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Abstract

Interferon alpha (IFNα) is widely used for treatment of melanoma and certain other malignancies. 

This cytokine as well as the related IFNβ exerts potent anti-tumorigenic effects; however, their 

efficacy in patients is often suboptimal. Here we report that inflammatory signaling impedes the 

effects of IFNα/β. Melanoma cells can secrete pro-inflammatory cytokines that inhibit cellular 

responses to IFNα/β via activating the ligand-independent pathway for the phosphorylation and 

subsequent ubiquitination and accelerated degradation of the IFNAR1 chain of Type I IFN 

receptor. Catalytic activity of the p38 protein kinase was required for IFNAR1 downregulation 

and inhibition of IFNα/β signaling induced by proinflammatory cytokines such as Interleukin 1 

(IL-1). Activation of p38 kinase inversely correlated with protein levels of IFNAR1 in clinical 

melanoma specimens. Inhibition of p38 kinase augmented the inhibitory effects of IFNα/β on cell 

viability and growth in vitro and in vivo. The role of inflammation and p38 protein kinase in 

regulating cellular responses to IFNα/β in normal and tumor cells are discussed.
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INTRODUCTION

Malignant melanoma affects millions of people worldwide and, considering its rapidly rising 

incidence and high mortality, represents a major health problem. Although surgery is 

effective in early melanoma stages, high resistance of melanoma cells to chemo- and 

radiation therapy compromises post-surgical efforts that prevent recurrence in metastatic 

disease (Fecher and Flaherty 2009, Rigual et al 2008, Soengas and Lowe 2003). Adjuvant 

therapy with a recombinant version of endogenous cytokine IFNα is one of the few FDA-

approved treatments (Ascierto and Kirkwood 2008, Kaehler et al 2010, Yao et al 2009). 

Although IFNα exhibits potent anti-proliferative and anti-survival effects towards both 

tumor cells and endothelial cells of tumor vasculature in vitro (Bracarda et al 2010), its 

therapeutic efficacy is limited (reviewed in (Mocellin et al 2010)). Overcoming these 

limitations requires a better understanding of the mechanisms that temper the effects of 

pharmaceutical IFNα in patients.

Some of the clues in regard to these mechanisms could be gleaned from the ability of 

melanoma to grow and invade despite the presence of endogenous IFNα or related IFNβ in 

the tumor microenvironment. Recent years have witnessed a renewed interest in the 

important role of tissue inflammation in human cancers in general. This interest is supported 

by a wealth of mechanistic, epidemiologic and clinical data (reviewed in (Balkwill and 

Mantovani 2010, Grivennikov et al 2010, Mantovani et al 2008)). Roles of inflammatory 

signaling in promoting tumor growth, angiogenesis and metastatic progression of malignant 

melanoma have been well documented (Melnikova and Bar-Eli 2009).

Pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα), interleukins (IL-1, 

IL-6, etc) and others play important roles in mechanistically linking the pathogenetic 

cascades of tumorigenesis and inflammatory responses. These cytokines can be produced by 

various types of cells including malignant melanoma (Bennicelli et al 1989, Kock et al 1989, 

Moretti et al 1999, Okamoto et al 2010, Sander and Boeryd 1996). Pro-inflammatory 

cytokines stimulate diverse receptors, however, these signaling pathways often converge on 

activating several key protein kinases including stress activated protein kinases (JNK and 

p38) and IκB kinase (IKK, reviewed in (Germano et al 2008, Lin and Karin 2007)). The 

importance of these pathways in regulating the responsiveness of cells to IFNα/β is largely 

unknown.

All effects of IFNα/β on cells are elicited through interaction with a cognate cell surface 

Type I IFN receptor that consists of IFNAR1 and IFNAR2c chains. This interaction leads to 

catalytic activation of Janus kinases (JAK1 and TYK2), tyrosine phosphorylation of Signal 

Transducers and Activators of Transcription (STAT1/2) proteins and activation of 

transcription of IFN-stimulated genes whose products restrict cell proliferation and viability 

(reviewed in (Aaronson and Horvath 2002, Platanias 2005, Uze et al 2007)). Upon 

completion of the transcriptional program, the expression of negative regulators of JAK and 

STAT activities limits the magnitude and duration of this signaling. However, much earlier 

the ability of cells to further react to additional IFNα/β molecules is rapidly eliminated by 

the ligand-induced downregulation of Type I IFN receptors from the cell surface (Coccia et 

al 2006).
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IFNα/β-induced downregulation of Type I IFN receptor is governed by ubiquitination of its 

IFNAR1 chain mediated by the SCFβTrcp2/HOS E3 ubiquitin ligase (Kumar et al 2003, 

Kumar et al 2007a). This ligase is recruited to IFNAR1 upon IFNα/β-induced and JAK 

kinase activity-dependent phosphorylation of the Ser residues (e.g., Ser535) within the 

degron of IFNAR1 (Kumar et al 2004, Liu et al 2008, Marijanovic et al 2006) mediated by 

protein kinase D2 (Zheng et al 2011). Intriguingly, degron phosphorylation of IFNAR1 can 

also occur via a ligand/JAK-independent pathway (Liu et al 2008); this pathway can be 

activated in some melanoma cells (Huangfu et al 2010).

Intrinsic or acquired refractoriness to extracellular signals that inhibit cell growth and 

proliferation (such as Type I IFN) represents a major hallmark of cancer (Hanahan and 

Weinberg 2000). Among the potential mechanisms, downregulation of IFNAR1 that is 

expected to render cells refractory to IFNα/β became a focus of our investigation. Low 

levels of IFNAR1 indeed correlate with poor prognosis for patients with metastatic 

melanoma (Messina et al 2008). Furthermore, several melanoma cell lines can secrete 

soluble factors that promote degradation of IFNAR1 and ensuing inhibition of JAK-STAT 

signaling specifically induced by Type I IFN (Huangfu et al 2010). Here we report the 

identification of pro-inflammatory cytokines (such as interleukin 1, IL1) as factors that can 

be secreted by melanoma to stimulate the phosphorylation and degradation of IFNAR1. We 

also report that induction of this inflammatory pathway depends on activity of p38 kinase 

and leads to inhibition of cell responses to IFNα/β.

RESULTS

Melanoma-secreted factors accelerate the ligand-independent degradation of IFNAR1

Several melanoma cell lines can secrete soluble factors that inhibit IFNα signaling and 

promote phosphorylation of IFNAR1 degron (S535), and ensuing ubiquitination and 

degradation of IFNAR1 (Huangfu et al 2010). We sought to characterize these factors and 

determine how they induce the phosphorylation of IFNAR1 degron on Ser535. This 

phosphorylation can be mediated via either ligand-inducible or ligand independent pathway. 

