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and Laurence G. Rahme1,2,3,6,*

SUMMARY

Severe trauma predisposes patients to multiple independent infection episodes
(MIIEs), leading to augmented morbidity and mortality. We developed a method
to identify increasedMIIE risk before clinical signs appear, which is fundamentally
different from existing approaches entailing infections’ detection after their
establishment. Applying machine learning algorithms to genome-wide transcrip-
tome data from 128 adult blunt trauma patients’ (42MIIE cases and 85 non-cases)
leukocytes collected %48 hr of injury and R3 days before any infection, we con-
structed a 15-transcript and a 26-transcript multi-biomarker panel model with the
least absolute shrinkage and selection operator (LASSO) and Elastic Net, respec-
tively, which accurately predicted MIIE (Area Under Receiver Operating Charac-
teristics Curve [AUROC] [95% confidence intervals, CI]: 0.90 [0.84–0.96] and 0.92
[0.86–0.96]) and significantly outperformed clinical models. Gene Ontology and
network analyses found various pathways to be relevant. External validation
found our model to be generalizable. Our unique precision medicine approach
can be applied to a wide range of patient populations and outcomes.

INTRODUCTION

The high value of tailored approaches in the care of patients is increasingly appreciated (Chaussabel, 2015;

Parikh et al., 2016; Sweeney and Wong, 2016). A method to expedite the timeline of threat detection to

before infection happens could yield valuable time for early prophylactic and therapeutic interventions.

Moreover, the ability to identify patients at high risk for repeated infections, or infection-related morbidity

and mortality, might be considered an important measure to fairly allocate resources such as medication,

personal protective equipment, or another high-value scarce intervention (The Commonwealth of Massa-

chusetts, 2020; Institute of Medicine, 2013; University of Pittsburgh, 2020).

Trauma is one of the leading causes of morbidity and mortality worldwide (Heron, 2018; Krug et al., 2000).

Severe trauma induces various immune-related responses acutely—it can trigger a state of immunosup-

pression (Islam et al., 2016; Ward, 2005), prolonged inappropriate immune response (Heffernan et al.,

2012; Huber-Lang et al., 2018), leukocytosis (Paladino et al., 2010), and the elevation of specific subpopu-

lations of myeloid cells (Cuenca et al., 2011). Among trauma patients, infections and infections-related

complications contribute to substantial mortality and morbidity and prolonged hospital stay, significantly

adding to healthcare costs (Cole et al., 2014; Dutton et al., 2010; Glance et al., 2011; Hashmi et al., 2014).

Infections and infections-related outcomes vary across individuals, suggesting the importance of consid-

ering individual patients’ underlying susceptibility and the degree of immunosuppression, or inappro-

priate immune response experienced.

Methods to identify trauma patients with particularly increased risk of infection could be advantageous for

ensuring timely and appropriate delivery of preventative measures (such as early immune-modulating nutri-

tion, microbiome modulation, early mobilization, early removal of lines/tubes, taking all transmission-based

precautions), improving surveillance, and promoting antibiotic stewardship to limit the emergence of multi-

drug resistance bacteria, reduce toxicity to patients, and decrease healthcare costs. Previous studies have
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evaluated the use of injury severity scores, such as the Acute Physiology and Chronic Health Evaluation

(APACHE) II (Knaus et al., 1985), Injury Severity Score (ISS) (Baker et al., 1974), and New Injury Severity Score

(NISS) (Osler et al., 2010) as predictors of infection, in addition to their intended use to predict mortality (Chea-

dle et al., 1989; Jamulitrat et al., 2002). Using genome-wide transcriptomic information from leukocytes

provided at triage to assess the underlying susceptibility, well before the onset of infections, is expected to

significantly improve the accuracy of identifying patients who are most at-risk of multiple independent infec-

tion episodes. A recent study described that employing a combination of predictors could be more effective

than using a single predictor with strong statistical significance, further suggesting thatmulti-biomarker panels

could be highly effective (Lo et al., 2015). Previous studies have utilized transcriptome data in the trauma

setting to find transcripts that correlate with poor outcome (Desai et al., 2011) or sepsis (Sweeney et al.,

2015). The objective of this study is distinct, as we aim to develop amethod to predict multiple infections prior

to classic clinical signs of infection. And thus, our approach focuses on the prevention of infections, aiming to

predict the outcome before its onset, using early blood samples.

In a previous study among burn trauma patients, we developed a blood transcriptomic multi-biomarker panel

for predicting multiple independent infection episode (MIIE) outcomes during the course of recovery (Yan

et al., 2015). We employed the least absolute shrinkage and selection operator (LASSO) machine learning

algorithm to select probe sets that together (i.e., multi-transcriptome panel) resulted in highly accurate pre-

diction. This model performed significantly better than those based on injury severity assessments at triage

and demographic information (Yan et al., 2015). Here, we employed a new approach of combining the use

of two algorithms, LASSO and Elastic Net regression, to investigate MIIE outcome. LASSO and Elastic Net

were used to reduce the complexity of regression models, in conjunction with cross-validation to select the

optimal parameter for reducing the number of predictors. These techniques are highly beneficial in cases

such as transcriptome data where the number of potential predictors is extremely large, to overcome the

problem of overfitting. LASSO regression reduces highly correlated predictors and selects a minimal panel

of predictors, compared to ElasticNet that includes some correlated predictors.We investigatedblunt trauma

patients in the multi-center Inflammation and Host Response to Injury (‘‘Glue Grant’’) cohort. This cohort

enrolled a high number of patients, generated genome-wide transcriptome data, and collected data longitu-

dinally, allowing us to effectively build a predictive model. Our approach employing unbiased analyses of

genome-wide information in the identification of patients at increased risk for MIIE before clinical signs of

infection may also be advantageous for providing new insights into the molecular pathways that characterize

the pathophysiology underlying hypersusceptibility to infections.

RESULTS

Patient Demographics and Baseline Characteristics

Baseline characteristics of the 128 blunt trauma patients included in the study (Figures 1A and 1B) are pre-

sented in Table 1. Motor vehicle collisions were themost frequent injury mechanisms (Table S1). The overall

study population consisted of approximately 61.7% males and 38.3% females, with the median age

Figure 1. Description of the Patient Population and Study Design

(A and B) (A) Patients who were included/excluded in the study and (B) the study design.
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Variable Description All Patients

(N = 128)

Non-case, % 1

Infection Episode

(n = 85)

MIIE Case, R2

Infection Episodes

(n = 43)

p value

Demographic information/clinical descriptors

Age 34 [25–44] 35 [26–44] 32 [23.5–46] 0.718a

Sex

Female 49 (38.3%) 30 (35.3%) 19 (44.1%) 0.328c

Male 79 (61.7%) 58 (64.7%) 23 (55.8%)

BMI 29.3 G 7.0 28.8 G 7.0 30.1 G 6.9 0.325b

BMI categories

Underweight 1 (0.8%) 0 (0%) 1 (2.3%) 0.336d

Healthy 37 (28.9%) 28 (32.9%) 9 (20.9%) 0.216d

Overweight 39 (30.5%) 26 (30.6%) 13 (27.9%) 1.000d

Obese 51 (39.8%) 31 (36.5%) 20 (46.5%) 0.340d

Injury characteristics

Crush injury 19 (14.8%) 16 (18.8%) 3 (7.0%) 0.113d

Severe head injury 13 (10.2%) 8 (9.4%) 5 (11.6%) 0.760d

Severity scores

APACHE II 28 [24–32] 27 [24–31] 29 [27–33.5] 0.008a

ISS 34 [22–41.25] 29 [18–41] 36 [27–41.5] 0.041a

NISS 37 [27–43.5] 34 [27–43] 41 [30–50] 0.045a

AIS (highest of any body part) 4 [3–5] 4 [3–5] 4 [3.5–5] 0.587a

Clinical events

Post-trauma interventions

Craniotomy 2 (1.6%) 1 (1.2%) 1 (2.3%) 0.402d

Thoracotomy 8 (6.3%) 5 (5.9%) 3 (7.0%) 1.000d

Laparotomy 61 (47.7%) 35 (41.2%) 26 (60.5%) 0.042d

Orthopedic 98 (76.6%) 61 (71.8%) 37 (86.0%) 0.081d

Vascular 30 (23.4%) 19 (22.4%) 11 (25.6%) 0.667d

Clinical outcomes

Mortality 5 (3.9%) 3 (3.5%) 2 (4.7%) 1.000d

Days in ICU 11 [6–18] * 8 [5–14.75] * 20 [15–29] * <0.0001a

11.5 [6–18.25] 8 [5–15] 20 [14.5–28] <0.0001a

Discharge day since injury 23 [16.5–33] * 19 [14–26.75] * 35 [27–47] * <0.0001a

23 [16–33] 19 [13–26] 34 [25.5–47] <0.0001a

Days on ventilator in ICU 8 [4–15] 6 [3–11] 15 [10–23] <0.0001a

Non-infection complications 75 (58.6%) 40 (47.1%) 35 (81.4%) 0.0002c

Maximum denver 2 score 2 [1–3] 2 [0–3] 3 [2–3.5] <0.0001a

Table 1. Baseline Characteristics, for the Outcome of Multiple Independent Infection Episodes (MIIEs)

