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Abstract

Restorative therapy concepts, such as cell based therapies aim to restitute impaired neurotransmission in
neurodegenerative diseases. New strategies to enhance grafted cell survival and integration are still needed to
improve functional recovery. Anodal direct current stimulation (DCS) promotes neuronal activity and secretion of
the trophic factor BDNF in the motor cortex. Transcranial DCS applied to the motor cortex transiently improves
motor symptoms in Parkinson’s disease (PD) patients. In this proof-of-concept study, we combine cell based
therapy and noninvasive neuromodulation to assess whether neurotrophic support via transcranial DCS would
enhance the restitution of striatal neurotransmission by fetal dopaminergic transplants in a rat Parkinson model.
Transcranial DCS was applied daily for 20 min on 14 consecutive days following striatal transplantation of fetal
ventral mesencephalic (fVM) cells derived from transgenic rat embryos ubiquitously expressing GFP. Anodal but
not cathodal transcranial DCS significantly enhanced graft survival and dopaminergic reinnervation of the
surrounding striatal tissue relative to sham stimulation. Behavioral recovery was more pronounced following
anodal transcranial DCS, and behavioral effects correlated with the degree of striatal innervation. Our results
suggest anodal transcranial DCS may help advance cell-based restorative therapies in neurodegenerative
diseases. In particular, such an assistive approach may be beneficial for the already established cell transplan-
tation therapy in PD.
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(s )

Anodal direct current stimulation (DCS) is well established and widely used in experimental neuroscience
and clinical studies to promote neuronal activity and learning. The underlying mechanisms include signaling
of the trophic factor BDNF, including elevation of striatal BDNF in naive rats. Here we demonstrate for the
first time beneficial effects of anodal DCS on survival and integration of dopaminergic cell transplants in the
6-OHDA-lesioned striatum in a rat Parkinson model. Increased fiber outgrowth in the striatum was
accompanied by pronounced improvement of pharmacologically induced motor behavior. Since anodal
DCS is fully established and ready to use in clinical studies, this work provides a strong basis for future
\translational research in stem cell-based restorative therapy. /
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Introduction

Transplanting dopamine-rich fetal ventral mesen-
cephalic (fVM) cells into the striatum aims to reconstitute
dopaminergic neurotransmission in Parkinson’s disease
(PD; Winkler et al., 2005; Thompson and Bjérklund, 2012;
Barker et al., 2015). This approach recently regained in-
ternational attention and a phase 1 clinical trial is under
way (Barker et al., 2015). To enable fast and optimal
functional recovery, strategies to promote the survival of
grafted dopaminergic cells and to accelerate their func-
tional integration into the host neural circuitry are needed.

In contrast to physiologic brain development and
function, cell-based therapeutic approaches create an
experimental condition in which neurons at various devel-
opmental states and with differing subsets of active sig-
naling pathways and cues interact to form a functional
network. These are accompanied by common pathways
that are independent of the developmental state. In early
development of the nervous system, neuronal activity
guides the integration of neurons into the neuronal net-
work, neurite outgrowth, and axon guidance (Spitzer,
2006). Similarly, in the adult brain integration of newly
born neurons, axonal sprouting after injury in the cortico-
striatal system, and network reorganization by synapto-
genesis are all subject to neuronal activity (Carmichael
and Chesselet, 2002; Andreae and Burrone, 2014). This
suggests that modulating neuronal activity can be ad-
opted to promote integration of fetal mesencephalic cells
into the adult striatal network. Other strategies to optimize
the neurogenic environment include the local application
of the neurotrophin BDNF. Evidence for its trophic effects
on fetal cell survival and differentiation in vitro is undis-
puted (Hyman et al.,, 1991; Knlsel et al., 1991; Studer
et al., 1995). In vivo, effects of BDNF on fiber outgrowth
and behavior have also been promising (Sauer et al.,
1993; Yurek et al., 1998, 1996), despite methodological
challenges, including the route of administration due to
the large molecule size (Yan et al., 1994; Krobert et al.,
1997; Ratzka et al., 2012). Additionally, nonphysiologic
continuous BDNF overexpression and trkB signaling may
even have deleterious effects, such as seizures (Croll
et al., 1999; Heinrich et al., 2011). Overall, optimizing the
environment for fetal cell grafts by increased expression
of BDNF in a physiologic range and overcoming the ap-
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plication obstacles hold promise for improving survival
and integration of dopaminergic cell transplants.

Transcranial direct current stimulation (DCS) is a widely
used noninvasive technique to modulate neuronal activity
in humans and animal models (Bikson et al., 2016). Anodal
DCS (anode placed above the region of interest) en-
hances neuronal activity (Bindman et al., 1962; Nitsche
and Paulus, 2000). Motor cortical DCS promotes lasting
behavioral improvements in human motor learning (Reis
et al., 2009, 2015; Fritsch et al., 2010) and in neurologic
disorders (Lefaucheur et al., 2016). These effects may be
driven by BDNF-dependent synaptic plasticity as in-
creased BDNF secretion and trkB receptor activation are
essential for DCS-induced plasticity (Fritsch et al., 2010;
Podda et al., 2016). Increases in neuronal activity and
plasticity occur within a physiologic range (Fritsch et al.,
2010), and without serious adverse events (Bikson et al.,
2016).