The latter occurs in the absence of IFNα/β (Liu et al 2008) but requires activity of casein 

kinase 1α (CK1α (Liu et al 2009)), and is stimulated by a priming phosphorylation of 

IFNAR1 on Ser532 (Bhattacharya et al 2010). Addition of the neutralizing antibodies 

against IFNα/β to the melanoma-conditioned media did not affect the media's ability to 

induce Ser535 phosphorylation on endogenous IFNAR1 in HeLa cells (Figure 1A) or in 293 

cells (Figure S1). Intriguingly, the effect of secreted factors was sensitive to the presence of 

CK1 inhibitor D4476 (Figure 1B). Furthermore, treatment of cells with the melanoma-

conditioned media induced the priming phosphorylation of IFNAR1 on Ser532 (Figure 1A), 

and mutation of this site prevented induction of the degron phosphorylation on Ser535 by 

melanoma-conditioned media but not by IFNα (Figure 1C). In addition, efficient induction 

of IFNAR1 ubiquitination (Figure 1D) and acceleration of IFNAR1 degradation (Figure 1E) 

in cells treated with secreted factors seemed to depend on the integrity of the priming site 

(Ser532). Consistent with our recent report (Huangfu et al 2010), melanoma-conditioned 

media robustly inhibited IFNα-induced STAT1 phosphorylation (Figure 1F). This inhibition 

could be partially alleviated by expression of exogenous IFNAR1 proteins. Although the 
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magnitude of this rescue of IFNα signaling might be underestimated due to the limitations in 

transfection efficacy, IFNAR1S532A mutant was noticeably more active than the wild type 

receptor under these conditions (Figure 1F). These results suggest that melanoma-secreted 

factors accelerate IFNAR1 degradation and downregulation in a manner dependent on the 

priming phosphorylation of IFNAR1 on Ser532; this mechanism might contribute to the 

inhibition of IFNα signaling.

Inflammatory cytokines stimulate IFNAR1 degradation and attenuate IFNα signaling

To identify the factor(s) responsible for IFNAR1 phosphorylation and degradation, we 

profiled the levels of 38 cytokines, growth factors and soluble receptors secreted by 

melanocytes or melanoma cells using the Luminex protein array system. Several of these 

factors, including IFNα, IFNγ, IL-6, IL-7 and IL-1α, were detectable in media conditioned 

by the 1205Lu melanoma cells but not by melanocytes (Supplementary Table). Treatment of 

cells with recombinant IL-1α but not with IFNγ, IL-6 or IL-7 robustly increased 

phosphorylation of endogenous IFNAR1 on priming Ser532 (Figure 2A). IL-1α induces 

diverse intracellular signaling pathways upon activation of IL-1 receptor. IL-1β, a related 

cytokine that was not dramatically upregulated in melanoma cells tested (Supplemented 

Table), yet known to utilize the same receptor as IL-1α, also stimulated priming 

phosphorylation of IFNAR1 on Ser532 (Figure 2A) and its degron phosphorylation on 

Ser535 (data not shown and Figure 4D–F). Intriguingly, another pro-inflammatory cytokine, 

tumor necrosis factor alpha (TNFα) also stimulated phosphorylation of Ser535 on either 

endogenous (Figure 2B) or exogenous IFNAR1. Phosphorylation of IFNAR1 protein was 

dependent on the integrity of Ser532 (Figure S2) and phosphorylation of this residue in 

response to TNFα was observed as well (Figure S3). These data suggest that some pro-

inflammatory cytokines such as IL-1α/β and TNFα can stimulate the signaling pathways 

that lead to phosphorylation of the IFNAR1.

Pre-treatment of cells with an antagonist of IL-1 receptor, Anakinra, attenuated priming 

phosphorylation and ubiquitination of IFNAR1 induced by melanoma-conditioned media 

(Figure 2C). For further analyses of effects that occur downstream of IL-1 receptor, we 

chose readily available recombinant IL-1β. This cytokine stimulated ubiquitination of wild 

type Flag-IFNAR1 but not of its mutant lacking Ser532 (Figure 2D). These results indicate 

that activation of the IL-1 receptor is partially responsible for the effects of melanoma media 

on IFNAR1 ubiquitination and that the latter process can be stimulated by pro-inflammatory 

cytokines.

An accelerated degradation of IFNAR1 was observed in HeLa cells treated with IL-1β 

(Figure 3A) or TNFα (data not shown). Conversely, treatment with Anakinra slowed down 

the IFNAR1 turnover induced by melanoma-conditioned media (Figure 3B) and increased 

total levels of IFNAR1 in 1205Lu melanoma cells (Figure 3C). Intriguingly, pre-treatment 

of HeLa cells with recombinant IL-1 noticeably decreased the extent of STAT1 

phosphorylation in response to IFNα (Figure 3D). Furthermore, adding Anakinra to the 

melanoma cell-conditioned media partially compromised its ability to inhibit IFNα-induced 

STAT1 phosphorylation in HeLa cells (Figure 3E). Finally, treatment with Anakinra 

augmented IFNα signaling in 1205Lu cells (Figure 3F). These results indicate that pro-
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inflammatory cytokines signal to promote downregulation and degradation of IFNAR1 and 

this mechanism contributes to suppression of IFNα signaling.

Role of p38 kinase in modulation of cellular responses to IFNα by pro-inflammatory 
cytokines

We next sought to delineate the mechanisms underlying induction of priming 

phosphorylation of IFNAR1 in response to pro-inflammatory cytokines. Proximal IL-1-

induced signaling was shown to involve activities of TRAF6 E3 ubiquitin ligase, Ubc13 E2 

ubiquitin conjugating enzyme and TAK1 protein kinase. Distal IL-1-stimulated signaling 

events are common with those induced by TNFα and include activation of IκB kinases 

(IKK), Jun N-terminal kinase (JNK), p38 stress activated protein kinase and Erk (reviewed 

in (Lin and Karin 2007, Weber et al 2010)). Expression of dominant negative mutant of 

Ubc13 inhibited priming phosphorylation of IFNAR1 on Ser532 induced by IL-1β in HeLa 

cells (Figure 4A). Furthermore, knockdown of either TRAF6 or TAK1 (monitored by a 

decreased efficacy of JNK phosphorylation) also attenuated priming phosphorylation 

(Figure 4B). Treatment of cells with p38 kinase inhibitors SB203580 or VX-702 (but not 

with IKK inhibitor NBD or JNK inhibitor SP600125 or PI3K inhibitor LY294002) 

dramatically inhibited phosphorylation of IFNAR1 in response to either IL-1β (Figure 4C–

D) or TNFα (Figure S3 and data not shown). These results implicate p38 kinase functions 

downstream of TRAF6, Ubc13 and TAK1 in mediating the priming phosphorylation of 

IFNAR1 in response to pro-inflammatory cytokines.

