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A B S T R A C T

Effect of the ethyl acetate seed extracts of two cultivars of broccoli, Brassica oleracea Italica, Palam Samridhi (PS)
and Palam Vichitra (PV) on growth, development and nutritional physiology of an economically important insect
pest, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) was evaluated by conducting bioassays and nutritional
assays. The insect larvae were fed on diets amended with the seed extracts of two cultivars at different con-
centrations viz. 5, 25, 125, 625 and 3125 ppm and taking water as control. The response of the insect varied with
plant varieties. The extracts disrupted the developmental cycle of the pest. Larval mortality and total adult
emergence were negatively affected. Larval period and total development period were also negatively influenced.
Nutritional indices of S. litura also showed considerable decrease in the RGR, RCR, ECI and ECD as compared to
control. The AD values were also enhanced with both the cultivars. The findings of the study revealed a
considerable anti-insect potential of the two extracts and needs to be further explored for identification and
isolation of bioactive constituents from broccoli for efficient management of the pest population.
1. Introduction

Currently, the control of insect pests is primarily dependent upon the
use of numerous pesticides of synthetic origin such as organochlorines,
carbamates, neonicotinoids, pyrethroids and organophosphates (Tudi
et al., 2021). Their unregulated and indiscriminate use has affected the
non-target organisms adversely, induced resistance to pesticides, led to
outbreak of secondary insect pests, and in addition has jeopardized
human as well as environmental health (Khater, 2012; Tudi et al., 2021).
Consequently, throughout the world, the focus of research of the agri-
cultural community is now on finding some alternate natural approaches
based on inherent defence mechanisms of plants to control insect pests.
Plants are a rich source of bioactive compounds (Loi et al., 2020) some of
which have evolved to protect them from attack by insects, other her-
bivores and pathogens (War et al., 2012). Most of these compounds are
eco-friendly and pose little threat to non-target organisms as well as
human beings (Isman, 2006) and therefore, can serve as attractive al-
ternatives to synthetic chemical pesticides. These bioactive compounds
can act as repellents, toxicants, chemosterilants, feeding deterrents/
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anti-feedants, growth retardants, as well as attractants (Khater, 2012;
Mith€ofer and Maffei, 2016). Some of these compounds have exhibited
considerable insecticidal potential against insect pests (Sahayaraj and
Kalidas, 2011).

Broccoli (Brassica oleracea L. var. italica Plenck) is a nutritionally
important crop of family brassicaceae grown all over the world. It is a rich
source of bioactive compounds such as glucosinolates, sulforaphane,
polyphenols and minerals such as selenium (Moreno et al., 2006; Ferreira
et al., 2018). Some of these compounds play an important role in plant
defence against insect pests and other herbivores (Ahuja et al., 2011;
Winde and Wittstock, 2011). Despite defensive functions and based on
potential bioactivities, Broccoli is also suggested to be a valuable source
of many functional foods as well as pharmaceutical products and carry
health-promoting benefits (Le et al., 2019). Le et al. (2019) also recom-
mended broccoli derived biocompounds to be applied in pre-clinical
cancer studies as efficient cancer chemopreventive agents.

The common cutworm, Spodoptera litura (Fabricius) (Lepidoptera:
Noctuidae) is an important pest of agricultural crops like sunflower,
cauliflower, cabbage, groundnut, tomato, maize, pulses etc. in the Asian
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tropics (Javar et al., 2013; Yadav et al., 2014). The host range of S. litura
includes 112 species of plants (Mallikarjuna et al., 2004; Yao, 2005). On
most of the crops, the damage is caused by extensive feeding by larvae
resulting in complete stripping of the plants. Currently, the management
of this pest relies largely on synthetic chemical pesticides, leading to
development of pesticide resistance properties in S. litura (Tong et al.,
2013).

Therefore, the present study was envisaged to investigate the influ-
ence of extracts of two varieties of broccoli viz. Palam Samridhi (PS) and
Palam Vichitra (PV) on growth and development of an economically
important insect pest, S. litura so as to explore the possibility for using
them as a source of efficient and eco-friendly botanical pesticides.

2. Materials and methods

2.1. Insect culture

The culture of S. litura was maintained on castor leaves in the B.O.D.
(Biological oxygen demand) incubator at 25 � 2 �C temperature, 65 �
2% relative humidity and 12:12 hrs photoperiod (Light: Dark) (Thakur
et al., 2013).

2.2. Plant material and plant extract

The seeds of Brassica oleracea L. var. italica viz. Palam Samridhi (PS)
and Palam Vichitra (PV) were procured from Chaudhary Sarwan Kumar
Himachal Pradesh Krishi Vishvavidyalaya (CSKHPV), Palampur. Seeds
were surface sterilized by rinsing them in 70% ethanol for 1-2 min fol-
lowed by a 15-minute exposure to 1.3% sodium hypochlorite. The seeds
were then placed in seed germinator for about three days. All sprouts
were grown with a 16:8 hrs light/dark photoperiod at 22 �C temperature.
Sprouts were then gently collected from the trays and homogenized with
the grinder.

Thereafter, extraction of plant material was done using the method
prescribed by Liang et al. (2007) with slight modifications. The seeds
were homogenized along with water for 5 min and autolyzed at room
temperature for 30 min. After autolyzing, the meals were extracted two
times with ethyl acetate which was further combined and salted with
2.5g anhydrous sodium sulfate and then the fraction was dried at 30 �C
under vacuum on a rotary evaporator.