Preliminary evidence from a limited number of studies
suggests only minor and rather short-lived beneficial ef-
fects of anodal DCS on motor symptoms in PD patients
and rodent models (Li et al., 2011; Elsner et al., 2016;
Ferrucci et al., 2016). On the contrary, effects of DCS on
restorative therapies, such as dopaminergic cell trans-
plantation to the striatum, are largely unknown. DCS at
high intensities had no detrimental effects on striatal
transplants from a glia-like neural stem cell line, but net-
work integration was not assessed (Keuters et al., 2015).
The physiologic properties of DCS suggest its beneficial
effects on the integration of fetal cell grafts into the adult
striatal network.

Here, we tested both anodal and cathodal DCS in the
6-OHDA model treated with striatal fVM grafts, with the a
priori hypothesis that only anodal DCS enhances graft
survival, cell migration, and striatal dopaminergic reinner-
vation more than sham stimulation and thus promotes
recovery of pharmacologically induced impairment of mo-
tor behavior.

Materials and Methods

Animals

Adult female Sprague Dawley rats (Charles River),
weighing 200-225 g at the beginning of the experiment,
were housed under a 12/12 h light/dark cycle with water
and food ad libitum. All animal studies were performed
according to the Animal Protection Law and Directive
2010/63/EU of the European Commission. Animal proto-
cols were approved by the Commission for Animal Exper-
imentation of the Regional Council of Freiburg and the
Commission for Animal Experimentation of the University
Medical Center.

Striatal BDNF assessment post-DCS in naive rats
Sixteen naive rats used for striatal BDNF protein mea-
surements underwent surgery for transcranial DCS (de-
scription below) except for subcutaneous chest electrode
placement, which was placed externally using a rubber
chest electrode (20 X 15 mm) fitted into a vest for the
single DCS session. Sham (0 A/m?, n = 7) or anodal (8
A/m? n = 9) DCS was applied to the motor cortex once
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Figure 1. Experimental design. Animals were randomized to stimulation groups according to amphetamine rotation results (Amph-
Rot) on week 10 after striatal lesion (6-OHDA). The daily 20-min stimulation started on the day of stem cell transplantation after
recovery from anesthesia. Amphetamine rotation was retested immediately after the two-week stimulation period and for final

assessment three weeks later and was followed by perfusion.

for 20 min in alert animals, and striata were dissected and
shock frozen 1.5 h after the end of stimulation. Striata
from individual animals were homogenized in extraction
buffer (100 mM Tris/HCI, 1 M NaCl, 4 mM EDTA Na,, 2%
Triton X-100, 0.01% sodium azide, and 1:100 protease
inhibitor cocktail; Sigma-Aldrich). From the resulting su-
pernatant, after 14,000 X g 10-min centrifugation at 4°C,
the protein content per sample was determined by the
bicinchoninic acid method (Pierce BCA protein assay kit;
Thermo Scientific). The BDNF content in recovered pro-
tein samples was determined using a sandwich ELISA
protocol by use of a mouse anti-human BDNF monoclonal
capture antibody (1:100, R and D Systems catalog
MAB648, RRID:AB_2064314). After washing, wells were
incubated for 5 h at room temperature with blocking
buffer (1% normal goat serum in TBS) followed by wash-
ing. Duplicate aliquots of tissue protein samples (in 1:10 in
blocking buffer) or BDNF standards (0.8-125 pg/ml) were
incubated overnight at 4°C. This was followed by wash-
ing and the addition of biotinylated mouse anti-human
BDNF monoclonal detection antibody (1:500; R and D
Systems catalog MAB648, RRID:AB_2064314) before in-
cubation overnight at 4°C. After washing, streptavidin-
B-galactosidase in blocking buffer (1:3000; Roche
11112481001) was added before incubation for 4 h at
4°C. Streptavidin-B-galactosidase activity was detected
using 4-methylumbelliferyl-b-D-galactopyranoside (200
uM in K-phosphate buffer, 4°C overnight; Sigma-Aldrich).
Fluorescence was detected by 365-nm excitation and
445-nm emission using a plate reader (Infinite M200;
Tecan). BDNF content in striatal lysates was quantified
within the range of the linear standard curve calculated
from the known amount of the BDNF dilutions and nor-
malized to the soluble protein that was detected in each
sample (pg BDNF/ug protein). BDNF content of the striata
from the stimulated hemisphere was normalized to the
contralateral striatum to control for interindividual vari-
ance and then compared to sham interhemispheric ratios.

Parkinson disease experiment
The time course of the experimental design is shown in
Figure 1.
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6-OHDA lesion

Animals received a unilateral 6-OHDA lesion by two
stereotactic injections of 2.5- and 3-ul 6-OHDA (3.6 ug/ul)
in 0.2% L-ascorbic acid-saline (Sigma-Aldrich) into the
right medial forebrain bundle as previously described
(Garcia et al., 2011a): anteroposterior (AP) —4.4/—4.0
mm, mediolateral (ML) —1.2/—0.8 mm from bregma, and
dorsoventral (DV) —7.8/—8.0 mm from dura, toothbar
+3.4 mm. The unilateral dopaminergic denervation was
behaviorally assessed preintervention by amphetamine-
induced rotation at 2 and 10 weeks after 6-OHDA injec-
tion, and only animals performing more than four rotations
were included in the study. Baseline rotation counts per
group were 12.2 = 1.3 (sham, n = 7), 13.0 = 1.0 (anodal,
n = 9), and 14.3 = 1.5 (cathodal, n = 8), without signifi-
cant differences between groups (Fp . = 0.615, p =
0.55). Completeness of dopaminergic denervation follow-
ing the 6-OHDA lesion was histologically confirmed post-
mortem by tyrosine-hydroxylase immunoreactivity (TH-ir)
in the striatum.