(Continued on next page)
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[interquartile range, IQR] of 34 [25–44] years (Table 1). Common demographic factors were not significantly

different between non-cases (%1 infection episode) and MIIE cases (R2 infection episodes). However,

baseline injury severity scores were significantly higher for MIIE cases (APACHE II score: 27 [24–31] vs. 29

[26–33.5], p = 0.008; ISS: 29 [18–41] vs. 36 [27–41.5], p = 0.041; NISS: 34 [27–43] vs. 41 [30–50], p = 0.045,

respectively), while automatic identification system (AIS) (highest score in any body region) was

comparable.

As expected, orthopedic procedures were the most frequent surgical interventions that patients received

overall (76.6%), followed by laparotomy (47.7%), vascular procedures (23.4%), thoracotomy (6.3%), and

craniotomy (1.6%) (Table 1). Apart from the proportion of patients having undergone laparotomy, which

was significantly higher amongMIIE cases than among non-cases (41.2% vs. 60.5%, p = 0.04), other proced-

ures were similar between non-cases and MIIE cases.

There were five total patients who did not survive, and the cause of death was different for each (Table S2).

Mortality was similar between non-cases (3.5%) and MIIE cases (4.7%, p = 1.00). Among survivors, MIIE

cases had significantly longer hospital stay than non-cases (discharge at day 19 [14–26.75] vs. 35 [27–47],

p < 0.0001). MIIE cases also had a higher proportion of those experiencing non-infection complications

than non-cases (47.1% vs. 81.4%, p = 0.0002). Maximum Denver and Marshall scores were significantly

higher for MIIE cases than for non-cases (Denver score: 2 [0–3] vs. 3 [2–3.5], p < 0.0001; Marshall score:

4.7 [3.3–6.4] vs. 6.9 [5.8–8.1], p < 0.0001). Among the sub-categories that together determine the total

Marshall Score, maximum scores of the following were significantly higher for MIIE cases than for non-

cases: cardio (2.4 [1.7–3.2] vs. 2.8 [2.8–4.0], p < 0.0001), respiratory (2.4 [1.7–3.2] vs. 2.8 [2.1–3.1], p <

0.0001), and hepatic score (0.0 [0.0–0.8] vs. 0.7 [0.0–1.5], p < 0.001). The maximum central nervous system,

renal, and hematologic scores were not significantly different.

Characteristics of Infection Episodes

(i). Patient Case Outcomes and Timing of Infection Onset

Among the 128 patients in the study, there were 85 non-cases—42 with no infection and 43 with one infec-

tion episode—and 42 were MIIE cases (i.e., R2 infection episodes). The median [IQR] day for detection of

the first infection episode among those who experienced at least one infection episode (i.e., excluding 42

patients those who had no infection episode, for a total of 86 patients) was 8 [5–12] days (Table 2).

Variable Description All Patients

(N = 128)

Non-case, % 1

Infection Episode

(n = 85)

MIIE Case, R2

Infection Episodes

(n = 43)

p value

Maximum marshall score 5.8 [4.0–7.2] 4.7 [3.3–6.4] 6.9 [5.8–8.1] <0.0001a

Maximum central nervous

system score

4 [4–4] 4 [4–4] 4 [4–4] 0.064a

Maximum cardio score 2.8 [2.0–3.6] 2.4 [1.7–3.2] 3.3 [2.8–4.0] <0.0001a

Maximum respiratory score 2.8 [2.0–3.6] 2.4 [1.7–3.2] 2.8 [2.1–3.1] <0.0001a

Maximum renal score 0.8 [0.7–1.0] 0.8 [0.7–0.9] 0.9 [0.7–1.4] 0.063a

Maximum hepatic score 0.0 [0.0–1.2] 0.0 [0.0–0.8] 0.7 [0.0–1.5] 0.002a

Maximum hematologic score 0.5 [0.0–1.1] 0.5 [0.0–1.0] 0.6 [0.2–1.1] 0.224a

Table 1. Continued

*ICU days and discharge day since injury when calculated only among survivors.

Median [q1-q3], or meanG SD for continuous variables and n (%) for categorical variables are reported. p values calculations

are indicated as follows.
aMann-Whitney U two-tailed test.
bunpaired equal variance two-tailed Student’s t-test.
cChi-square.
dFisher’s Exact two-tailed test.
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(ii) Incidence of Surgical Site Infections versus Other Nosocomial Infections

Among all 128 patients, 36 (28.1%) experienced surgical site infections, compared to 80 (62.5%) who expe-

rienced other nosocomial infections (Table 2). Comparing specific subtypes of nosocomial infections,

pneumonia (39.1% overall) was highest, followed by urinary tract infection (18.8%), blood infection

(17.2%), pseudomembranous colitis (3.9%), catheter-related bloodstream infection (3.9%), empyema

(2.3%), and other unspecified infections (5.5%).

(iii) Microorganism Detection

When comparing the incidence of various microorganisms among non-cases with one infection episode

versus MIIE cases, relatively higher proportion was found for MIIE cases specifically for Gram positives of

Staphylococcus aureus (18.2% vs. 39.5%), Enterococcus species (11.4% vs. 25.6%), coagulase-negative

staphylococci (2.3% vs. 16.3%), and Streptococcus pneumoniae and viridans (2.3% vs. 4.7% for both).

The incidence of the Gram-positive Clostridium species was the same for non-cases and MIIE cases

(both 7.0%) (Table 2). For Gram-negative bacteria, the incidences of the following microorganisms were

higher for MIIE cases than for non-cases: Enterobacter species (11.4% vs. 37.2%), Acinetobacter species

(9.1% vs. 30.2%), Pseudomonas aeruginosa (11.4% vs. 16.3%), Haemophilus influenzae (4.5% vs. 14.0%),

Bacteroides species (0% vs. 9.3%), Klebsiella pneumoniae (2.3% vs. 7.0%), Neisseria (0% vs. 7.0%), Proteus

(2.3% vs. 4.7%), Serratia marcescens (2.3% vs. 4.7%), and Gram-negative, not otherwise specified (NOS)

(2.3% vs. 11.6%). The incidence was higher among non-cases than among MIIE cases for Escherichia coli

(11.4% vs. 4.7%) and Stenotrophomonas (4.6% vs. 0%). Fungi incidences were higher among MIIE cases

than among non-cases: Candida species (9.1% vs. 11.6%) and unspecified fungi (0% vs. 2.3%).

(iv) Timing of Microorganism Detection

The median time to the first day of detection of different microorganisms ranged widely (Figure 2). The

Gram positives, Streptococcus pneumoniae, and Streptococcus viridans were found first (at median day

4 and 5, respectively), followed by various Gram negatives and the Gram-positive, Clostridium species, be-

tween median day 7 and 9.5. Microorganisms that appeared relatively later (day 11–12) include Candida

species, Enterobacter species, and Serratia marcescens, Stenotrophomonas, Enterococcus, Coagulase-

negative staphylococci, and Staphylococcus aureus.

Gene Ontology Reports of 1.5-Fold Changed Probe Sets

We identified 137 probe sets showing at least 1.5-fold upregulated or downregulated difference in expression

levels between non-cases and MIIE cases (Figure 3A) and performed Gene Ontology (GO) analyses to find

enriched biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms

(Table S3). As expected, terms relevant to various immune response pathways were among the top fold

enrichment. They included interleukin-4 secretion, regulation of interferon-gamma secretion, cytolysis, regu-

lation of natural killer cell-mediated cytotoxicity, viral genome replication, cellular defense response, adaptive

immune response, humoral immune response, T cell co-stimulation, regulation of immune response, T cell

receptor signaling pathway, response to tumor necrosis factor, response to virus, immune response, and

innate immune response. Other biological process terms with high fold enrichment were signaling pathways

with relevance to cell proliferation and differentiation, including regulation of p38 MAPK kinase, calcium-

mediated signaling, regulation of fat cell differentiation, organ regeneration, MAP kinase activity, and

phosphatidylinositol 3-kinase (PI3K) signaling. Similarly, KEGG pathway terms with high fold enrichment

included those relevant to immune response, including natural killer cell-mediated cytotoxicity, malaria,

hematopoietic cell lineage, and T cell receptor signaling pathway. Additionally, regulation of cancer, which

may have overlapping signaling pathways with infections-related terms, and related to tissue regeneration,

also appeared among the enriched terms. Although according to the false discovery rate (FDR)-adjusted

p values, statistical significance in enrichment was detected only for a small number of terms, the fold

enrichment ranking consistently points to the relevance of immune response terms, as expected.