Indeed, transient knockdown of p38α kinase in HeLa cells inhibited Ser532-phosphorylation 

induced by either IL-1β or melanoma-conditioned media (Figure 4E). Under these 

conditions (but not upon treatment of cells with IFNα), we also observed a decrease in 

phosphorylation of IFNAR1 degron on Ser535. Furthermore, murine IL-1β stimulated 

degron phosphorylation on Ser526 (analogue of human Ser535) of IFNAR1 in wild type 

mouse embryo fibroblasts (MEF). The ratio between phosphorylated and total IFNAR1 

signals was noticeably lesser in MEF from p38α knockout mice treated with IL-1β (Figure 

4F). Given that Ser532 does not conform to a proline-directed phospho-acceptor site, which 

p38 kinase was reported to prefer (reviewed in (Roux and Blenis 2004)), we tested the 

potential contribution of several protein kinases known to function downstream of p38 

kinase. However, pre-treatment of cells with either validated RNAi reagents against 

MSK1/2 or MK2/3/5 or available Mnk1/Msk inhibitors did not affect IL-1β-induced Ser532 

phosphorylation of endogenous IFNAR1 in HeLa cells (data not shown).

A direct phosphorylation of bacterially produced GST-IFNAR1 fusion protein on Ser532 

was detected in an in vitro kinase reaction using the Flag antibody-immunoprecipitated 

material from HeLa cells that expressed wild type Flag-tagged p38α kinase (Figure 4G). 

This activity (robustly induced by pre-treatment of cells with IL-1β) was not observed when 

the lysates were prepared from cells that express catalytically inactive Flag-p38αAGF mutant 

or when GST-IFNAR1 was mutated on Ser532 (Figure 4G).

We next tested the possibility that priming phosphorylation is mediated by a kinase that 

associates with p38α. GST-tagged p38α was expressed in HeLa cells (treated with IL-1β) 

and purified. These preparations were used as a source of kinase in an in vitro 
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phosphorylation of Ser532 on GST-IFNAR1. Under these conditions, addition of p38 kinase 

inhibitor SB203580 (but neither Msk1 inhibitor HB806 nor Mnk1 inhibitor CGP57380) 

directly to the reaction led to a dose-dependent decrease in Ser532 phosphorylation (Figure 

4H). Together these data strongly suggest that p38α kinase mediates priming 

phosphorylation of IFNAR1 in response to IL-1, although the contribution of other p38 

forms or downstream kinases cannot be ruled out (see Discussion).

We next tested the role of p38 kinase in downregulation of IFNAR1 using genetic 

approaches and analyses of two independent materials of human melanoma specimens. 

Knockdown of p38α in HeLa cells noticeably up-regulated IFNAR1 in cells treated with 

either recombinant IL-1β or melanoma-conditioned media (Figure 5A). Furthermore, a 

decrease in cell surface levels of IFNAR1 in response to murine IL-1β (but not to murine 

IFNβ) was noticeably tempered in MEFs from p38α knockout mice (Figure 5B).

In agreement with low levels of IFNAR1 reported in some patients with metastatic 

melanoma (Messina et al 2008), our analysis of benign skin and metastatic melanoma 

tissues obtained from the same patient revealed that total levels of IFNAR1 were lower in 

melanoma cells than in normal melanocytes (Figure S4). Similarly, a noticeably stronger 

immunoreactivity for IFNAR1 was observed in normal skin cells compared to melanoma 

cells from the same patients in seven out of eight case-matched tissue samples (Figure 5C, 

patients #1–4 and 6–8). Based on these data together with the in vitro evidence of 

downregulation of IFNAR1 levels by activated p38 kinase we predicted that levels of 

IFNAR1 in human melanoma specimens would be inversely correlated to activation of p38 

kinase (assessed by measuring the levels of phospho-p38 signal). We first used AQUA 

fluorescence-based immunoprofiling of histologic sections of a pilot material of 24 human 

melanomas and observed a negative correlation between levels of phosphop-38 and IFNAR1 

(Figure 5D–E, rho = −0.42; p = 0.043). We then repeated the analysis on a larger material of 

primary and metastatic melanomas from Melanoma Spore Tissue Microarray (described in 

(Nazarian et al 2010)) and found a similar negative correlation (Figure S5, rho = −0.213; p = 

0.013; N = 134). This material included both thin and thick melanomas, and the negative 

correlation was particularly evident among thin melanomas (Figure S6, rho = −0.355; p = 

0.011; N=50). These results collectively indicate that activation of p38 kinase plays an 

important role in downregulation of IFNAR1 in cells that respond to proinflammatory 

cytokines and in malignant melanoma tissues.

We next investigated the role of p38 kinase in regulation of IFNAR1 stability and of cellular 

responses to IFNα/β. Treatment of melanoma cells with p38 inhibitor SB203580 noticeably 

delayed IFNAR1 turnover upon addition of protein synthesis blocker cycloheximide (Figure 

6A). Similar results were obtained in HeLa cells where acceleration of IFNAR1 degradation 

by melanoma-conditioned media was reversed by p38 kinase inhibitor (Figure 6B). Careful 

examination of Figures 4E–F indicated that phosphorylation of STAT1 is augmented in 

p38α-deficient cells. Conversely, inhibition of IFNα-induced activation of STAT1 by either 

IL-1β or melanoma-conditioned media was noticeably less evident in HeLa cells upon either 

knockdown of p38α (Figure 7A) or co-treatment of these cells with inhibitor of p38 

SB203580 but not with MEK1 inhibitor UO126 or JNK inhibitor SP600125 (Figure 7B). 

We then sought to determine whether IL-1-induced p38-mediated priming phosphorylation 
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of IFNAR1 might play a role in response of 1205Lu melanoma cells to IFNα. To this end, 

we attempted to stably express either wild type IFNAR1 or IFNAR1-S532A mutant which is 

refractory to p38-mediated phosphorylation, and then subject the resulting cells to anti-

proliferative effects of exogenously added IFNα. Regrettably, although we succeeded in 

establishing a number of clones that expressed wild type IFNAR1, all clones transduced 

with IFNAR1S532A either perished or ceased to express the transgene (Figure S7). It is 

plausible that this result reflects the cell growth inhibitory effect of low levels of 

endogenous IFNα produced by the 1205Lu melanoma cells (Supplementary Table) that 

occurred over time of selection under conditions when secreted IL-1 and other pro-

inflammatory cytokines cannot downregulate IFNAR1S532A.

We next investigated the role of phosphorylation-dependent downregulation of IFNAR1 in 

responses of melanoma cells to Type I IFN. Upon transient co-expression of IFNAR1 with 

green fluorescent protein (GFP), melanoma cells that expressed IFNAR1S532A were indeed 

significantly more sensitive to cell death induced by treatment with IFNβ (Figure 7C). 

Conversely, pre-treatment of 1205Lu melanoma cells with p38 kinase inhibitor VX-702 

significantly augmented the inhibition of cell viability induced by IFNα (Figure 7D). 

Furthermore, combination of VX-702 and IFNα noticeably decreased the growth of 1205Lu 

cells xenotransplanted into the flanks of immunocompromised mice (Figure 7E). In all, 

these results suggest that p38 kinase-mediated downregulation of IFNAR1 plays an 

important role in dampening cellular responses to Type I IFN.