Preparation of the fVM cell suspension

Lewis wild-type female rats (Charles River) were time mated
with Lewis GFP-transgenic heterozygote males ubiquitously
expressing GFP under control of a cytomegalovirus/beta-
actin promoter (Inoue et al., 2005) kindly provided by Eiji
Kobayashi, Jichi Medical University, Japan. Single-cell
suspension grafts were obtained from the VM from GFP-
transgenic 14 d old (E14) Lewis rat embryos. In a previous
study, dopamine cell suspensions obtained from E14
Lewis rats showed similar survival and behavioral im-
provements after intrastriatal transplantation into adult
Sprague Dawley rats as compared to tissue obtained from
E14 Sprague Dawley rats, even when immunosuppres-
sion was omitted (Krause et al., 2012). Dissection of the
VM and preparation of single-cell suspensions from GFP-
transgenic embryos were performed as described previ-
ously (Nikkhah et al., 1994; Garcia et al., 2011b). For
transplantation, cells were resuspended in Dulbecco’s
modified eagle medium (DMEM; Gibco) containing 0.05%
DNase (Sigma-Aldrich) at a concentration of 130,000
cells/ul and kept at room temperature until transplanta-
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tion. After transplantation, leftover suspensions were
used for estimation of cell viability using trypan blue ex-
clusion; cell viability was still >95%.

Cell transplantation and DCS electrode implantation

Animals underwent cell transplantation and electrode
implantation during a single surgery session; performing
surgeries in all rats on 1 d (~16 h) as a multisurgeon team
allowed us to use the same cell suspension for all animals.
Surgery was performed using isoflurane anesthesia. To
avoid order effects, animals from the different stimulation
groups were enrolled in the surgery by stratified random-
ization (time of surgery, transplanter). First, the chest DCS
electrode (platinum, 20 X 15 mm) was implanted with the
connecting cable tunneled to the scalp. We then injected
1 ul of the cell suspension (~130,000 cells) at a speed of
0.5 wl/min into the lesioned striatum, using a glass capil-
lary (outer diameter 50-70 um) fitted onto the needle of a
5-ul Hamilton syringe (coordinates from bregma: AP +0.2
mm, ML —3.5 mm, DV —4.5 mm, toothbar 0.0 mm), and
the glass capillary was slowly retracted from the brain.
Immediately thereafter, the 4-mm diameter cylinder for
transcranial placement of the DCS electrode was fixed
with acrylic cement to three screws on the skull (midpoint
from bregma: AP +2 mm, ML —2 mm) together with the
connector of the chest electrode. To avoid high-intensity
current flow through the transplantation craniotomy, the
borehole was sealed with cyanoacrylate glue and the rim
of the cylinder was placed above the borehole.

Transcranial DCS

Stimulation started on the implantation day, immedi-
ately after recovery from anesthesia (20 min after surgery)
and was always performed in alert animals. Before trans-
plantation the animals were allocated to anodal (anode
above the motor cortex), cathodal (cathode above the
motor cortex), or sham stimulation groups equally bal-
anced with regard to performance during amphetamine
rotation. DCS was applied through a 4-mm diameter sin-
tered Ag/Cl electrode placed in the saline-filled cranial
cylinder. Stimulation intensity was 8 A/m? for anodal and
cathodal DCS and 0 A/m? for sham DCS. Stimulation
duration was 20 min, resulting in a total charge of 0.96
C/cm? per session. The stimulation intensity was far be-
low the lesion threshold or threshold for activation of glia
(Gellner et al., 2016). DCS was repeated once daily for a
total of 14 consecutive days.

Behavioral analysis

For this proof-of-concept study, motor behavior was
analyzed as drug-induced rotational behavior in auto-
mated rotometer boxes for 90 min after injection of am-
phetamine (2.5 mg/kg, i.p.; Sigma-Aldrich). Data are
expressed as total net full-body turns/min, with positive
and negative values indicating rotations ipsilateral or con-
tralateral to the lesion side, respectively. Amphetamine-
induced rotation was performed at 2 and 10 weeks after
the 6-OHDA lesion to estimate the extent of the lesion.
Animals were included in the main experiment when they
exhibited more than four full body turns per minute toward
the side of DA depletion and were allocated to three
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equally performing groups for DCS. Assessment was per-
formed at two and five weeks after transplantation to
confirm the presence of surviving DA grafts and charac-
terize the speed of behavioral recovery.