Prognostic Biomarker Panel Selection

To identify a multi-biomarker panel that collectively predicts the outcome of MIIEs, we analyzed the 137

differentially regulated probe sets by employing a machine learning pipeline that we previously developed

and successfully used in our previous study among burn patients (Yan et al., 2015). In the current study, we

further added to our analysis pipeline by utilizing a combination of LASSO and Elastic Net regression

methods. The LASSO regression that reduces redundancy in predictor selection would allow for a narrow
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Variable Description All Patients

(N = 128)

0 and 1 Infection

Episode (Non-cases)

(n = 85)

1 Infection Episode

Only (Non-cases)

(n = 43)

R2 Infection Episodes

(MIIE Case) (n = 43)

Characteristics of infection

First infection day since injury 8 [5–12]a 8 [5.5–12]a 8 [5.5–12] 7 [4–11.5]

Surgical site infections 36 (28.1%) 7 (8.2%) 7 (16.3%) 29 (67.4%)

Superficial incisional 7 (5.5%) 2 (2.4%) 2 (4.7%) 5 (11.6%)

Deep incisional 30 (23.4%) 5 (5.9%) 5 (11.6%) 25 (62.8%)

Other infection sites 80 (62.5%) 37 (43.5%) 37 (86.0%) 43 (100%)

Pneumonia 50 (39.1%) 20 (23.5%) 20 (46.5%) 30 (69.8%)

Ventilation-associated pneumonia 46 (35.9%) 20 (23.5%) 20 (46.5%) 26 (60.5%)

Bloodstream infection 22 (17.2%) 4 (4.7%) 4 (9.3%) 18 (41.9%)

Urinary tract infection 24 (18.8%) 7 (8.2%) 7 (16.3%) 17 (39.5%)

Pseudomembranous colitis 5 (3.9%) 3 (3.5%) 3 (7.0%) 2 (4.7%)

Catheter-related bloodstream infection 5 (3.9%) 1 (1.2%) 1 (2.3%) 4 (9.3%)

Empyema 3 (2.3%) 2 (2.4%) 2 (4.7%) 1 (2.3%)

Other 7 (5.5%) 2 (2.4%) 2 (4.7%) 5 (11.6%)

Organism incidence

Gram-positive bacteria 51 (39.8%) 20 (23.5%) 20 (46.5%) 31 (72.1%)

Staphylococcus aureus 25 (19.5%) 8 (9.4%) 8 (18.2%) 17 (39.5%)

Enterococcus species 16 (12.5%) 5 (5.9%) 5 (11.4%) 11 (25.6%)

Coagulase-negative staphylococci 8 (6.3%) 1 (1.2%) 1 (2.3%) 7 (16.3%)

Clostridium species 6 (4.7%) 3 (3.5%) 3 (7.0%) 3 (7.0%)

Streptococcus pneumoniae 3 (2.3%) 1 (1.2%) 1 (2.3%) 2 (4.7%)

Streptococcus viridans 3 (2.3%) 1 (1.2%) 1 (2.3%) 2 (4.7%)

Gram positive NOS 3 (2.3%) 1 (1.2%) 1 (2.3%) 2 (4.7%)

Gram-negative bacteria 57 (44.5%) 23 (27.1%) 23 (53.5%) 34 (79.1%)

Enterobacter species 21 (16.4%) 5 (5.9%) 5 (11.4%) 16 (37.2%)

Acinetobacter species 17 (13.3%) 4 (4.7%) 4 (9.1%) 13 (30.2%)

Pseudomonas aeruginosa 12 (9.4%) 5 (5.9%) 5 (11.4%) 7 (16.3)

Haemophilus influenza 8 (6.3%) 2 (2.4%) 2 (4.5%) 6 (14.0%)

Escherichia coli 7 (5.5%) 5 (5.9%) 5 (11.4%) 2 (4.7%)

Bacteroides species 4 (3.1%) 0 (0%) 0 (0%) 4 (9.3%)

Klebsiella pneumoniae 4 (3.1%) 1 (1.2%) 1 (2.3%) 3 (7.0%)

Neisseria 3 (2.3%) 0 (0%) 0 (0%) 3 (7.0%)

Proteus 3 (2.3%) 1 (1.2%) 1 (2.3%) 2 (4.7%)

Serratia marcescens 3 (2.3%) 1 (1.2%) 1 (2.3%) 2 (4.7%)

Table 2. Numbers Represent Individuals Who Have Experienced the Indicated Outcomes

(Continued on next page)
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selection of a minimal biomarker panel, which is expected to be more practical. Elastic Net regression that

includes correlated predictors would allow for a more comprehensive discovery of additional probe sets

that are potentially biologically relevant. With LASSO, 15 probe sets were selected, mostly relevant to im-

mune functions and signaling cascades for cellular proliferation and differentiation (Tables 3 and S4; Fig-

ures 3A, S2A, and S2B). Upregulated probe sets in the minimal 15-probe set panel included those associ-

ated with immune function terms, hepatocyte growth factor (HGF) and kelch repeat and BTB domain

containing 7 (KBTBD7); signaling cascades, adenosine A3 receptor (ADORA3), ADP-ribosylation factor-

like GTPase 4A (ARL4A), epiplakin 1 (EPPK1), zinc finger protein 354A (ZNF354A), SH3 and PX domains

2B (SH3PXD2B); and those with no function term assigned, RNase A family 1 (RNASE1), and BTB domain

containing 19 (BTBD19). Downregulated probe sets included those with immune functions, zeta chain of

T cell receptor associated protein kinase 70kDa (ZAP70), ER aminopeptidase 2 (ERAP2), CD96 molecule

(CD96), membrane metallo-endopeptidase (MME), and killer cell lectin-like receptor subfamily F, member

1 (KLRF1); and a non-coding transcript, nuclear paraspeckle assembly transcript 1 (NEAT1) (Tables 3 and S4;

Figures 3A).

With Elastic Net, a total of 26 probe sets were selected that included the 15 probe sets from LASSO and 11

additional ones (Tables 3 and S4; Figures 3A, S2C, and S2D). The additional upregulated probe sets con-

sisted of those with immune functions, interleukin 1 receptor, type II (IL1R2) andmannose receptor, C type 1

(MRC1); those involved with signaling including, importin 11 (IP O 11), dedicator of cytokinesis 4 (DOCK4)

and Kruppel-like factor 9 (KLF9); as well as nebulette (NEBL) that is important for muscle filament assembly.

The additional downregulated probe sets included a different probe set forMME, and other immune func-

tion genes, ribosomal protein S6 kinase, 90kDa, polypeptide 5 (RPS6KA5), killer cell lectin-like receptor,

subfamily K, member 1 (KLRK1) and granzyme K (GZMK); and the signaling molecule, ADP-ribosylation fac-

tor-like GTPase 4C (ARL4C) (Table 3; Figures 3A and Table S4).

Pathway Network Suggests the Relevance of Major Pathways

We assessed the molecular network connection among the 26 probe sets that were selected by Elastic

Net (Figure 3B). The major nodes with the most extensive edges that were central to the connections

consisted of major signaling pathway components that are key regulators of inflammation, mitogenic

response, and tissue regeneration. These notable nodes included tumor necrosis factor (TNF), trans-

forming growth factor beta-1 (TGFb-1), and various chemokine (C-X-C motif) ligand (CXCL) members

and chemokine (C-C motif) ligand (CCL) members. TNF and TGFb-1 are major cytokines that can act

both synergistically or antagonistically to each other, depending on the cell context. Further substan-

tiating the involvement of these factors, we found p38 mitogen-activated protein kinase (MAPK), which

can act downstream of both TNF-a and TGFb-1 pathways. The other major nodes, extracellular signal-

regulated kinases 1/2 (ERK1/2), and mothers against decapentaplegic homolog 3 (SMAD3) are also key

downstream components of the TGFb pathway. A key downstream transcriptional regulator for the

canonical Wnt pathway, b-catenin (CTNNB1), another major pathway known to cross talk with TGFb,

was also found as a major node in this network.