DISCUSSION

This work was prompted by our initial investigation of soluble melanoma cell-produced 

factors that temper IFNα/β signaling (Huangfu et al 2010). Our findings presented here 

suggest that pro-inflammatory cytokines (that can be secreted by melanoma cells) activate 

p38 kinase to promote the ligand-independent pathway of IFNAR1 degradation, and, 

subsequently, interfere with cellular responses to IFNα/β. These studies link tissue 

inflammation with decreased cell sensitivity to the effects of Type I IFN. Although mostly 

discussed in the context of melanoma pathogenesis and sensitivity of melanomas to IFNα/β, 

our data suggest that overall anti-tumorigenic defenses of endogenous IFNα/β in many 

target tissues that may undergo malignant transformation as well as the efficacy of many 

Type I IFN-based drugs used against various tumors could be negatively impacted by 

inflammation. Future studies will also determine whether inflammation negatively affects 

anti-viral defensive and immunomodulatory functions of IFNα/β, and, accordingly, may 

impede its use against chronic viral infections and multiple sclerosis.

Cytokine-induced activation of p38 kinase may occur not only in cancer cells but also in the 

tumor stroma. Accordingly, the discussed mechanism might not only contribute to 

refractoriness of melanoma cells to direct anti-proliferative/anti-survival effects of 

therapeutically administered exogenous IFNα/β but also compromise the efficacy of anti-

angiogenic effects of these cytokines within the tumor microenvironment. Furthermore, the 

same mechanism activated in benign/pre-malignant cells of melanocytic origin could 

plausibly help these cells to evade anti-proliferative control from endogenous Type I IFNs. 

Given that ultraviolet light implicated in melanoma etiology (Leiter and Garbe 2008) is also 

HuangFu et al. Page 7

Oncogene. Author manuscript; available in PMC 2012 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a potent activator of p38 kinase in human melanocytes (Jinlian et al 2007), future studies of 

the role of IFNAR1 stability and its regulation by p38 activators in melanoma development 

are warranted.

Although data obtained in experiments that use Anakinra suggest that some of the effects of 

melanoma-conditioned media should be attributed to secreted IL-1 (Figures 2–3), the role of 

other cytokines cannot be excluded. Our studies pointing to secretion of IL1α are consistent 

with previous reports on secretion of either IL-1α or IL-1β by numerous melanoma cell lines 

and primary melanoma tissues (Bennicelli et al 1989, Kock et al 1989, Okamoto et al 2010). 

These cells and tissues also have been shown to produce other cytokines (e.g., TNFα, etc 

(Moretti et al 1999, Okamoto et al 2010, Sander and Boeryd 1996)) that are capable of 

activating p38 kinase and could plausibly contribute to inflammatory inhibition of cellular 

responses to IFNα/β. Furthermore, a high level of expression of soluble fragments of TNF 

receptors in melanoma-conditioned media (Supplementary Table) might be indicative of 

overall high density of TNF receptors on melanoma cells that would make them sensitive to 

TNFα produced by cells that constitute the tumor microenvironment. TNFα and IL-1 

produced by keratinocytes (Oxholm et al 1988) may affect IFNAR1 turnover in melanomas 

of the radial growth phase; whereas, upon invasion beyond the basement membrane, such a 

role could be carried out by infiltrating macrophages that are associated with tumor 

progression (Torisu et al 2000). Finally, even in the absence of secreted factors, persistent 

activation of p38 kinase downstream of cancer-associated constitutively active oncogenic 

mutants of receptor tyrosine kinases (e.g., c-KIT, (Smalley et al 2009)) may also contribute 

to impairment of Type I IFN signaling. Future studies are warranted to investigate this 

possibility.

Results presented here implicate p38 kinase in the induction of IFNα/β-independent priming 

phosphorylation of IFNAR1. However, the identity of the priming kinase remains to be 

determined. Our data suggest that the priming phosphorylation of IFNAR1 on Ser532 is 

likely to be directly mediated by a SB203580-sensitive kinase that associates with p38 

kinase and depends on p38 catalytic function. It is plausible that a yet-to-be-identified p38-

dependent kinase is responsible for direct phosphorylation of Ser532. Alternatively, p38 

itself might be capable of functioning as a priming kinase, although this possibility is less 

likely given substrate-preference of p38 for proline-directed Ser and Thr residues as 

phospho-acceptor sites (Roux and Blenis 2004).

Data presented here may provide a rationale to argue for combining p38 inhibitors and IFNα 

in treatment of patients with melanomas. However, such therapeutic considerations must be 

approached with a great deal of caution. First, it has been shown that IFNα/β are also 

capable of activating p38 kinase in some cell types and this activation contributes to 

expression of IFN-stimulated genes and anti-proliferative effects of IFN downstream of 

STAT activation (reviewed in (Platanias 2005)). Second, inhibition of p38 kinase may also 

negatively affect the efficacy of other promising means for induction of apoptotis in 

melanoma such as activation of innate immunity by double stranded RNA (Alonso-Curbelo 

and Soengas 2010). Third, activation of p38 kinase stimulates the internalization of the 

epidermal growth factor receptor (Zwang and Yarden 2006); stabilization of this receptor 

upon p38 kinase inhibition may increase survival of tumor cells. Genetic evidence in p38α 
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knockout mice indeed demonstrate an increased rate of cell proliferation and survival (Hui et 

al 2007). Finally, it is possible that some of proinflammatory cytokine-induced p38 kinase 

functions are important for activation of anti-tumor immunity (that could not be evaluated in 

our experiments using melanoma cells xenotransplanted into the immunocompromised 

animals). Indeed, high levels of proinflammatory cytokines in serum were predictive of 

longer relapse-free survival in melanoma patients who received IFNα treatment 

(Yurkovetsky et al 2007). Further molecular studies delineating specifics of IFNα signaling 

in melanoma and nonmelanoma tissues and oncopharmacologic investigation of inhibitors 

for kinases involved in regulating receptor stability in the immuno-competent models are 

required to improve the therapeutic efficacy of IFNα.

Materials and Methods

Plasmids and Reagents

Vectors for bacterial expression of GST-IFNAR1 and mammalian expression of human and 

murine Flag-IFNAR1 were described previously (Bhattacharya et al 2010). Plasmids for 

expression of HA-Ubc13 (wild type or catalytically inactive C87A), Flag-p38 (wild type or 

catalytically inactive AGF) and GST-p38α were generous gifts from Z. Ronai, R. J. Davis 

and M. Gaestel. ShRNA constructs for knocking down p38α kinase were purchased 

(Sigma). All siRNA oligos (HP Validated) were purchased from Qiagen. Lentiviral pCIG-

IFNAR1-IRES-nucGFP/puro vectors for simultaneous expression of either wild type human 

IFNAR1 or its S532A mutant and either nuclear GFP or puromycin resistance marker (puro) 

were constructed on the backbone of pCIG vector (Megason and McMahon 2002). Various 

recombinant cytokines and chemicals were purchased from commercial sources. IKK 

inhibitor NBD was a generous gift of M. May. Mnk1 inhibitor CGP57380 was purchased 

from Tocris. Msk inhibitor HB806 (compound 13 in reference (Bregman et al 2006)) was a 

generous gift of E. Meggers.