Immunohistochemistry

Following the last behavioral test at five weeks after
transplantation, brains were harvested after transcardial
perfusion with 4% paraformaldehyde and cut at 40 um
using a freezing microtome. Free-floating sections (one in
six series) were stained using a standard protocol (Garcia
et al., 2011a) with the primary antibodies mouse anti-TH
(1:2500; Sigma-Aldrich catalog T1299, RRID:AB_477560)
and mouse anti-GFP (1:500; Thermo Fisher Scientific cata-
log MA1-83783, RRID:AB_931093), using a biotinylated sec-
ondary antibody (anti-mouse IgG 1:200; Dako catalog 20259,
RRID:AB_2532147), avidin—biotin peroxidase solution (ABC
Elite; Vector Laboratories) and 3,3’-diaminobenzidine (Merck)
for visualization.

Image analysis

In each animal, the GFP-positive graft core, the TH-ir
total striatal area (both used for volume calculation), and
density of the TH-ir fibers were assessed using ImagedJ
(National Institutes of Health). TH-ir cells in the striatum
were counted using the Stereoinvestigator software (Mi-
crobrightfield; Stereo Investigator, RRID:SCR_002526),
and the total number of cells was estimated using the
Abercrombie formula (Abercrombie, 1946).

The GFP-positive graft core area was outlined manually
and measured in all sections. The lesioned striatum was
manually segmented for TH-ir fiber analysis, excluding the
graft core and artifacts. Each individual image was nor-
malized using the optical density (OD) of the TH-negative
corpus callosum as a reference. The number of pixels
above threshold was then calculated as the total area of
TH-ir per section (5.16 um/pixel). To calculate the volume,
the graft core area and TH-ir fiber area were assumed to
be circular. The interpolated volume between two sec-
tions was computed using the volume formula of a trun-
cated cone [V = hxx/3 #(R? + Rr + r?)], where h equates
to the spacing between sections (40-um sections + 120
um intersectional = 160 wm) and R and r refer to the
radius of the circular area of two consecutive sections
(n and n + 1). The radii were derived from the circular area
r = \/(A/m). The final formula then reads as follows: V,, =
(160/3* m)*[(A/m) + VAL (Ani/m + (An/m)]. All
intersectional volumes were summed up to give the total
graft core or fiber volume per animal.

In addition, TH-ir fiber density of the transplant was
calculated in each section as the mean OD of TH-positive
fibers and normalized to the mean OD of the contralateral
unlesioned striatum, i.e., fiber density is given as a per-
centage. For this, the aforementioned thresholded and
segmented area of TH-positive fibers was used as a mask
applied to the original TH-stained section, and the mean
gray value was assessed by ImagedJ. The outlines of the
thresholded lesioned striatum were then flipped horizon-
tally and used to threshold and measure the mean gray
value of the corresponding unlesioned striatal area with
the threshold value derived from the unlesioned hemi-
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sphere. As total dopaminergic reinnervation is character-
ized by fiber volume and fiber density, one compound
measure, the integrated fiber density, was calculated as
the area of TH-ir fibers multiplied by the relative OD within
the area. To assess a directed fiber outgrowth in relation
to the DCS electrode, the dorsal and ventral portions of
TH-ir pixels were obtained by setting a horizontal line
through the center of the graft core and calculating a
dorsal/ventral ratio.

Statistical analysis

All statistical evaluations were performed using IBM
SPSS version 20 (RRID:SCR_002865). The Kolmogorov-
Smirnov test was used to test for normal distribution of
the data. All animals fulfilling the criteria for inclusion
(sufficient 6-OHDA lesion, enough rotations on the behav-
ioral test) were included in the final data analysis (sham
n = 7, anodal n = 9, cathodal n = 8 rats). Separate
comparisons between sham and anodal DCS as well as
sham and cathodal DCS were planned a priori. Hence, t
tests for independent samples with factor stimulation as
the grouping variable were performed for the striatal
BDNF content (only sham vs anodal DCS), GFP graft core
volume, TH-ir cell count, TH-ir cells per graft core volume,
total volume and fiber density of the TH-ir fibers, and
direction of fiber outgrowth (dorsal/ventral ratio) as the
independent variables. Nonparametric Z-statistics (Mann-
Whitney U test) was used when normal distribution of the
data was not given. Regression analysis with TH-ir fiber
volume as the dependent variable and TH-ir CELL
COUNT and GROUP as coefficients was performed to
assess the direct relation between fiber outgrowth and
TH-ir cell count. Behavioral amphetamine-induced rota-
tion data were analyzed by repeated measures ANOVA
with factors TIME (baseline, two weeks, and five weeks
after transplantation) and GROUP (sham/anodal in com-
parison 1, sham/cathodal in comparison 2) as the inde-
pendent variables and behavioral performance in the two
tests as the dependent variable. To assess dependence
of behavioral recovery on the degree of reinnervation
across all animals, we performed regression analysis with
behavioral improvement achieved at week 5 after trans-
plantation as the dependent variable and integrated fiber
density and GROUP (sham, anodal, cathodal DCS) as
coefficients. For all analyses, p < 0.05 was set as the level
of significance. For the directed hypothesis of an in-
creased striatal BDNF expression following DCS in naive
rats an upper tailed t test comparison was used; all com-
parisons in the PD experiment were performed as two-
tailed tests. We did not correct for family-wise error rates
as the comparison between stimulations is exploratory
(procedure recommended in Bender and Lange, 2001).

