurposing of hydroxyfa-
sudil. PLoS One 2013;8:e65190.

100. Sirota M, Dudley JT, Kim J, et al. Discovery and preclinical
validation of drug indications using compendia of public
gene expression data. Sci Transl Med 2011;3:96ra77.

101. Dudley JT, Sirota M, Shenoy M, et al. Computational
repositioning of the anticonvulsant topiramate
for inflammatory bowel disease. Sci Transl Med
2011;3:96ra76.

102. Frijters R, van Vugt M, Smeets R, et al. Literature mining for
the discovery of hidden connections between drugs, genes
and diseases. PLoS Comput Biol 2010;6:e1000943.

103. Farley JU, Lehmann DR, Ryan MJ. Generalizing from ‘imper-
fect’ replication. J Bus 1981;54:597–610.

104. Würbel H. Behaviour and the standardization fallacy. Nat
Genet 2000;26:263.

105. Richter SH, Garner JP, Würbel H. Environmental standard-
ization: cure or cause of poor reproducibility in animal
experiments? Nat Methods 2009;6:257–61.

106. Richter SH, Garner JP, Zipser B, et al. Effect of population
heterogenization on the reproducibility of mouse behavior:
a multi-laboratory study. PLoS One 2011;6:e16461.

107. Huttenhower C, Haley EM, Hibbs MA, et al. Exploring the
human genome with functional maps. Genome Res
2009;19:1093–106.

108. Butte AJ, Kohane IS. Creation and implications of a
phenome-genome network. Nat Biotechnol 2006;24:55–62.

109. Kong X, Mas V, Archer KJ. A non-parametric meta-
analysis approach for combining independent microarray
datasets: application using two microarray datasets
pertaining to chronic allograft nephropathy. BMC
Genomics 2008;9:98.

110. Myers CL, Robson D, Wible A, et al. Discovery of biological
networks from diverse functional genomic data. Genome Biol
2005;6:R114.

Rcent advances and emerging applications | 41

http://www.cancer.org/research/acsresearchupdates/more/personalized-cancer-care-where-it-stands-today
http://www.cancer.org/research/acsresearchupdates/more/personalized-cancer-care-where-it-stands-today
http://www.cancer.org/research/acsresearchupdates/more/personalized-cancer-care-where-it-stands-today
http://www.chop.edu/stories/relapsed-leukemia-emilys-story#.Va_9QUV9Tlc
http://www.chop.edu/stories/relapsed-leukemia-emilys-story#.Va_9QUV9Tlc
http://www.nytimes.com/2012/12/10/health/a-breakthrough-against-leukemia-using-altered-t-cells.html?_r=0
http://www.nytimes.com/2012/12/10/health/a-breakthrough-against-leukemia-using-altered-t-cells.html?_r=0
http://www.nytimes.com/2012/12/10/health/a-breakthrough-against-leukemia-using-altered-t-cells.html?_r=0
http://www.nytimes.com/2012/12/10/health/a-breakthrough-against-leukemia-using-altered-t-cells.html?_r=0


111. English SB, Butte AJ. Evaluation and integration of 49
genome-wide experiments and the prediction of previously
unknown obesity-related genes. Bioinformatics 2007;23:2910–7.

112. Parrish JR, Yu J, Liu G, et al. A proteome-wide protein
interaction map for Campylobacter jejuni. Genome Biol
2007;8:R130.

113. Lee I, Li Z, Marcotte EM. An improved, bias-reduced probabil-
istic functional gene network of baker’s yeast,
Saccharomyces cerevisiae. PLoS One 2007;2:e988.

114. Guan Y, Myers CL, Lu R, et al. A genomewide functional
network for the laboratory mouse. PLoS Comput Biol
2008;4:e1000165.

115. Lee I, Lehner B, Vavouri T, et al. Predicting genetic modifier
loci using functional gene networks. Genome Res
2010;20:1143–53.

116. Park CY, Wong AK, Greene CS, et al. Functional knowledge
transfer for high-accuracy prediction of under-
studied biological processes. PLoS Comput Biol
2013;9:e1002957.

117. Tan J, Grant GD, Whitfield ML, et al. Time-point specific
weighting improves coexpression networks from time-
course experiments. Evol Comput Mach Learn Data Min
Bioinform 2013;7833:11–22.