Cell lines and cancer samples

Primary human melanocyte cells and human melanoma cell lines (kindly provided by M. 

Herlyn) were maintained as previously described (Kumar et al 2007b, Liu et al 2007). Wild 

type and p38α-null MEF were kindly provided by A. Nebreda. 293 cells were a generous 

gift of J. Ninomiya-Tsuji. Proliferation assays were done with CellTiter 96 Non-Radioactive 

Cell proliferation Assay according to manufacture protocol (Promega). Patient-derived 

materials in the forms of tissue microarrays containing anonymized human melanoma 

tissues were provided by Thomas Jefferson University Pathology Core and NCI Skin 

SPORE (described in details in (Nazarian et al 2010); kindly provided by L.M. Duncan).

Antibodies and Immunotechniques

were carried out as previously described (Liu et al 2009). Polyclonal antibody against β-Trcp 

was described previously (Spiegelman et al., 2002). Antibodies against total (Goldman et al 

1999) or phosphorylated IFNAR1 (Bhattacharya et al 2010, Kumar et al 2004) were 

described in detail elsewhere. Other antibodies were purchased from commercial sources 

and used for immunoprecipitation (IP) and immunoblotting (IB) as described previously 

(Bhattacharya et al 2010, Kumar et al 2004). Luminex protein array system (LabMAP® for 
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Multianalyte Profiling), which allows for simultaneous quantitation of muptiple analytes 

was used to determine the concentration of 38 selected cytokines, growth factors and soluble 

receptors in media conditioned by melanocytes or malignant melanoma cells as outlined in 

Supplementary Data and described in details elsewhere (Gu et al 2009, Linkov et al 2008). 

In Vitro Kinase Assays were carried out as previously described (Liu et al 2008, Liu et al 

2009).

Immunohistochemical analysis of tissue samples

was carried out in non-identifiable coded melanoma specimens that represented two separate 

clinical materials. Archived materials collected by the Department of Pathology of Thomas 

Jefferson University contained matched sets of melanoma tissues and normal skin from nine 

anonymous patients. This material was used for detection of IFNAR1 levels using respective 

primary and secondary antibody combined with the streptavidin-biotinylated horseradish 

peroxidase complex reagent (Dako) and exposure to the chromagen DABplus (Dako) 

followed by counterstaining in hematoxylin as described elsewhere (Li et al 2006).

Automated Quantitative Analyses (AQUA) of phospho-p38 and IFNAR1 were performed 

on 480-sample tissue microarray built from tissues from collected by the institutions that 

participate in Melanoma Spore Consortium (kindly provided by Dr. Duncan and reported in 

(Nazarian et al 2010)). AQUA analysis was performed using AQUA/PM2000 (HistoRx).

Tumor Cell Growth Assays in vivo and in vitro

Experiments in animals (under the IUCAC protocol # 800992 of the University of 

Pennsylvania) was carried out in 6–8 weeks old male immunocompromised (scid) mice 

(Taconic). Twenty-two mice were injected subcutaneously with 1205Lu cells (3 × 106) into 

the right flank of lower back (day 0). The scid mice were randomly assigned to four 

experimental groups of 5–6 mice each: (Control) vehicle treatment; (VX) VX-702 (1 mg/kg) 

was given by oral gavage start on day 4 and given every other day; (IFN) IFNα2 (100 μg/

mice) were injected via s.c. on day 5 into the left flank of lower back and given every other 

day; (IFN+VX) both VX-702 (1 mg/kg) and IFNα2 (100 μg/mice) were given over the 

treatment period. During the experiments, tumor volumes were measured by caliper 

measurement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Drs. M. Gaestel, L.M. Duncan, R.J. Davis, M. Herlyn, M. May, E. Meggers, A. Nebreda, J. Ninomiya-
Tsuji, and Z. Ronai for reagents. This work was supported by NIH grants CA092900 and CA142425 (to S.Y.F.).

Reference List

Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT. Science. 2002; 
296:1653–1655. [PubMed: 12040185] 

HuangFu et al. Page 10

Oncogene. Author manuscript; available in PMC 2012 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alonso-Curbelo D, Soengas MS. Self-killing of melanoma cells by cytosolic delivery of dsRNA: 
wiring innate immunity for a coordinated mobilization of endosomes, autophagosomes and the 
apoptotic machinery in tumor cells. Autophagy. 2010; 6:148–150. [PubMed: 19923903] 

Ascierto PA, Kirkwood JM. Adjuvant therapy of melanoma with interferon: lessons of the past decade. 
J Transl Med. 2008; 6:62. [PubMed: 18954464] 

Balkwill F, Mantovani A. Cancer and inflammation: implications for pharmacology and therapeutics. 
Clin Pharmacol Ther. 2010; 87:401–406. [PubMed: 20200512] 

Bennicelli JL, Elias J, Kern J, Guerry Dt. Production of interleukin 1 activity by cultured human 
melanoma cells. Cancer Res. 1989; 49:930–935. [PubMed: 2783559] 

Bhattacharya S, HuangFu WC, Liu J, Veeranki S, Baker DP, Koumenis C, et al. Inducible priming 
phosphorylation promotes ligand-independent degradation of the IFNAR1 chain of type I interferon 
receptor. J Biol Chem. 2010; 285:2318–2325. [PubMed: 19948722] 

Bracarda S, Eggermont AM, Samuelsson J. Redefining the role of interferon in the treatment of 
malignant diseases. Eur J Cancer. 2010; 46:284–297. [PubMed: 19906524] 

Bregman H, Carroll PJ, Meggers E. Rapid access to unexplored chemical space by ligand scanning 
around a ruthenium center: discovery of potent and selective protein kinase inhibitors. J Am Chem 
Soc. 2006; 128:877–884. [PubMed: 16417378] 

Coccia EM, Uze G, Pellegrini S. Negative regulation of type I interferon signaling: facts and 
mechanisms. Cell Mol Biol (Noisy-le-grand). 2006; 52:77–87. [PubMed: 16914099] 

Fecher LA, Flaherty KT. Where are we with adjuvant therapy of stage III and IV melanoma in 2009? J 
Natl Compr Canc Netw. 2009; 7:295–304. [PubMed: 19401062] 

Germano G, Allavena P, Mantovani A. Cytokines as a key component of cancer-related inflammation. 
Cytokine. 2008; 43:374–379. [PubMed: 18701317] 

Goldman LA, Zafari M, Cutrone EC, Dang A, Brickelmeier M, Runkel L, et al. Characterization of 
antihuman IFNAR-1 monoclonal antibodies: epitope localization and functional analysis. J 
Interferon Cytokine Res. 1999; 19:15–26. [PubMed: 10048764] 

Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010; 140:883–899. 
[PubMed: 20303878] 

Gu Y, Zeleniuch-Jacquotte A, Linkov F, Koenig KL, Liu M, Velikokhatnaya L, et al. Reproducibility 
of serum cytokines and growth factors. Cytokine. 2009; 45:44–49. [PubMed: 19058974] 

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100:57–70. [PubMed: 10647931] 

Huangfu WC, Qian J, Liu C, Rui H, Fuchs SY. Melanoma cell-secreted soluble factor that stimulates 
ubiquitination and degradation of the interferon alpha receptor and attenuates its signaling. 
Pigment Cell Melanoma Res. 2010

Hui L, Bakiri L, Stepniak E, Wagner EF. p38alpha: a suppressor of cell proliferation and 
tumorigenesis. Cell Cycle. 2007; 6:2429–2433. [PubMed: 17957136] 

Jinlian L, Yingbin Z, Chunbo W. p38 MAPK in regulating cellular responses to ultraviolet radiation. J 
Biomed Sci. 2007; 14:303–312. [PubMed: 17334833] 

Kaehler KC, Sondak VK, Schadendorf D, Hauschild A. Pegylated interferons: prospects for the use in 
the adjuvant and palliative therapy of metastatic melanoma. Eur J Cancer. 2010; 46:41–46. 
[PubMed: 19857957] 

Kock A, Schwarz T, Urbanski A, Peng Z, Vetterlein M, Micksche M, et al. Expression and release of 
interleukin-1 by different human melanoma cell lines. J Natl Cancer Inst. 1989; 81:36–42. 
[PubMed: 2783256] 

Kumar KG, Tang W, Ravindranath AK, Clark WA, Croze E, Fuchs SY. SCF(HOS) ubiquitin ligase 
mediates the ligand-induced down-regulation of the interferon-alpha receptor. EMBO J. 2003; 
22:5480–5490. [PubMed: 14532120] 

Kumar KG, Krolewski JJ, Fuchs SY. Phosphorylation and specific ubiquitin acceptor sites are required 
for ubiquitination and degradation of the IFNAR1 subunit of type I interferon receptor. J Biol 
Chem. 2004; 279:46614–46620. [PubMed: 15337770] 

Kumar KG, Barriere H, Carbone CJ, Liu J, Swaminathan G, Xu P, et al. Site-specific ubiquitination 
exposes a linear motif to promote interferon-alpha receptor endocytosis. J Cell Biol. 2007a; 
179:935–950. [PubMed: 18056411] 

HuangFu et al. Page 11

Oncogene. Author manuscript; available in PMC 2012 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kumar KG, Liu J, Li Y, Yu D, Thomas-Tikhonenko A, Herlyn M, et al. Raf inhibitor stabilizes 
receptor for the type I interferon but inhibits its anti-proliferative effects in human malignant 
melanoma cells. Cancer Biol Ther. 2007b; 6:1437–1441. [PubMed: 17873516] 

Leiter U, Garbe C. Epidemiology of melanoma and nonmelanoma skin cancer--the role of sunlight. 
Adv Exp Med Biol. 2008; 624:89–103. [PubMed: 18348450] 

Li Y, Clevenger CV, Minkovsky N, Kumar KG, Raghunath PN, Tomaszewski JE, et al. Stabilization 
of prolactin receptor in breast cancer cells. Oncogene. 2006; 25:1896–1902. [PubMed: 16278670] 

Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J 
Clin Invest. 2007; 117:1175–1183. [PubMed: 17476347] 

Linkov F, Ferris RL, Yurkovetsky Z, Marrangoni A, Velikokhatnaya L, Gooding W, et al. Multiplex 
analysis of cytokines as biomarkers that differentiate benign and malignant thyroid diseases. 
Proteomics Clin Appl. 2008; 2:1575–1585. [PubMed: 19234619] 

Liu J, Suresh Kumar KG, Yu D, Molton SA, McMahon M, Herlyn M, et al. Oncogenic BRAF 
regulates beta-Trcp expression and NF-kappaB activity in human melanoma cells. Oncogene. 
2007; 26:1954–1958. [PubMed: 17001349] 

Liu J, Plotnikov A, Banerjee A, Suresh Kumar KG, Ragimbeau J, Marijanovic Z, et al. Ligand-
independent pathway that controls stability of interferon alpha receptor. Biochem Biophys Res 
Commun. 2008; 367:388–393. [PubMed: 18166147] 

Liu J, Carvalho LP, Bhattacharya S, Carbone CJ, Kumar KG, Leu NA, et al. Mammalian casein kinase 
1alpha and its leishmanial ortholog regulate stability of IFNAR1 and type I interferon signaling. 
Mol Cell Biol. 2009; 29:6401–6412. [PubMed: 19805514] 

Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008; 454:436–
444. [PubMed: 18650914] 

Marijanovic Z, Ragimbeau J, Kumar KG, Fuchs SY, Pellegrini S. TYK2 activity promotes ligand-
induced IFNAR1 proteolysis. Biochem J. 2006; 397:31–38. [PubMed: 16551269] 

Megason SG, McMahon AP. A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. 
Development. 2002; 129:2087–2098. [PubMed: 11959819] 

Melnikova VO, Bar-Eli M. Inflammation and melanoma metastasis. Pigment Cell Melanoma Res. 
2009; 22:257–267. [PubMed: 19368690] 

Messina JL, Yu H, Riker AI, Munster PN, Jove RL, Daud AI. Activated stat-3 in melanoma. Cancer 
Control. 2008; 15:196–201. [PubMed: 18596671] 

Mocellin S, Pasquali S, Rossi CR, Nitti D. Interferon alpha adjuvant therapy in patients with high-risk 
melanoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2010; 102:493–501. 
[PubMed: 20179267] 

Moretti S, Pinzi C, Spallanzani A, Berti E, Chiarugi A, Mazzoli S, et al. Immunohistochemical 
evidence of cytokine networks during progression of human melanocytic lesions. Int J Cancer. 
1999; 84:160–168. [PubMed: 10096249] 

Nazarian RM, Prieto VG, Elder DE, Duncan LM. Melanoma biomarker expression in melanocytic 
tumor progression: a tissue microarray study. J Cutan Pathol. 2010; 37(Suppl 1):41–47. [PubMed: 
20482674] 

Okamoto M, Liu W, Luo Y, Tanaka A, Cai X, Norris DA, et al. Constitutively active inflammasome in 
human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of 
interleukin-1beta. J Biol Chem. 2010; 285:6477–6488. [PubMed: 20038581] 

Oxholm A, Oxholm P, Staberg B, Bendtzen K. Immunohistological detection of interleukin I-like 
molecules and tumour necrosis factor in human epidermis before and after UVB-irradiation in 
vivo. Br J Dermatol. 1988; 118:369–376. [PubMed: 3258527] 

Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 
2005; 5:375–386. [PubMed: 15864272] 