Results

Effect of DCS on striatal BDNF protein content in
naive rats

1.5 hours after receiving 20 min of anodal or sham DCS
over the left motor cortex, BDNF protein levels were
increased by 20% in the striatum of the stimulated hemi-
sphere relative to the contralateral hemisphere (120.1 =
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Figure 2. Anodal DCS applied to the left motor cortex enhanced
ipsilateral striatal BDNF protein expression in naive rats. Left
striatal BDNF protein content is normalized to the content of the
contralateral nonstimulated striatum (1 = 100%) and compared
between the two DCS stimulation conditions [sham DCS (n = 7)
and anodal DCS (n = 9)]. Mean = SEM); two-tailed Student’s t
test; #p < 0.05.

10.6%, n = 9); this increase was not observed after sham
stimulation (99.1 = 4.7% relative to the contralateral
hemisphere, n = 7; t1085) = —1.81, p = 0.049; Fig. 2).

Anodal DCS enhances graft volume, TH-ir cell count,
and dopaminergic reinnervation

Of the estimated initially grafted 13.000 dopaminergic
cells (~10% of 130,000 transplanted fetal cells) TH cell
survival was ~5% in sham stimulated rats, comparable to
other transplantation studies using a similar design
(Garcia et al., 2011a, 2011b). Anodal DCS gave rise to
better general transplant survival since animals in this
group had a significantly larger GFP-positive graft core
volume (1.37 * 0.13 mm?®, n = 9) than the sham DCS-
treated group (0.87 = 0.19mm®, n = 7,t4, = —2.26,p =
0.040; Fig. 3A,B). In accordance, a higher count of TH-ir
cells was found in the anodal DCS group (965 * 239 cells,
n = 9; Fig. 3C) compared to sham DCS (641 = 190 cells,
n=17;(Z(14) = —1.0, p = 0.315). The amount of TH-ir cells
per total graft core volume was not affected by anodal
DCS (sham, n = 7, 835 + 153 cells/mm3; anodal, n = 9,
645 = 116 cells/mm3; t(14) = —1.01, p = 0.328). In all
animals, TH-ir cells were within the dense graft core area;
there was no cell migration to areas aside from the graft,
neither with TH-staining nor with GFP (Fig. 3D). The ma-
jority of TH-ir cells settled at the border of the graft (Fig.
3D, inset).

Fiber outgrowth, assessed as the total volume of the
TH-ir fibers around the excluded graft core, was signifi-
cantly increased in anodal DCS-treated animals (2.16 =
0.44 mm3, n = 9) compared to sham DCS (0.77= 0.27
mm3, n =7, ty, = —2.54, p = 0.024; Figs. 3D, 4A). The
magnitude of dopaminergic reinnervation can be reflected
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Figure 3. Differential effects of DCS on graft core volume and TH-ir cell count. A, Anodal stimulation resulted in an increased
transplant survival reflected in a significantly larger graft core volume compared to sham, which was not significant with cathodal DCS.
B, GFP graft cores are illustrated by representative micrographs from each DCS group. Scale bar: 250 um. C, The number of TH-ir
cells in the anodal group was higher compared to the sham DCS group; no increase was present with cathodal DCS. D, TH-ir cells
as well as fiber outgrowth are illustrated by representative micrographs from each DCS group. TH-ir cells did not migrate out of the
graft core. Scale bars: slice, both hemispheres 1 mm; high-magnification inset, 100 um. Mean = SEM; two-tailed Student’s t test each

active stimulation versus sham; *p < 0.05.

by both the volume (Fig. 4A,B) and the density of TH-ir
fibers relative to the unlesioned striatum. Within the rein-
nervated area, TH-ir fiber density relative to the fiber
density of the unlesioned striatum was similar in the two
groups (sham 64 %, anodal 68%;t = —0.606, p = 0.554).
Integration of both measures of graft-derived striatal do-
paminergic reinnervation (fiber density X area) resulted in
a significantly higher compound parameter (integrated
fiber density) after anodal DCS (n = 9 vs sham DCS n =
7:tqg = —2.67, p = 0.018; Fig. 4C). As expected, across
all animals, TH cell count was identified as a predictor of
integrated fiber density in the regression analysis (b =
0.64, t43 = 4.19, p = 0.001). Hence, TH cell count
explained a significant amount of variance of integrated
fiber density (F4 43 = 16.57, p = 0.0003, R? = 0.718),
indicating that survival of grafted dopaminergic cells is a
prerequisite for subsequent fiber outgrowth. The anodal
DCS group also showed more fiber outgrowth per TH-ir
cell than the sham DCS group, hence stimulation type
(GROUP) represented a general predictor of fiber out-
growth (b = 0.413, t45 = 2.71, p = 0.018). With regard to
the direction of fiber outgrowth (Fig. 4D), sham-stimulated
grafts represented a relatively homogeneous outgrowth,
equally distributed between a dorsal (toward DCS elec-
trode) and a ventral portion of the striatum from a virtual
horizontal plane through the graft core (n = 7, dorsal/
ventral ratio 1.2 = 0.2). Anodal DC-stimulated grafts
showed a greater proportion of fibers oriented dorsally
(n = 9, dorsal/ventral ratio 1.9 = 0.2; ty, = —2,52, p =
0.024).