Variable Description All Patients

(N = 128)

0 and 1 Infection

Episode (Non-cases)

(n = 85)

1 Infection Episode

Only (Non-cases)

(n = 43)

R2 Infection Episodes

(MIIE Case) (n = 43)

Stenotrophomonas species 2 (1.6%) 2 (2.4%) 2 (4.6%) 0 (0%)

Gram negative NOS 6 (4.7%) 1 (1.2%) 1 (2.3%) 5 (11.6%)

Fungi 10 (7.8%) 4 (4.7%) 4 (9.3%) 6 (14.0%)

Candida species 9 (7.0%) 4 (4.7%) 4 (9.1%) 5 (11.6%)

Fungi NOS 1 (0.8%) 0 (0%) 0 (0%) 1 (2.3%)

Unknown 5 (3.9%) 2 (2.4%) 2 (2.3%) 3 (7.0%)

Table 2. Continued
aThe 42 non-cases who had 0 infection episode, without recordings for first infection day were omitted for these calculations. Recorded species are indicated or

described as not otherwise specified (NOS).
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Performance in Prediction of MIIEs Using the Multi-Biomarker Panel versus the Clinical

Severity Models

The Area Under Receiver Operating Characteristics Curve (AUROC) [95% confidence intervals, CI] of the

logistic regression model for predicting MIIE outcomes with the 15-probe set biomarker panel developed

with LASSO was 0.90 [0.84–0.96] (Figure 4A). For the 26-probe set panel developed with Elastic Net, there

was marginal AUROC increase (0.92 [0.86–0.96], p = 0.11) (Figure 4A). Given the objective of the study of

developing measures taken early upon arrival at the hospitals for predicting future outcome during

recovery, we evaluated common injury severity scores. Compared to the biomarker models, the

AUROC of the various injury severity models was notably lower (0.64 [0.54–0.74] for APACHE II, 0.611

[0.51–0.71] for ISS, and 0.61 [0.50–0.71] for NISS, all p < 0.0001 compared to the 15-probe set panel model)

(Figure 4A). The odds ratios (ORs) [95% CI] for all the covariates of each of the models were also found

(Tables S5–S7).

The 15- and 26-probe set panel models had sensitivity [95% CI] of 0.74 [0.59–0.86] vs. 0.79 [0.64–0.90];

specificity [95% CI] of 0.94 [0.87–0.98] vs. 0.94 [0.87–0.98]; positive predictive value (PPV) of 0.86 [0.71–

0.95] vs. 0.87 [0.73–0.96]; and negative predictive value (NPV) of 0.88 [0.79–0.94] vs. 0.90 [0.82–0.95],

respectively (Table S8). For the various injury severity scores (APACHE II, ISS, NISS), the sensitivity,

specificity, PPV, and NPV were generally lower compared to the multi-biomarker panel models

(Table S8).

Moreover, we constructed multivariate logistic regression models combining the 15- or the 26-probe

set panel with each of the clinical injury severity scores. The AUROC [95% CI] of the 15 probe set panel

combined with APACHE II was 0.90 [0.84–0.96], was 0.902 [0.84–0.96] with ISS, and was 0.902 [0.84–

0.96] with NISS (Figure 4B). For the 26-probe set panel, the combination with APACHE II was 0.90

[0.86–0.97]; with ISS, it was 0.92 [0.86–0.97]; and with NISS, it was 0.92 [0.86–0.97] (Figure 4B). None

of the combined models were significantly different from their respective biomarker only models, sug-

gesting that the addition of clinical score information does not improve the prediction.

Figure 2. Timing of Detection of Microorganisms

Box plot of the median day of the first infection since the injury, where white boxes indicate Gram positives, light gray

boxes indicate Gram negatives, and dark gray boxes indicate fungi and unknown. Recorded species are indicated or

described as not otherwise specified (NOS).
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External Validation of the Multi-Biomarker Panel in a Different Cohort of Severe Trauma

Patients

We performed external validation of our biomarker panel using a severe blunt trauma patient cohort from a

previous publication by Cabrera et al. (Cabrera et al., 2017), which had post-admission blood transcriptome

log2 expression values available. Themicroarray platform used in this study was different from the one used

in the Glue Grant, and the measure of one of the genes in the 15-probe set panel was missing. Despite the

differences in measurement technology, the lack of measurement for one of the panel, and outcome

Figure 3. Identification of Probe Sets with 1.5-Fold Change Expression Level Comparing MIIE Cases to Non-

cases, and Pathway Analysis

(A) Volcano plot using the initial 25,567 probe sets included in the analyses, where black dotted lines mark the log2(1.5)

threshold, black dots indicate probe sets with R1.5-fold change (137 probe sets), orange squares with labels mark data

points corresponding to the 15-probe set panel, and blue triangles mark the additional probe sets, that together with the

15 probe sets, result in the 26-probe set panel.

(B) Ingenuity pathway analysis (IPA) of the 26 probe sets that make up the comprehensive biomarker panel. Green marks

downregulated and red marks upregulated probe sets. Solid lines indicate known direct interactions, and dotted lines

indicate indirect interaction.
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resolution between the Glue Grant and the Cabrera et al. data sets (as described in detail in the methods

section), the multi-biomarker panel achieved a relatively high AUROC of 0.76 [0.57–0.96] for the 24-hr post-

admission data set and 0.81 [0.62–1.00] for 72-hr post-admission (Figures 5A and 5B). On the other hand,

themodel with ISS (the only injury severity score that was shared with the Cabrera et al. data set) had amuch

lower AUROC of 0.64 [0.42–0.86], which was not significantly above 0.5. These results provide evidence for

the generalizability of our multi-biomarker panel to different trauma cohort.

Probe Set Gene

Symbol

Gene Name Fold Change

(MIIE/non-cases)

In Both 15- and 26-Probe Set Panel,

or Uniquely in 26-Probe Set Panel

210998_s_at HGF hepatocyte growth factor 1.85 15 and 26

238488_at IP O 11 importin 11 1.80 26

1557049_at BTBD19 BTB (POZ) domain containing 19 1.76 15 and 26

211372_s_at IL1R2 interleukin 1 receptor, type II 1.72 26

205003_at DOCK4 dedicator of cytokinesis 4 1.61 26

223660_at ADORA3 adenosine A3 receptor 1.59 15 and 26

229970_at KBTBD7 kelch repeat and BTB (POZ) domain

containing 7

1.59 15 and 26

203962_s_at NEBL Nebulette 1.58 26

205020_s_at ARL4A ADP-ribosylation factor-like GTPase 4A 1.57 15 and 26

203543_s_at KLF9 Kruppel-like factor 9 1.56 26

204438_at MRC1 mannose receptor, C type 1 1.56 26

201785_at RNASE1 ribonuclease, RNase A family 1 1.54 15 and 26

232164_s_at EPPK1 epiplakin 1 1.52 15 and 26

205427_at ZNF354A zinc finger protein 354A 1.51 15 and 26

231823_s_at SH3PXD2B SH3 and PX domains 2B 1.50 15 and 26

214032_at ZAP70 zeta chain of T cell receptor-associated

protein kinase 70kDa

0.67 15 and 26

202208_s_at ARL4C ADP-ribosylation factor-like GTPase 4C 0.66 26

227462_at ERAP2 ER aminopeptidase 2 0.66 15 and 26

206761_at CD96 CD96 molecule 0.66 15 and 26

203434_s_at MME membrane metallo-endopeptidase 0.65 26

238320_at NEAT1 nuclear paraspeckle assembly transcript 1

(non-protein coding)

0.65 15 and 26

203435_s_at MME membrane metallo-endopeptidase 0.65 15 and 26

204633_s_at RPS6KA5 ribosomal protein S6 kinase, 90kDa,

polypeptide 5

0.63 26

1555691_a_at KLRK1 killer cell lectin-like receptor subfamily K,

member 1

0.62 26

220646_s_at KLRF1 killer cell lectin-like receptor subfamily F,

member 1

0.55 15 and 26

206666_at GZMK granzyme K 0.50 26

Table 3. Fold Change and P values of the 15-Probe Set Panel from LASSO and 26-Probe Set Panel from Elastic Net, in Order of Magnitude of

upregulated to Downregulated
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DISCUSSION

Our study shows that employing novel prognostic models based on early blood transcriptome profiling

following severe trauma is an effective method for identifying patients who are particularly at high risk

for MIIE and thus hypersusceptible to infections. That the transcriptome information provides much better

prediction than injury severity information argues for the importance of considering each patient’s under-

lying susceptibility and of elucidating relevant molecular mechanisms. The comprehensive data set we

used had genome-wide transcriptome and clinical data collected longitudinally from a large number of pa-

tients, providing the opportunity to assess early susceptibility. Notably, our results suggest that by

measuring the biomarkers among our panel at admission, patients at increased risk for MIIE could be iden-

tified before any clinical signs of infection appear. The biomarker panel models in our study had particularly

high specificity and NPV measures, while also exerting good sensitivity and PPV. Moreover, when applied

to an external validation cohort, it still performed decently. On the other hand, none of the injury severity

scores used often at triage in the trauma setting were effective in predicting the MIIE.