Rigual NR, Popat SR, Jayaprakash V, Jaggernauth W, Wong M. Cutaneous head and neck melanoma: 
the old and the new. Expert Rev Anticancer Ther. 2008; 8:403–412. [PubMed: 18366288] 

Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with 
diverse biological functions. Microbiol Mol Biol Rev. 2004; 68:320–344. [PubMed: 15187187] 

HuangFu et al. Page 12

Oncogene. Author manuscript; available in PMC 2012 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sander B, Boeryd B. Tumor necrosis factor-alpha expression in human primary malignant malanoma 
and it relationship to tumor infiltration by CD3+ cells. Int J Cancer. 1996; 66:42–47. [PubMed: 
8608964] 

Smalley KS, Nathanson KL, Flaherty KT. Genetic subgrouping of melanoma reveals new 
opportunities for targeted therapy. Cancer Res. 2009; 69:3241–3244. [PubMed: 19351826] 

Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene. 2003; 22:3138–3151. 
[PubMed: 12789290] 

Torisu H, Ono M, Kiryu H, Furue M, Ohmoto Y, Nakayama J, et al. Macrophage infiltration correlates 
with tumor stage and angiogenesis in human malignant melanoma: possible involvement of 
TNFalpha and IL-1alpha. Int J Cancer. 2000; 85:182–188. [PubMed: 10629075] 

Uze G, Schreiber G, Piehler J, Pellegrini S. The receptor of the type I interferon family. Curr Top 
Microbiol Immunol. 2007; 316:71–95. [PubMed: 17969444] 

Weber A, Wasiliew P, Kracht M. Interleukin-1 (IL-1) pathway. Sci Signal. 2010; 3:cm1. [PubMed: 
20086235] 

Yao K, Balch G, Winchester DJ. Multidisciplinary treatment of primary melanoma. Surg Clin North 
Am. 2009; 89:267–281. xi. [PubMed: 19186240] 

Yurkovetsky ZR, Kirkwood JM, Edington HD, Marrangoni AM, Velikokhatnaya L, Winans MT, et al. 
Multiplex analysis of serum cytokines in melanoma patients treated with interferon-alpha2b. Clin 
Cancer Res. 2007; 13:2422–2428. [PubMed: 17438101] 

Zheng H, Qian J, Varghese B, Baker DP, Fuchs S. Ligand-stimulated downregulation of the alpha 
interferon receptor: role of protein kinase D2. Mol Cell Biol. 2011; 31:710–720. [PubMed: 
21173164] 

Zwang Y, Yarden Y. p38 MAP kinase mediates stress-induced internalization of EGFR: implications 
for cancer chemotherapy. EMBO J. 2006; 25:4195–4206. [PubMed: 16932740] 

HuangFu et al. Page 13

Oncogene. Author manuscript; available in PMC 2012 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Melanoma-secreted factors activate the ligand-independent pathway of IFNAR1 
degradation
(A) HeLa cells were incubated with IFNα (1000IU/ml) or 1205Lu cell-conditioned media 

(MM) in the presence or absence of IFNα/β-neutralizing antibodies for 30 min. IFNAR1 

proteins were purified by immunoprecipitation (IP) using IFNAR1 antibody and analyzed by 

immunoblot (IB) using anti-pSer532, anti-pSer535, and anti-IFNAR1 (R1) antibodies as 

indicated (upper panels). Phosphorylation and total levels of STAT1 in whole cell lysates 

are also shown.

(B) Analysis of IFNAR1 and STAT1 from HeLa cells pre-treated with CK1 inhibitor-D4476 

(12.5μM) or vehicle control (DMSO) for 1 h followed by IFNα or MM for 30 min was 

carried out as in panel A.

(C) HeLa cells expressing Flag-IFNAR1 (WT or S532A) were treated as indicated and 

exogenous IFNAR1 proteins analyzed by IP-IB using indicated antibodies. Loading was 

normalized to achieve comparable levels of IFNAR1 in all lanes.

(D) HeLa cells transfected with Flag-IFNAR1 (WT or S532A) were treated with MM for 30 

min. Ubiquitination and levels of Flag-IFNAR1 were analyzed as in Panel C.

(E) HeLa cells expressing Flag-IFNAR1 (WT or S532A) were treated with cycloheximide 

(CHX, 30 μg/ml) alone or together with MM for indicated times. IFNAR1 proteins were 

analyzed as in panel C. Levels of β-actin serving as a loading control are also shown.

(F) HeLa cells transfected with either empty vector (pcDNA3) or Flag-IFNAR1 (WT or 

S532A) were pre-treated with MM for 2 h and then stimulated with IFNα (60IU/ml, 30 

min). Activation and levels of endogenous STAT1 as well as levels of Flag-IFNAR1 are 

also shown.
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Figure 2. IL-1 stimulates priming phosphorylation and ubiquitination of IFNAR1
(A) HeLa cells were treated with MM or recombinant cytokines such as IL-6 (50ng/ml) plus 

shIL-6R (50ng/ml), IL-7 (10ng/ml), IFNα (1000IU/ml), IFNγ (1000IU/ml), IL-1α (10ng/

ml), or IL-1β (5ng/ml) for 30 min. Phosphorylation and levels of endogenous IFNAR1 was 

analyzed by IP-IB using indicated antibodies. Phosphorylation and total levels of STAT1 in 

cell lysates are also shown.

(B) Phosphorylation of endogenous IFNAR1 from HeLa cells treated with IFNα or IFNγ 

(1000IU/ml), or TNFα (20ng/ml) for 30 min was analyzed by IP-IB. Levels of IκBα in 

whole cell lysates is also shown.

(C) HeLa cells were treated with MM alone or together with Anakinra (0.9μg/ml) for 30 

min. Ubiquitination and levels of endogenous IFNAR1 phosphorylation were analyzed by 

IP-IB using indicated antibodies. Loading was normalized to achieve comparable levels of 

IFNAR1 in all lanes.

(D) HeLa cells expressing with Flag-IFNAR1 (WT or S532A) were treated with IL-1β 

(5ng/ml) for 30 min. Ubiquitination and levels of Flag-IFNAR1 were analyzed by IP-IB 

using indicated antibodies.
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Figure 3. IL-1 promotes downregulation of IFNAR1 and inhibits IFNAR1 signaling
(A) HeLa cells were treated with CHX (30μg/ml) ± IL-1β (5ng/ml) for indicated times. 

Levels of IFNAR1 and β-actin were analyzed indicated antibodies.

(B) HeLa cells were treated with CHX (30μg/ml), MM, and Anakinra (0.9μg/ml) as 

indicated for indicated times and analyzed as in panel A.

(C) Levels of IFNAR1 in 1205Lu melanoma cells (treated as indicated) were analyzed as in 

panel A, quantified and normalized per the levels of β-actin (shown as fold-increase).

(D) HeLa cells were pre-treated with IL-1β (5ng/ml) for 2 h and then stimulated with human 

IFNα (30IU/ml) for 30 min. Signal intensity of pSTAT1 was quantified and normalized to 

the levels of total STAT1. Relative activation levels of STAT1 are shown as fold-increase.