Cathodal DCS negatively affects TH-ir cell count
within the graft core and does not affect
dopaminergic reinnervation

Cathodal DCS did not significantly enhance general
transplant survival, although animals numerically ex-
pressed larger graft core volumes (1.21 = 0.14 mm?®, n =
8) compared to the sham DCS group (0.87 + 0.19 mm?,
n =7ty = —1.45,p = 0.171; Fig. 3A,B). TH-ir cell count
was similar in the cathodal (505 + 186 cells, n = 8) and
sham DCS group (641 = 190, n = 7; t43 = —0.51, p =
0.62; Fig. 3C). The amount of TH-ir cells per total graft
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core volume showed lower TH-ir cell density in the core of
cathodal DCS-stimulated animals (416 = 132 cells/mm3,
n = 8; tys = 2.08; p = 0.058) compared to sham-
stimulated animals (835 *+ 153 cells/mm3, n = 7). Further-
more, cathodal DCS (n = 8) did not affect TH-ir fiber
outgrowth around the transplant (1.14 = 0.29 mm3) and
fiber density (64% of the unlesioned striatum) compared
to sham (n = 7, volume: t;5, = —0.94, p = 0.37; density:
tys = 0.1, p = 0.92; Fig. 4A,B). In accordance, integrated
fiber density did not differ (t,5 = —0.69, p = 0.51; Fig.
4C). Interestingly, the dorsal/ventral ratio of fiber out-
growth direction was affected by cathodal DCS tending
toward a dorsal orientation (n = 8, dorsal/ventral ratio
1.7 = 0.2; Fig. 4D); statistically this comparison did not
reach significance compared to sham DCS (t153, = —2.02,
p=0.07,n=7).

Striatal reinnervation determines behavioral recovery

Amphetamine-induced rotation was assessed pre-
transplantation and two and five weeks after transplanta-
tion/stimulation to behaviorally confirm the presence of
dopaminergic reinnervation and to characterize the speed
of behavioral recovery under the different DCS conditions
(shamn = 7, anodal n = 9, cathodal n = 8). Compared to
pretransplantation, animals showed a gradual reduction
of ipsilateral rotations over time in all groups (Fig. 5A). For
anodal versus sham DCS, the ANOVA revealed a signifi-
cant effect of factor TIME (Fy 05 = 61.435, p < 0.0001)
but no effect of factor GROUP (F(; o3 = 0.136, p = 0.72)
and no GROUP X TIME interaction (F(, .3 = 0.583, p =
0.57). A similar result was found for cathodal DCS com-
pared to sham (factor TIME: F, ,,) = 44.61, p < 0.0001,
factor GROUP F 4 5, = 0.03, p = 0.87) GROUP X TIME
interaction: Fy 55 = 1.18, p = 0.32). Group-wise post hoc
testing for factor TIME indicated significant improvements
from pretransplantation rotation counts in the two active
stimulation groups (o = 0.04 for anodal and p = 0.02 for
cathodal DCS) at week 2, which was not present in the
sham group (p = 0.22), suggesting a smaller time con-
stant of recovery under this condition. By week 5, all
groups showed significant recovery compared to the pre-
transplantation condition (sham p = 0.005, anodal p <
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DCS reaching the level of significance. Mean = SEM; two-tailed Student’s t test each active stimulation versus sham; xp < 0.05.

0.0001, cathodal p = 0.0004; Fig. 5A). Overall recovery
appeared more pronounced following anodal DCS since
67% of animals in this group showed no rotation or
overcompensation while this was less frequent in the
other groups (43% in the sham group and 38% in the
cathodal group; Fig. 5B). Across all groups, the degree of
graft-related striatal TH-ir innervation (integrated fiber
density) was a significant predictor of the behavioral im-
provement achieved five weeks after transplantation (b =
—0.58, tq) = —3.22, p = 0.004). Hence, striatal reinner-
vation explained a significant amount of variance of be-
havioral improvement (F = 5.199, p = 0.015, R?> = 0.33;
Fig. 5C). Group assignment per se was not a significant
predictor in the model (b = 0.08, t,,) = 0.46, p = 0.65).

Discussion
This proof-of-concept study reports enhanced graft
survival and dopaminergic network integration of
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grafted fVM cells following anodal DCS in a rodent
model of PD likely by creating a trophic and neuroplas-
tic milieu. Graft-mediated improvements in pharmaco-
logically tested motor behavior are dependent on the
degree of reinnervation.