The objective of the study was to provide proof-of-concept results for developing a method to gain addi-

tional insights into patients’ course of recovery from a simple blood draw at admission. Further prospective

studies that entail blood draws at admission and measuring the biomarkers we describe here to compare

with the severity scores and physiological measures taken normally would provide additional confirmation

of the notion that transcriptome data has the potential to improve outcome predictions in the clinical

setting. This study focused on the outcome of MIIEs and the potential prevention of infections; however,

it is conceivable that the biomarker discovery method described here can be applied to develop prediction

methods for other outcomes. A personalized medicine approach and rapid identification of patients with

high risk of specific outcomes based on a simple blood draw at admission is expected to improve surveil-

lance, facilitate decision-making and adequate resource allocation, and improve prevention and manage-

ment before outcomes occur.

Figure 4. Comparisons of the Performance of the Multi-Biomarker Panel versus the Clinical Severity Models

ROC curves of the various models constructed and the respective AUROC [95% CI], 10-fold cross-validation (CV) AUROC [95% CI], and p value of total

AUROC difference compared to the 15-probe set biomarker panel.

(A) Various models: 15-probe set biomarker panel, 26-probe set biomarker panel, APACHE II, ISS, NISS.

(B) Various combined biomarker and clinical score models: 15-probe set biomarker + APACHE, 15-probe set biomarker + ISS, 15-probe set biomarker +

NISS, 26-probe set biomarker + APACHE, 26-probe set biomarker + ISS, 26-probe set biomarker + NISS.
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Our findings could potentially facilitate clinical decision-making by effectively discriminating between those

who are expected to develop multiple infections and those who are not. A proposed approach could be

that patients who are found not to be hypersusceptible to MIIEs could continue to receive the currently

established standard of care, whereas those who are identified to be at high risk could benefit from increased

surveillance and additional preventative measures to be taken early. Additional interventions for the high-risk

group may include increased surveillance for early mobilization and removal of lines/tubes, coating IV lines

and urine catheters with antimicrobials and/or antibiotics, immunomodulatory nutrition therapies (Aghaee-

pour et al., 2017; Lorenz et al., 2015), and microbiome alterations (Harris et al., 2017; Tosh and McDonald,

2012). Such additionalmeasureswould incur unnecessary costs if implemented in all traumapatients; however,

it could be cost-effective when used in this targeted set of patients. Efforts aimed at increased prevention have

the potential to contribute to alleviating the current antibiotic resistance crisis, toxicity of antibiotics, and the

imposed burden on healthcare costs. It is also conceivable that accurate outcome prediction and risk stratifi-

cation methodologies, such as the one we describe here, could be valuable amid crisis situations that result in

severe hospital overload with critically ill patients and scarcity of medical resources. The ability to identify pa-

tients at low risk for specific morbidity and mortality could aid in informed prioritization of resource allocation

to patients with better potential for recovery and survival (The Commonwealth of Massachusetts, 2020; Insti-

tute of Medicine, 2013; University of Pittsburgh, 2020).

Having applied both LASSO and Elastic Net regression methods allowed us to construct a highly predictive

model from a minimal set of predictors, meanwhile also more comprehensively assess underlying biolog-

ical mechanisms by allowing additional transcripts to be included. The LASSO approach selects a stringent

set of predictors with less redundancy, which is advantageous in the clinical setting, where a device

requiring fewer measurements is more practical and easier to implement. The Elastic Net approach that

allows for correlated predictors to be selected found additional transcripts for a more comprehensive dis-

covery of biological mechanisms. The probe sets selected consisted of transcripts with GO terms relevant

to infections, as expected, and signaling pertinent to oncogenesis and cancer progression.

In our study, HGF was the transcript showing the highest upregulation among MIIE patient blood and in

both the 15-probe set and 26-probe set panels. HGF and Met expression levels have been suggested as

a putative biomarker for monitoring infections, as it is well established that theHGF-Met signaling pathway

deregulation promotes the growth and invasion by various pathogens (Imamura and Matsumoto, 2017).

Another upregulated transcript, ADORA3, has also been implicated in the clinical setting, and agonists

have been developed and shown to induce anti-inflammatory effects by altering the Wnt and NF-kB path-

ways. As such, the agonists are considered for purposes of treating cancers and inflammatory diseases such

as rheumatoid arthritis and psoriasis (Fishman et al., 2012). NEAT1 is a non-coding RNA that is shown to

colocalize withMALAT1, a long non-coding RNA often associated withmetastatic cancer, at many genomic

sites to transcriptionally regulate target genes (West et al., 2014).CD96 is highly expressed in T andNK cells

and well established to be a regulator of immune responses during infection and cancer (Georgiev et al.,

2018).

Figure 5. The AUROC CurveWhen Applying the Biomarker Panel Model Constructed using the Glue Grant, to the

Cabrera et al. Data Set as the External Validation Test Set

For both the (A) 24 hr and (B) 72 hr time point of the Cabrera et al. data set, our biomarker panel model conferred

significant prediction, as evidenced by the AUROC [95% CI] significantly above 0.5. On the other hand, the prediction

model with (C) Injury Severity Score (ISS) did not provide significant prediction.
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Elastic Net selected two probe sets corresponding toMME, providing further support for its importance in

MIIE outcome. Studies on its molecular mechanisms and clinical use of inhibitors to its protein product, Ne-

prilysin has been conducted widely, including in Alzheimer’s, heart failures, hypertension, and renal dis-

eases (Riddell and Vader, 2017). Our study suggests that its potential role in immunity among patients war-

rants further investigation. KLRK1 and KLRF1, both killer cell lectin-like receptor subfamily members, were

found by Elastic Net, providing evidence of their relevance in infections in the blunt trauma setting. These

receptors are abundant on NK cells, and it is well established that they play crucial roles in innate immunity

(Barten et al., 2001). These previous findings provide additional confidence in the relevance of our meth-

odology. The pathway analysis found key signaling pathway components among the central nodes having

extensive edges, including the major cytokines, TNF, TGFb-1, CCLs, and CXCLs, as well as key signaling

components, p38 MAPK, ERK1/2, SMAD3, and CTNNB1. These components represent the chief signaling

pathways that regulate inflammation, mitogenic response, and tissue regeneration, which are also often

dysregulated in cancer. Notably, our results suggest that the TNF, TGFb-1, and Wnt signaling pathways,

which are known to also cross talk with one another through downstream cascades, may be important cen-

tral pathways that explain the interconnection between the prognostic biomarkers identified. These results

may suggest that these signaling pathways may represent new host immunomodulatory targets that war-

rant future mechanistic studies. Follow-up studies in model organisms and controlled studies would aid in

establishing whether the genes identified in this study drive susceptibility and in uncovering further mech-

anistic insights.

It is noteworthy that when comparing the current biomarker panels in the blunt trauma setting with that

from our previous study among burn patients (Yan et al., 2015), we observed that none of the transcripts

in the panels were shared. These differences may indicate that increased risk depends on the interaction

of the type of trauma with each patient’s underlying susceptibility to MIIE. Such observation may suggest

the need for developing different multi-biomarker panels catered to different types of trauma.

Our study describes methods toward the development of precision medicine tools and offers the possibil-

ity of analyses also for outcomes other than multiple infections. The failure of drug trials targeting sepsis

(Marshall, 2014; Mitka, 2011) highlights the importance of further studies elucidating the underlying molec-

ular mechanisms and components of heterogeneity in susceptibility to infection and infection-related

morbidity within a population. It is conceivable that measuring our biomarker panel to triage patients ac-

cording to susceptibility to multiple infections will strategically guide prophylactic patient management

and help reduce the incidence of infections to limit sepsis (Boomer et al., 2011; Chaussabel, 2015; Parikh

et al., 2016). Moreover, the analysis process we describe in this study can potentially also be applied toward

biomarker development for sepsis outcome.