(E) Analysis of STAT1 activation and levels in HeLa cells pre-treated or not with MM and 

treated with IFNα as indicated.

(F) Analysis of STAT1 activation in 1205Lu cells (treated as indicated) was carried out as in 

panel E.
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Figure 4. p38 kinase mediates priming phosphorylation of IFNAR1
(A) HeLa cells were transfected with either empty vector (pcDNA3) or HA-Ubc13 (WT or 

C87A) and treated with IL-1β (5ng/ml for 30 min) as indicated. Endogenous IFNAR1 was 

analyzed by IP-IB using indicated antibodies. Levels of HA-Ubc13 in the lysates are also 

shown.

(B) Phosphorylation/levels of IFNAR1 and of JNK in HeLa cells transfected with indicated 

siRNA and treated or not with IL-1β (5ng/ml for 30 min) were analyzed using indicated 

antibodies.

(C) HeLa cells were pre-treated with inhibitors of p38 kinase (SB203580, 10 μg/ml or 

VX-702, 1 μg/ml), or of JNK (SP600125, 20μg/ml), or IKK (NBD, 100μg/ml) or with 

DMSO (control) followed by treatment with IL-1β (5ng/ml) for 30 min. IFNAR1 was 

analyzed as in panel A.

(D) HeLa cells were pre-treated with inhibitors of p38 kinase (SB203580, 10 μg/ml), or of 

PI3K (LY294002, 20 μM) or DMSO for 1 h and then stimulated with IL-1β (10 ng/ml) for 

30 min. Phosphorylation and levels of IFNAR1 and p38 kinase were analyzed using 

indicated antibodies.

(E) IFNAR1 and STAT1 proteins from HeLa cells transduced with indicated shRNA 

constructs and treated as indicated were analyzed as in Figure 3. Levels of p38α kinase and 

IκBα are also shown.

(F) Analysis of mouse IFNAR1 from MEFs (WT or p38α−/−) was carried out using 

indicated antibodies. Relative fold of induction of the ratio (phospho-IFNAR1/IFNAR1) was 

quantified and depicted. Analyses of STAT1, p38α and IκBα were carried out as in panel E.
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(G) HeLa cells were transfected with either empty vector (pcDNA3) or Flag-p38α (WT or 

AGF mutant) and treated with IL-1β as indicated. p38α was immunopurified (using Flag 

antibody), and subjected to an in vitro kinase assay using GST-IFNAR1 (“GST-R1”, WT or 

S532A mutant) as substrates and monitored using pS532 antibody (top panel). The amounts 

of GST-IFNAR1 and p38 in the IP reactions are shown.

(H) HeLa cells were transfected with either empty vector (pcDNA3) or GST-p38α as 

indicated. All cells were treated with IL-1β (5ng/ml) for 30 min. p38α was purified (using 

glutathione sepharose beads) and used as a source of kinase in an in vitro phosphorylation of 

GST-IFNAR1 analyzed by pS532 antibody (upper panel). These reactions were also carried 

out in the presence of 1×, 2×, or 10× of IC50 of the p38 inhibitor SB203580 (lanes 3–5), or 

Mnk1 inhibitor CGP57380 (lanes 6–8), or MSK1 inhibitor HB806 (lanes 9–11) as indicated. 

Levels of IFNAR1 and p38α were analyzed by IB using GST antibody (lower panels).
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Figure 5. Activation of p38 kinase regulates IFNAR1 levels
(A) HeLa cells transduced with indicated shRNA constructs were subjected to IL-1β 

(5ng/ml) or MM for 2 h. IFNAR1, p38α and actin were analyzed as in Figure 4.

(B) Levels of cell surface IFNAR1 were analyzed by FACS using monoclonal anti-mouse 

IFNAR1 antibody in WT or p38α−/− MEF either treated with mIL-1β (5ng/ml, green) or 

mIFNβ (1000IU/ml, orange) for 2 h in the presence of CHX (10μg/ml). Red - isotype Ig 

control.

(C) Benigh human skin and metastatic melanoma tissues from the same patients were 

analyzed by immunohistochemistry using anti-IFNAR1 antibody.

(D) Multiplexed immunofluoresence staining of human melanoma specimens for p-p38 

(red) versus IFNAR1 (green) levels in miniarray of 24 cases. Images of 3 representative 

cases are shown.

(E) Scatter plot of cytoplasmic p-p38 versus cytoplasmic IFNAR1 levels (log AQUA scores) 

in mini-array of 24 human melanoma cases analyzed using AQUA imaging platform. 

Negative correlation by Spearman Rank analysis is statistically significant (P=0.043). 

Regression line is indicated.
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Figure 6. p38 kinase regulates turnover of IFNAR1
(A) 1205Lu cells were pre-treated with SB203580 (10 μM) or DMSO for 1 h and then 

treated with CHX (10 μg/ml) for indicated times. Levels of endogenous IFNAR1 were 

analyzed by IP/IB using anti-IFNAR1 antibody. Levels of β-actin in the lysates are shown as 

loading control

(B) HeLa cells were pre-treated with SB203580 (10 μM) or DMSO for 1 h and then treated 

with CHX (10 μg/ml) alone or together with 1205Lu metastatic melanoma conditioned 

media (MM) for indicated times. Levels of endogenous IFNAR1 and β-actin were analyzed 

as in Panel A.
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Figure 7. Role of p38 kinase in modulating cellular responses to Type I IFN
(A) HeLa cells that received the indicated shRNA constructs were pre-treated with IL-1β 

(5ng/ml) or 1205Lu conditioned media (MM) for 2 h and then stimulated with human IFNα 

(60 IU/ml) for 30 min. Activation of STAT1 was monitored by pSTAT1 antibody. The 

levels of STAT1 and p38 are shown.

(B) HeLa cells were pre-incubated with SB203580 (10μg/ml), SP600125 (20μg/ml), UO126 

(1μg/ml), or DMSO for 1 h followed by addition of 1205Lu conditioned media (MM) for 2h 

and IFNα (30IU/ml for 30 min) as indicated. Activation and levels of STAT1 are shown.

(C) 1205Lu cells transduced with pCIP-Flag-IFNAR1 (WT or S532A)-IRES-nucGFP 

lentiviruses were treated with IFNβ (1000IU/ml for 72h). The percentage of propidium 

iodide- and GFP-positive cells was measured by FACS. Asterisk – p<0.05.

(D) Percent of growth inhibition of 1205Lu melanoma cells pre-treated or not with VX-702 

(1μM for 1h) and then treated with indicated doses of IFNα for 72h. Average data from 3 

independent experiments (each in triplicates) are shown as Mean ± SD. Asterisk – p<0.05.

(E) Volume of tumors formed by the 1205Lu cells xenotransplanted into SCID mice after 

six days of treatment of these mice with indicated agents.
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