Anodal DCS supports motor network plasticity across
species. Factors contributing to this finding include in-
creased neuronal activity (Bindman et al., 1962; Nitsche
and Paulus, 2000), enhanced synaptic plasticity (Fritsch
et al., 2010; Ranieri et al., 2012; Rohan et al., 2015; Podda
et al., 2016), improved motor learning (Reis et al., 2009;
Fritsch et al., 2010; Buch et al., 2017), and increased
corticostriatal connectivity (Polania et al., 2012). More-
over, DCS-related synaptic plasticity is mediated by in-
creased BDNF signaling in the motor cortex (Fritsch et al.,
2010), and in subcortical brain regions, e.g., the hip-
pocampus (Podda et al., 2016). To support our assump-
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Figure 5. Behavioral recovery was more pronounced following
anodal transcranial DCS, and behavioral effects correlated with the
degree of striatal reinnervation. A, Anodal and cathodal stimulation
led to a significant decrease of amphetamine-induced ipsilateral
rotation two weeks after transplantation; this effect was not seen
with sham DCS. By five weeks, all groups showed significant
resolution of ipsilateral rotations. B, Animals in the anodal DCS
presented the highest amount of animals with full behavioral recov-
ery, measured as lack of ipsilateral rotation or even contralateral
rotation after amphetamine application. C, Generally, larger TH-
fiber outgrowth was associated with improvement of baseline ro-
tation five weeks after transplantation. Mean = SEM. Repeated
measure ANOVA, two- and five-week data in each group versus
pretransplantation; xp < 0.05; *xp < 0.01; *+xp < 0.001.
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tion that anodal DCS applied to the primary motor cortex
also exerts remote effects onto the ipsilateral striatum,
potentially creating a neurogenic environment, we first
confirmed enhanced ipsilateral striatal BDNF levels after
anodal DCS in naive rats.

While solely applied DCS has no beneficial effects on
motor deficits in PD patients and animal models (Li et al.,
2011; Elsner et al., 2016; Ferrucci et al., 2016), these
benefits may be reached by enhanced striatal network
integration of fVM cell transplants. In grafted rats, daily
anodal DCS over the motor cortex significantly enhanced
overall graft survival, i.e., volume, by a remarkable 56%.
More specifically, this was reflected in a ~50% higher
number of TH-ir cells compared to sham stimulation.
Transplant and TH-ir cell survival may be promoted by
interventions that directly or indirectly enhance neuronal
corticostriatal activity, connectivity and plasticity. Indeed,
a STN lesion, known to enhance cortical input to the
striatum, crucially enhanced survival of striatal fVM grafts
in the 6-OHDA rat model (Cordeiro et al., 2014). In the
same animal model, stimulation of the STN, exerting a
striatal activation pattern similar to a STN lesion, in-
creased the concentration of BDNF in the nigrostriatal
system (Spieles-Engemann et al.,, 2011) and improved
survival of dopaminergic cell transplants (Furlanetti et al.,
2015). While the supportive effect of direct BDNF appli-
cation on graft survival in vitro is widely accepted, in vivo
data are currently inconclusive and the role of BDNF has
not been directly investigated in the present in vivo ex-
periment. Environmental enrichment also enhanced cor-
ticostriatal plasticity and graft survival (Mazzocchi-Jones
et al., 2011), providing a technique to increase BDNF
more physiologically in the intact and grafted striatum.
Anodal DCS, STN lesion/stimulation, and enriched envi-
ronment may share the physiologic enhancement of
cortico-striatal neuronal activity and striatal BDNF as
mechanisms underlying improved graft and TH-ir cell
survival.

In our study, TH-ir cells per total graft core volume were
similar with anodal and sham stimulation. This suggests
that anodal DCS improved overall cell survival without
specifically directing progenitor cells within the graft to-
ward a dopaminergic phenotype. The grafted and stimu-
lated cells (including neurons, stem cells, and glia) did not
migrate beyond the graft core and the localization pattern
resembles that of other studies with the same PD model
but without electrical stimulation (Sauer et al., 1993; Cor-
deiro et al., 2014). At first sight, this finding might be
surprising since galvanotactic effects of electrical fields
have been reported for different brain cell types (Li et al.,
2008; Yao et al., 2008; Arocena et al., 2010; Zhang et al.,
2011). In contrast to our setting, these stimulations were
applied much longer (hours) in a milieu not hindering
spatial movement compared to tissue. Electrical fields
resulted in only a few micrometers of cell movement per
hour, most pronounced with extremely high-stimulation
intensities. One in vivo study (Rueger et al., 2012) reported
increased endogenous neural stem cell counts in the
cortex under the electrode after motor cortical cathodal
DCS. As the cells’ origin was not investigated local cell
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proliferation, as seen with other stimulation patterns (Ja-
hanshahi et al., 2013), cannot be excluded. Accordingly,
ten sessions of 143 A/m? anodal DCS resulted in diffuse
and undirected short distance migration adjacent to glia-
like neural stem cell grafts (Keuters et al., 2015). Of note,
these studies used DCS intensities associated with in-
flammatory responses (>15 times higher than our stimu-
lation and 150 times higher than the human application).
This is particularly important since acute inflammatory
cascades after high-intensity stimulation may secondarily
induce cell migration not directly dependent on DCS guid-
ance, but, for example, on microglia activation (Belmadani
et al., 2006). In our study, anodal and cathodal DCS were
applied at 8 A/m?, clearly below the threshold for neuro-
degeneration and microglia activation (Liebetanz et al.,
2009; Bikson et al., 2016; Gellner et al., 2016). Together,
differences between studies with regard to cell migration
can be explained by various stimulation patterns, intensi-
ties, and cell types. There was no observable migration of
any cell type outside the fVM cell graft in vivo when
subjected to brief, daily, low-intensity DCS for two weeks.