This study provides for the first time prediction models for hypersusceptibility to infections, which is highly

relevant for critically injured trauma patients, using a machine learning approach. A concern in general for

prediction model building is that models may overfit to a specific data set, making them less generalizable.

However, using the multi-biomarker panel derived from the Glue Grant population to make predictions in

the Cabrera et al. population yielded a relatively high AUROC, demonstrating the broader applicability of

our biomarker panel model. These two populations had comparable injury severity; however, they were

considerably different in their geographic locations and healthcare systems. Moreover, the gene expres-

sion levels were measured by two different transcriptome technologies, and the Cabrera et al. data set

was very small in sample size. Despite these differences, our multi-biomarker panels still conferred predic-

tion, providing additional assurance in the validity of our results and evidence for the generalizability of our

model. Additional large prospective studies would more rigorously test the validity and generalizability of

themulti-biomarker panel identified in this study. Nevertheless, this study provides the first step toward the

idea of developing novel approaches for predicting outcomes from blood transcriptome information at

admissions.

The value of early MIIE identification, prior to any clinical sign of infection, could be an indispensable tool in

other types of trauma and to a wide range of clinical settings. Uncovering biomarkers of increased suscep-

tibility to infections may open new avenues for novel therapeutic targets, as well as contribute to standard-

izing populations in clinical trials. Although predictive algorithms cannot eliminate medical uncertainty,

our analysis method is expected to be widely applicable to other susceptible populations, such as

those with diabetes or cardiac disease, the frail elderly population, those treated with immunosuppressive
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medication, as well as others. The described methodology of multi-biomarker panel development has the

potential to be applied to outcomes and clinical contexts other thanMIIE and trauma, providing additional

value.

Limitations of the Study

This study entailed a secondary analysis, with external validation using a small data set. Additional external

data sets with larger sample sizes, and moreover, a large prospective study would provide additional con-

crete evidence for the validity and utility of our biomarker panel.

Resource Availability
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TRANSPARENT METHODS 

Study design/patient 

We performed a secondary analysis of patient clinical and genomic data from the Glue Grant, a 

prospective, longitudinal study that enrolled patients at seven US Level 1 trauma centers 

between 2003 and 2009.  Permission for the use of de-identified data was obtained from the 

Massachusetts General Hospital Institutional Review Board (MGH IRB protocol 2008-P-

000629/1).  Among the 2,002 patients in the dataset, our inclusion criteria identified 128 adult 

(age ≥ 16 years) patients who suffered blunt trauma (excluding penetrating injury only, or blunt 

with penetrating injury), have follow-up time of at least 10 days since blood collection, and 

having early (≤ 48 hours since trauma injury) blood microarray transcriptome data of high RNA 

quality (RNA quality ≥ 3 out of 4) and chips that were not outliers. At least three days from time 

of blood draw to first recorded infection (Figure 1A, B).  Where patients had multiple blood 

samples that fit the criteria, the earliest was used.  Clinical outcomes and injury severity scores 

(APACHEII, ISS, NISS, Denver 2, Marshall) were recorded by participating institutions 

according to the guidelines outlined by the Glue Grant Consortium.  Body mass index (BMI) was 

calculated from recorded height and weight, and BMI categories were assigned according to the 

Centers for Disease Control and Prevention’s recommendations.  For assigning categories of 

major clinical procedures, recorded sub-categories were consolidated to create more general 

categories.  Similarly, various non-infection complications and surgical site infection sub-

categories were consolidated, as indicated below.   

 

Major clinical procedures categories: 

For assigning categories of major clinical procedures, sub-categories were combined as follows:  

“Laparotomy” includes entries of laparotomy NOS, and laparotomy with other procedure, with 

splenectomy, with repair/packing of the liver, with the repair of gastric, duodenal or small bowel 

perforation, with the repair of the large bowel or rectal perforation, with nephrectomy, with repair 



of major vascular injury, with drainage of intra-abdominal abscess, and second-look laparotomy 

or abdominal washout.  “Orthopedic” includes soft tissue debridement/amputations, internal 

fixation of femur, open skeletal fixation exclusive of femur, percutaneous skeletal fixation, and 

spine fixation.  “Vascular” includes peripheral vascular and angiographic embolization.  

“Craniotomy” and “Thoracotomy” were used as recorded in the original dataset.   

Surgical site infections categories: 

For surgical site infection categories, “Superficial incisional infection” includes recordings of the 

shoulder girdle, lumbar spine (bony), lower extremity, and abdomen and pelvis (non-bony) 

indicated as superficial incisional and “Deep incisional” combines upper extremity, lower 

extremity, pelvis (body), and abdomen and pelvis (non-body) recorded as deep incisional, as 

well as chest (pleural space), abdomen and pelvis (non-bony), upper extremity, and lower 

extremity recorded as organ/space.   

Outcome definition: 

Patients were assigned to MIIE-cases (≥2 cumulative infection episodes) and non-cases (≤ 1 

infection episode), following the same method as in our previous study (Yan et al., 2015), in 

which a decision tree considering the timing and type of infection and the isolated pathogen was 

used to tabulate total independent infection episodes (Supplementary Figure S1).   

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Software used 

R version 3.4.4 was used for the statistical analyses, as described below, with the following 

packages and versions: GCRMA 2.50.0 (Wu and Irizarry, 2017), arrayQualityMetrics 3.34.0 

(Kauffmann et al., 2009), EMA 1.4.5 (Servant et al., 2010), LIMMA 3.34.9 (Ritchie et al., 2015), 

Glmnet 2.0-16 (Friedman et al., 2010), pROC 1.13.0 (Robin et al., 2011), Caret 6.0-81 (Kuhn, 

2008), epiR 0.9-99 (Stevenson et al., 2019). 

 



Statistical Analyses 

Baseline characteristics are reported as medians with interquartile range, means with 

standard deviation, or total numbers with proportions in percentages, as indicated in the legend 

(Table 1).  Medians between two groups (non-cases versus MIIE-cases) were compared using 

the Mann-Whitney U test, and means were analyzed by the unpaired t-test assuming equal 

variance.  For comparing proportions, the Chi-square test was used for expected values 5 or 

greater, or Fisher’s exact test was used for an expected value less than 5.   

For processing microarray data files, first, the GCRMA package was employed to obtain 

normalized log2 expression values of probe sets.  Then chips that were flagged as outliers by 

the arrayQualityMetrics package were excluded.  Subsequently, internal control probe sets were 

removed, and the EMA package was used to filter out low abundance probe sets (below the 

threshold of 3.5 log2 expression value across all samples).  These filtering steps reduced the 

number of probe sets from 54,675 to 25,567 for subsequent analyses.  The LIMMA package 

was used to identify probe sets with at least 1.5-fold difference between the non-cases and 

MIIE-cases; this reduced the number of probe sets to 137.  Functional annotation analyses were 

conducted using Database for Annotation, Visualization, and Integrated Discovery (DAVID), 

version 6.8 (Huang da et al., 2009), using the 1.5-fold changed 137 probe sets as the target and 

total 25,567 probe sets as the background set. The fold enrichment, unadjusted and FDR-

adjusted p-values were reported. 

The Glmnet package was used to implement the Least absolute shrinkage and selection 

operator (LASSO) regression and Elastic Net regression, to select probe sets that were 

predictive of MIIE, as previously conducted (Yan et al., 2015).  The penalty weight, lambda (λ), 

was identified by finding the 10-fold cross-validation (CV) error, repeated 100 times.  Probe sets 

were selected according to the value of λ that yielded minimum average binomial deviance plus 

one standard error on the test set (λ1se), rather than minimum (λmin) to limit overfitting.  For 

LASSO, the λ1se was found to be 0.068, and for the Elastic net, it was found to be 0.108 



(Supplementary Figure S2).  This biomarker panel selection process yielded15 probe sets with 

LASSO and 26 probe sets with Elastic net.  For building the clinical model, similarly to our 

previous study (Yan et al., 2015), stepwise regression was conducted to select each of the 

severity scores (APACHEII, ISS, NISS), with potential other covariates.  For APACHEII, which 

includes age as one of the factors for the score calculation, sex and race were used for 

stepwise selection.  ISS and NISS were each tested with age, sex, and race.  For all the 

severity scores, univariate models with the scores only were selected.   