118. Mostafavi S, Ray D, Warde-Farley D, et al. GeneMANIA: a
real-time multiple association network integration
algorithm for predicting gene function. Genome Biol 2008;9
(Suppl 1):S4.

119. Tan J, Ung M, Cheng C, et al. Unsupervised feature construc-
tion and knowledge extraction from genome-wide assays of
breast cancer with denoising autoencoders. Pacific Symp
Biocomput 2015;132–43.

120. Sangkuhl K, Berlin DS, Altman RB, et al. PharmGKB: under-
standing the effects of individual genetic variants. Drug
Metab Rev 2008;40:539–51.

121. Garten Y, Coulet A, Altman RB. Recent progress in automatic-
ally extracting information from the pharmacogenomic lit-
erature. Pharmacogenomics 2010;11:1467–89.

122. Hahn U, Cohen KB, Garten Y, et al. Mining the pharmacogen-
omics literature—a survey of the state of the art. Brief
Bioinform 2012;13:460–94.

123. Lakiotaki K, Patrinos GP, Potamias G. Information
technology meets pharmacogenomics: Design
specifications of an integrated personalized
pharmacogenomics information system. In: IEEE-EMBS
Internationnal Conference on Biomedical and Health Informatics,
2014;13–16.

124. US EPA. How to Access the Inventory, TSCA Chemical Substance
Inventory. http://www.epa.gov/opptintr/existingchemicals/
pubs/tscainventory/howto.html. (23 July 2015, date last
accessed).

125. Judson R, Richard A, Dix DJ, et al. The toxicity data landscape
for environmental chemicals. Environ Health Perspect
2009;117:685–95.

126. Agents NRC (U. S. and C on TT and A of E). Toxicity Testing in
the 21st Century: A Vision and a Strategy. Washington, DC:
National Academies Press, 2007.

127. Ekins S. Progress in computational toxicology. J Pharmacol
Toxicol Methods 2014;69:115–40.

128. Judson R, Elloumi F, Setzer RW, et al. A comparison of
machine learning algorithms for chemical toxicity classifi-
cation using a simulated multi-scale data model. BMC
Bioinformatics 2008;9:241.

129. Thomas RS, Black MB, Li L, et al. A comprehensive statistical
analysis of predicting in vivo hazard using high-throughput
in vitro screening. Toxicol Sci 2012;128:398–417.

130. Budinsky RA, Schrenk D, Simon T, et al. Mode of action and
dose-response framework analysis for receptor-mediated
toxicity: The aryl hydrocarbon receptor as a case study. Crit
Rev Toxicol 2014;44:83–119.

131. Kopf PG, Walker MK. Overview of developmental heart
defects by dioxins, PCBs, and pesticides. J Environ Sci Health C
Environ Carcinog Ecotoxicol Rev 2009;27:276–85.

132. Dix DJ, Houck KA, Judson RS, et al. Incorporating biological,
chemical, and toxicological knowledge into predictive
models of toxicity. Toxicol Sci 2012;130:440–1; author reply
442–3.

133. Gusenleitner D, Auerbach SS, Melia T, et al. Genomic models
of short-term exposure accurately predict long-term
chemical carcinogenicity and identify putative mechanisms
of action. PLoS One 2014;9:e102579.

134. Tawa GJ, AbdulHameed MDM, Yu X, et al. Characterization
of chemically induced liver injuries using gene
co-expression modules. PLoS One 2014;9:e107230.

135. Davis AP, Grondin CJ, Lennon-Hopkins K, et al. The compara-
tive toxicogenomics database’s 10th year anniversary:
update 2015. Nucleic Acids Res 2015;43:D914–20.

136. Toxicology UE-NC for C. Computational Toxicology Research
Program (CompTox). Factsheets. http://www.epa.gov/ncct/
challenges.html (15 January 2015, date last accessed).

137. Cheng F, Li W, Zhou Y, et al. admetSAR: a comprehensive
source and free tool for assessment of chemical ADMET
properties. J Chem Inf Model 2012;52:3099–105.

42 | Gonzalez et al.

http://www.epa.gov/opptintr/existingchemicals/pubs/tscainventory/howto.html
http://www.epa.gov/opptintr/existingchemicals/pubs/tscainventory/howto.html
http://www.epa.gov/ncct/challenges.html
http://www.epa.gov/ncct/challenges.html