Anodal DCS significantly supported graft-derived stria-
tal reinnervation, measured as the area and density of
TH-ir fiber outgrowth, compared to sham stimulation.
Previous studies have shown that up to a critical graft
volume, larger surviving grafts lead to increased striatal
reinnervation (Winkler et al., 1999; Kirik et al., 2001). Ac-
cordingly, we found that the higher number of TH-ir cells
explained the higher dopaminergic fiber outgrowth. More-
over, anodal DCS increased TH-ir fiber outgrowth per
grafted dopaminergic cell, bearing the potential to over-
come the assumed fiber outgrowth limitations at critical
graft volumes.

Besides the degree of striatal reinnervation, its ana-
tomic location represents a critical factor for behavioral
improvements (Mandel et al., 1990; Hagell and Brundin,
2001; Grealish et al., 2010). In the current study, anodal
DCS led to directionality of TH-ir fiber outgrowth toward
the dorsal striatum (i.e., toward the electrode). Directed
fiber outgrowth can result from (1) a galvanotactic effect
on outgrowth and orientation of fibers, independent of
neuronal (network) activity and/or (2) an activity and guid-
ance molecule (e.g., trophic factors) dependent effect on
sprouting. From extensive work on isolated cultured neu-
rons it is well known that the total neuronal outgrowth
volume is increased and directed toward the cathode at
field strengths of 7-1000 mV/mm (Jaffe and Poo, 1979;
Patel and Poo, 1982; Bedlack et al., 1992; McCaig et al.,
2000; Pelletier et al., 2015); <1 mV/mm estimated in
humans (Datta et al., 2009). In the present study, TH-ir
fiber outgrowth was most pronounced toward the anode.
This finding suggests that in vivo outgrowth direction and
network formation are not explained by galvanotaxis seen
in cell culture. In vivo the direction of neuronal outgrowth
may indicate the net effect of endogenous and exogenous
electrical fields interacting with other directional signals,
such as guidance molecule secretion and increased neu-
ronal activity. A trend toward a dorsal fiber outgrowth bias
was also seen for cathodal DCS. As decreased neuronal
activity (Bindman et al., 1962) is expected with cathodal
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stimulation, the described galvanotactic effects on neu-
rites toward the cathode might dominate under this con-
dition.

Anodal DCS augmented the graft-induced restitution of
motor function. Anodal DCS-stimulated rats showed the
highest proportion of animals (67% vs 43% in the sham
group) with complete restitution of amphetamine rota-
tional behavior five weeks after transplantation. While
cathodal stimulation also facilitated restitution of motor
function after two weeks, there was no carryover of this
effect to five weeks (838% of animals with normalized
rotational behavior). It is well known that the magnitude of
graft-related dopaminergic striatal reinnervation deter-
mines the functional outcome of PD patients, primates,
and rodents (Mandel et al., 1990; Hagell and Brundin,
2001; Grealish et al., 2010). In line with these findings,
TH-ir fiber outgrowth was a significant predictor for resti-
tution of drug-induced rotation and was numerically high-
est with anodal DCS.

A trend toward enhanced graft core survival was seen
with cathodal DCS but was not reflected in TH-ir cell
survival. Cathodal DCS even led to a 50% reduced TH-ir
cell count when normalized to the graft core volume.
Given the dependency of fiber outgrowth on the cell
count, cathodal DCS did also not enhance dopaminergic
fiber outgrowth. Moreover, the lack of effect on striatal
reinnervation explains the low normalization rate in drug-
induced behavior five weeks after transplantation, alto-
gether indicating a polarity and stimulation-specific
beneficial effect of anodal DCS.

Final remarks and limitations

The combined cell transplantation and DCS electrode
implantation procedure as well as acute and consecutive
two weeks of daily DCS were well tolerated without side
effects. Graft vitality and striatal reinnervation was indi-
cated by increased normalization of amphetamine-
induced ipsilateral rotation over time and verified by post
hoc histologic analysis. As expected for this rat model,
graft-induced behavioral recovery is typically reached a
few weeks after transplantation. To increase the likelihood
of unraveling beneficial effects of DCS and to better dis-
sect stimulation effects on structural and behavioral out-
come parameters, we used a reduced graft size in only
one location. Transplantation led to almost full recovery
after five weeks in sham-stimulated animals leaving the
effect of anodal DCS on graft survival, integration, and
behavior potentially underestimated.

Our study clearly points toward a reinforcing effect of
anodal DCS in a cell-based restorative therapeutic ap-
proach in PD. Spontaneous motor behaviors should be
investigated in the future in addition to drug-induced be-
haviors and for a longer period of time after transplanta-
tion to better dissect DCS-specific behavioral aspects.
Moreover, it is tempting to specifically explore the role of
neurotrophins, particularly BDNF, as a mechanistic key
candidate for the promotion of graft-induced functional
recovery by anodal DCS in vivo. Since cell-based thera-
peutic approaches in primates include bilateral grafting it
may be also interesting to investigate the effects of bilat-

eNeuro.org



leuro

eral anodal DCS in this scenario. Given that anodal DCS is
safe, well tolerated, established in clinical settings and
strategies to handle trepanation-related safety issues are
already defined, our results provide a strong basis for
future translational research in stem cell-based restorative
therapy.
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