The following logistic regression models were constructed for the binary MIIE outcome: 

(a) multivariate model with the 15 probe set LASSO predictors, (b) multivariate model with the 

26 probe sets Elastic Net predictors, (c) univariate models of various clinical scores (APACHEII 

ISS, NISS), and (d) multivariate models with a combination of the 15, or 26 probe sets with each 

of the clinical scores.  The area under the receiver operating characteristic curve (AUROC) with 

bootstrap 95% confidence intervals were estimated and used to compare the models using the 

pROC package.  The comparison was repeated for 10-fold cross-validation sampling using the 

Caret package.  Sensitivity, specificity, positive predictive value (PPV), and negative predictive 

value (NPV) and confidence intervals were calculated using the epiR package, using the optimal 

probability cut-off determined as the top-left corner of the ROC curve for each model.   

For the volcano plot, log2 fold change comparing MIIE-cases and non-cases was plotted 

on the x-axis and p-values on the y-axis, of all initial 25,567 probe sets after the filtering step.  

Data points of probe sets with at least 1.5-fold expression level difference (137 probe sets) are 

marked with black dots.  Among these 137 probe sets, those corresponding to the 15 probe set 

panel selected with LASSO are marked with orange squares, and additional probe sets selected 

by Elastic Net for the 26 probe set panel are marked with blue triangles.  Ingenuity Pathway 

Analyses (IPA) was used to generate an interaction network of the 26 probe sets selected by 

Elastic Net (QIAGEN) (Kramer et al., 2014).   

 



External Validation Dataset and Statistical Analyses  

Blood transcriptome data for external validation was obtained from the Cabrera et al., which 

conducted a secondary analysis of the Activation of Coagulation and Inflammation in Trauma 

(ACIT2) cohort (Cabrera et al., 2017). The ACIT2 study enrolled adult trauma patients at the 

Royal London Hospital, and the transcriptome study was conducted among patients enrolled 

between 2008-2012.  The datasets with normalized Illumina microarray log2 expression levels, 

accompanying clinical information, and infections outcome were downloaded from: 

https://github.com/C4TS/HyperacutePhase.  For our analysis, we included 28 unique critically 

injured trauma patients with baseline ISS and infections outcome information available, after 

removing those with missing information.  The Cabrera et al. data set does not have the 

resolution of the infection outcome that our Glue grant data set does; therefore we classified 

infection “yes” or “no” status, as indicated in their dataset.  This subpopulation’s ISS range was 

25-51 (median 31), and the age range was 17-69 (median 37.5), which were comparable to the 

Glue Grant population.  Among them, 26 had blood transcriptome data available for the 24 hour 

time point, and 25 had data available for the 72 hour time.  Expression values of all the genes 

represented in the 15 probe set panel, except SH3PXD2B, was available in the Cabrera et al. 

dataset (“NormData” file).  The data processing steps in Cabrera et al. entailed filtering out 

“nonexpressed” probe sets that did not pass the detection p-value threshold of 0.05 in at least 

three arrays.  Therefore, we assumed the expression values for SH3PXD2B to be 0 for our 

analysis.  We applied the 15 probe set panel model to calculate the predicted probabilities for 

the subjects in the Cabrera et al. dataset and constructed the ROC curve.    

 

 

 

 

 

 

 

https://github.com/C4TS/HyperacutePhase


Supplementary Tables and Figures 

 

Injury mechanisms 

Fall 7 (5.5%) 6 (7.1%) 1 (2.3%) 0.42d 

Machinery 1 (0.8%) 1 (1.2%) 0 (0%) 1.00d 

MVC – occupant  70 (54.7%) 43 (50.6%) 27 (62.8%) 0.26d 

MVC – motorcyclist 23 (18.0%) 16 (18.8%) 7 (16.3%) 0.81d 

MVC – cyclist 3 (2.3%) 3 (3.5%) 0 (0%) 0.55d 

MVC – pedestrian 19 (14.8%) 13 (15.3%) 6 (14.0%) 1.00d 

Assault 1 (0.8%) 1 (1.2%) 0 (0%) 1.00d 

Other 4 (3.1%) 2 (2.4%) 2 (4.7%) 0.60d 

 
Supplementary Table S1. Injury mechanisms among all 128 patients in the study, related to 
Table 1.   
 
 
 
 
 
 
 

Death day since injury Primary cause of death Secondary cause of death MIIE case 

10 Multiple organ failure  No 

10 Sepsis Multiple organ failure No 

20 Hypoxia  No 

11 Severe head injury trauma Cardiac dysfunction Yes 

24 Brain death  Yes 

 
Supplementary Table S2. Causes of death among the 5 non-survivors in the study, related to 
Table 1.   
 

 
 
 
 
 
 

Clinical models  OR [95% CI]  p-value 

APACHE II 1.11 [1.03 – 1.19] <0.01 ** 

ISS 1.03 [1.00 – 1.06] 0.06 

NISS 1.03 [1.00 – 1.06] 0.06 

 

Supplementary Table S5. OR estimates [95%CI] and coefficient p-values of the clinical 

severity score univariate models, related to Fig. 4. 

 

 



 

15 probe set biomarker panel multivariate model: 26 probe set biomarker panel multivariate model: 

MODEL OR [95% CI]  p-value MODEL OR [95% CI]  p-value 

205427_at: ZNF354A 2.20 [1.42 – 3.81] < 0.01** 202208_s_at: ARL4C 4.12 [0.47 – 44.23] 0.21 

232164_s_at: EPPK1 1.94 [1.14 – 3.50] 0.02* 1555691_a_at: KLRK1 3.70 [0.97 – 17.46] 0.07 

201785_at: RNASE1 1.78 [0.90 – 3.82] 0.11 231823_s_at: SH3PXD2B 2.58 [0.65 – 13.11] 0.21 

1557049_at: BTBD19 1.69 [0.82 – 3.69] 0.17 232164_s_at: EPPK1 2.30 [1.21 – 4.86] 0.02* 

223660_at: ADORA3 1.61 [0.81 – 3.48] 0.20 205427_at: ZNF354A 2.27 [1.30 – 4.45] < 0.01** 

229970_at: KBTBD7 1.43 [0.65 – 3.26] 0.38 201785_at: RNASE1 2.12 [0.92 – 5.56] 0.09 

231823_s_at: SH3PXD2B 1.16 [0.45 – 3.17] 0.77 203434_s_at: MME 2.10 [0.22 – 25.75] 0.54 

206761_at: CD96 0.94 [0.23 – 3.55] 0.93 1557049_at: BTBD19 1.97 [0.76 – 5.25] 0.16 

205020_s_at: ARL4A 0.90 [0.28 – 2.80] 0.86 204438_at: MRC1 1.92 [0.77 – 5.29] 0.18 

214032_at: ZAP70 0.81 [0.22 – 3.13] 0.76 223660_at: ADORA3 1.76 [0.75 – 4.59] 0.21 

227462_at: ERAP2 0.67 [0.41 – 1.03] 0.08 203962_s_at: NEBL 1.45 [0.94 – 2.29] 0.10 

210998_s_at: HGF 0.65 [0.29 – 1.35] 0.26 229970_at: KBTBD7 1.43 [0.42 – 5.17] 0.57 

220646_s_at: KLRF1 0.61 [0.34 – 1.06] 0.09 238488_at: IPO11 1.24 [0.58 – 2.76] 0.58 

238320_at: NEAT1 0.53 [0.32 – 0.83] < 0.01** 204633_s_at: RPS6KA5 1.17 [0.36 – 3.93] 0.79 

203435_s_at: MME 0.50 [0.25 – 0.91] 0.04* 203543_s_at: KLF9 1.01 [0.29 – 3.57] 0.99 

   205003_at: DOCK4 0.96 [0.55 – 1.75] 0.90 

   211372_s_at: IL1R2 0.85 [0.20 – 3.55] 0.83 

   206761_at: CD96 0.80 [0.12 – 5.05] 0.81 

   205020_s_at: ARL4A 0.60 [0.14 – 2.30] 0.47 

   227462_at: ERAP2 0.58 [0.32 – 0.97] < 0.05* 

   206666_at: GZMK 0.57 [0.21 – 1.48] 0.26 

   238320_at: NEAT1 0.39 [0.18 – 0.73] < 0.01** 

   220646_s_at: KLRF1 0.35 [0.14 – 0.82] 0.02* 

   210998_s_at: HGF 0.33 [0.09 – 0.99] 0.07 

   203435_s_at: MME 0.31 [0.03 – 2.38] 0.28 

   214032_at: ZAP70 0.28 [0.03 – 2.04] 0.22 

 

Supplementary Table S6. OR estimates [95%CI] and coefficient p-values of the biomarker 

panel multivariate models, related to Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

MODEL 

+ APACHE II + ISS + NISS  

OR [95% CI]  p-value OR [95% CI]  p-value OR [95% CI]  p-value 

202208_s_at: ARL4C 3.89 [0.45 – 41.33] 0.23 3.74 [0.40 – 45.88] 0.27 4.32 [0.45 – 54.91] 0.23 

1555691_a_at: KLRK1 3.76 [0.99 – 17.66] 0.07 3.66 [0.96 – 17.26] 0.07 3.74 [0.97 – 17.79] 0.07 

231823_s_at: SH3PXD2B 2.64 [0.65 – 13.84] 0.21 2.50 [0.63 – 12.95] 0.23 2.62 [0.65 – 13.77] 0.21 

232164_s_at: EPPK1 2.30 [1.20 – 4.84] 0.02* 2.26 [1.18 – 4.85] 0.02* 2.32 [1.21 – 4.95] 0.02* 

201785_at: RNASE1 2.20 [0.94 – 5.73] 0.08 2.10 [0.92 – 5.50] 0.10 2.28 [1.30 – 4.50] < 0.01** 

205427_at: ZNF354A 2.18 [1.22 – 4.34] 0.01* 2.26 [1.29 – 4.42] < 0.01** 2.13 [0.92 – 5.69] 0.09 

1557049_at: BTBD19 1.98 [0.75 – 5.41] 0.17 1.91 [0.72 – 5.24] 0.20 2.11 [0.22 – 25.96] 0.53 

204438_at: MRC1 1.92 [0.77 – 5.33] 0.18 1.91 [0.76 – 5.28] 0.18 2.00 [0.76 – 5.47] 0.16 

203434_s_at: MME 1.79 [0.17 – 23.44] 0.64 2.08 [0.22 – 25.72] 0.54 1.93 [0.77 – 5.35] 0.18 

223660_at: ADORA3 1.77 [0.75 – 4.72] 0.21 1.71 [0.71 – 4.56] 0.25 1.78 [0.74 – 4.78] 0.21 

203962_s_at: NEBL 1.45 [0.94 – 2.30] 0.10 1.44 [0.93 – 2.28] 0.11 1.45 [0.94 – 2.30] 0.10 

229970_at: KBTBD7 1.44 [0.43 – 5.18] 0.56 1.44 [0.43 – 5.24] 0.56 1.42 [0.42 – 5.16] 0.57 

204633_s_at: RPS6KA5 1.26 [0.37 – 4.41] 0.71 1.18 [0.36 – 3.96] 0.78 1.24 [0.57 – 2.76] 0.59 

238488_at: IPO11 1.25 [0.57 – 2.80] 0.58 1.24 [0.58 – 2.75] 0.57 1.16 [0.35 – 3.92] 0.80 

203543_s_at: KLF9 0.97 [0.27 – 3.49] 0.96 0.99 [0.28 – 3.56] 0.99 1.01 [0.29 – 3.56] 0.99 

205003_at: DOCK4 0.96 [0.54 – 1.74] 0.89 0.97 [0.55 – 1.77] 0.91 0.96 [0.54 – 1.75] 0.89 

211372_s_at: IL1R2 0.88 [0.20 – 3.75] 0.86 0.87 [0.20 – 3.65] 0.85 0.85 [0.20 – 3.54] 0.82 

206761_at: CD96 0.83 [0.12 – 5.27] 0.85 0.81 [0.12 – 5.04] 0.82 0.80 [0.11 – 5.06] 0.81 

205020_s_at: ARL4A 0.64 [0.14 – 2.64] 0.54 0.61 [0.14 – 2.39] 0.49 0.59 [0.13 – 2.31] 0.46 

227462_at: ERAP2 0.59 [0.32 – 0.99] 0.06 0.57 [0.31 – 0.96] < 0.05* 0.58 [0.32 – 0.97] 0.05 

206666_at: GZMK 0.58 [0.21 – 1.51] 0.28 0.60 [0.20 – 1.63] 0.33 0.57 [0.20 – 1.50] 0.26 

238320_at: NEAT1 0.39 [0.19 – 0.75] < 0.01** 0.39 [0.19 – 0.74] < 0.01** 0.38 [0.18 – 0.74] < 0.01** 

220646_s_at: KLRF1 0.37 [0.14 – 0.86] 0.03* 0.36 [0.14 – 0.86] 0.03* 0.35 [0.13 – 0.84] 0.03* 

203435_s_at: MME 0.37 [0.03 – 3.23] 0.39 0.31 [0.03 – 2.47] 0.29 0.33 [0.08 – 1.01] 0.08 

210998_s_at: HGF 0.33 [0.09 – 0.98] 0.06 0.35 [0.09 – 1.10] 0.10 0.30 [0.03 – 2.37] 0.28 

214032_at: ZAP70 0.28 [0.03 – 2.00] 0.21 0.30 [0.03 – 2.38] 0.26 0.27 [0.03 – 2.14] 0.22 

Clinical Score 1.02 [0.92 – 1.14] 0.69 1.01 [0.95 – 1.06] 0.80 1.00 [0.94 – 1.05] 0.90 

 

Supplementary Table S7. OR estimates [95%CI] and coefficient p-values of the combined 

genomic (15 or 26 probe set panel) and clinical severity score multivariate models, related to 

Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Table S8. Sensitivity and specificity, PPV and NPV of the various models, 

related to Fig. 4. 

 
 
 

Model Probability 

threshold 

Corresponding 

clinical score 

cut-offs 

Sensitivity 

 [95%CI] 

Specificity  

[95%CI] 

PPV 

 [95%CI] 

NPV  

[95%CI] 

15 biomarker 

panel   

0.561 NA 0.74 [0.59-0.86] 0.94 [0.87-0.98] 0.86 [0.71-0.95] 0.88 [0.79-0.94] 

26 biomarker 

panel   

0.476 NA 0.79 [0.64-0.90] 0.94 [0.87-0.98] 0.87 [0.73-0.96] 0.90 [0.82-0.95] 

APACHEII 

 

0.315 28.22 0.72 [0.56-0.85] 0.54 [0.43-0.65] 0.44 [0.32-0.57] 0.79 [0.67-0.89] 

ISS 

 

0.267 21.02 0.95 [0.84-0.99] 0.31 [0.21-0.42] 0.41 [0.31-0.51] 0.93 [0.76-0.99] 

NISS 

 

0.344 39.50 0.60 [0.44-0.75] 0.60 [0.49-0.70] 0.43 [0.31-0.57] 0.75 [0.63-0.85] 

15 biomarker 

panel  

+APACHEII 

0.479 NA 0.77 [0.61-0.88] 0.93 [0.85-0.97] 0.85 [0.69-0.94] 0.89 [0.80-0.94] 

15 biomarker 

panel +ISS 

0.511 NA 0.77 [0.61-0.88] 0.93 [0.85-0.97] 0.85 [0.69-0.94] 0.89 [0.80-0.94] 

15 biomarker 

panel +NISS 

0.505 NA 0.77 [0.61-0.88] 0.93 [0.85-0.97] 0.85 [0.69-0.94] 0.89 [0.80-0.94] 

26 biomarker 

panel  

+APACHEII 

0.463 NA 0.81 [0.67-0.92] 0.92 [0.84-0.97] 0.83 [0.69-0.93] 0.91 [0.82-0.96] 

26 biomarker 

panel +ISS 

0.476 NA 0.79 [0.64-0.90] 0.94 [0.87-0.98] 0.87 [0.73-0.96] 0.90 [0.82-0.95] 

26 biomarker 

panel +NISS 

0.446 NA 0.81 [0.67-0.92] 0.92 [0.84-0.97] 0.83 [0.69-0.93] 0.91 [0.82-0.96] 



 
 
 
Supplementary Figure S1. Decision tree used to define independent infection episodes from 
clinical and microbiological records, taking into account, the timing of infections, type of infection 
and pathogen isolated, related to Fig. 1.  Each infection record was placed on a “waiting list” for 
six days if the types and modes of infection and pathogen were similar, or two days if they were 
not.  This method allowed tabulation of the number of total independent infection episodes that 
is not an extension of a previously recorded infection from the time of the injury.  Adapted from 
Yan et al, 2015. 25 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Supplementary Figure S2.  LASSO and Elastic Net regression outputs, related to Fig. 4.  (A) A 
plot of 10-fold CV repetition results, with dotted lines showing λmin and λ1se values, where 15 probe 
sets were selected. (B) LASSO coefficient profile plot of the coefficient paths, where at λ1se, the 
selected 15 probe sets have coefficients significantly different from zero.  (C) 10-fold CV results 
and (D) coefficient profile plot for Elastic Net. 
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