2.3. Gas chromatography-mass spectrometry

The GC-MS analysis of the extracts obtained was carried out on a
Shimadzu (QP, 2010) series Gas Chromatogram-Mass Spectrometer
(Tokyo, Japan), AOC-20i auto-sampler coupled with DB-5MS capillary
column, (30m� 0.25mm i.d., 0.25 μm) according to the protocol given by
Arora et al. (2014). The temperature of the column was maintained be-
tween 70�C-230 �C at the rate of 4 �C/min, and then held for 15min at 230
�C. The sample injection volumewas 2 μl at 40oc in GC grade DCM. Helium
was used as carrier gas at a flow rate of 1.1 ml/min in split mode (1:50).

2.4. Bioassays

In order to study the insecticidal and feeding deterrent effect of these
two naturally occurring varieties of broccoli, the bioassays were con-
ducted on the second instar larvae of S.litura by feeding them with arti-
ficial diets incorporated with different concentrations of the extracts viz.
5, 25, 125, 625, 3125 ppm and water as control.

The artificial diet of S. litura was prepared using the methodology
proposed by Koul et al. (1997). All the experiments were carried out
using six replications for each concentration with 5 larvae of S. litura per
replication. Similarly, for control, there were a total of six replications
with 5 larvae of S. litura in each control replication. A total of 30 in-
dividuals (5 larvae x 6 replications) were used for control and for each
concentration. Each larva was placed in a separate plastic rearing cup and
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the diet was regularly changed. Observations regarding various devel-
opment parameters like larval period, total development period, percent
adult emergence and percent larval mortality were taken on a daily basis.

2.5. Nutritional assays

In order to determine the efficacy of food utilisation, the insect
nutritional assays were conducted by feeding second instar S. litura larvae
(6 days old) on freshly prepared artificial diet (treated and untreated)
placed in plastic cups after recording their initial weights. The larvae,
faecal matter, and remaining uneaten diet were separated, dried and
weighed after 72 hrs. The experiment was designed for three days (72
hrs) interval with 5 larvae per replication for each concentration. There
were six replications for each experiment.

The various nutritional parameters of consumption, digestion, and
utilization of food were calculated by the methods documented by Wald-
bauer (1968) and Koul et al. (2005). The nutritional parameters such as the
relative growth rate (RGR), relative consumption rate (RCR), efficiency of
conversion of ingested food (ECI), efficiency of conversion of digested food
(ECD), and approximate digestibility (AD) were calculated as:

RGR ¼Change in larval dry weight per day
Initial dry weight of larvae

RCR ¼Change in dry weight of diet per day
Initial dry weight of larvae

ECI¼Dry weight ðGain of insectÞ
Dry weight ðFood ingestedÞ � 100

ECD¼ Dry weight ðGain of insectÞ
Dryweight ðFood ingestedÞ�Dry weight ðFecal matterÞ� 100

AD ¼ Dry weight ðGain of insectÞ � Dry weight ðFecal matterÞ
Dry weight ðFood ingestedÞ � 100

2.6. Statistical analysis

The data obtained was subjected to one-way ANOVA and wherever F-
values were found to be significant, the means were compared by the
Tukey's honestly difference test (P � 0.05) using Assistat (7.7).

3. Results

3.1. GC-MS analysis

The GC-MS data showed the presence of various compounds in Palam
Samridhi (PS) and Palam Vichitra (PV) extracts (Figures 1 and 2). The PS
extract contained 3-Butenyl isothiocyanate, erucin, sulforaphane and PV
extract contained erucin, 2-Phenylethyl isothiocyanate, sulforaphane and
their mass spectra (MS) matched with NIST database (Tables 1 and 2;
Figures 1 and 2). The components of extracts were also identified by
matching their mass spectra in the computer library such as Wiley, New
York mass spectral (MS) library and their retention indices (RI) were
compared either with authentic compounds or with published data in the
literature.

3.2. Bioassays

Bioassays conducted with ethyl acetate extracts of both PS and PV
showed growth inhibitory effects on the larvae of S. litura. Significant
inhibitory effects of PS and PV on larval mortality and percent adult
emergence of S. litura were observed (Table 3). In the larvae fed on PS



Figure 1. GC-MS chromatogram of Palam Samridhi.

Figure 2. GC-MS chromatogram of Palam Vicihitra.
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incorporated diet, the larval mortality was observed to be greater than
control at higher concentrations with maximum increase observed at
3125 ppm. However, in the larvae fed on PV amended diet, the larval
mortality initially decreased at lower concentrations as compared to
control but then increased significantly with maximum mortality of
46.7% at 3125 ppm.

The adult emergence of S. litura decreased significantly with both PS
and PV, but the decrease was not concentration dependent (Table 3). In
larvae fed on PS incorporated diet, the maximum decrease in percentage
adult emergence was observed at 3125 ppmwhere it was reduced to 49%
of the control. In larvae fed on PV incorporated diet, the percentage adult
emergence was lowest at 5 ppm followed by 3125 ppm.

PS significantly delayed the larval period at all concentrations except
at highest concentration of 3125 ppm where it was shortened as
compared to control (Table 4). On the other hand, PV incorporated diet
decreased the larval period at lower concentrations as compared to
control while at highest concentration of 3125 ppm, it was delayed by
0.35 days as compared to control, however the results obtained were
found to be non-significant.

For PS incorporated diet, the total development period prolonged by
3.07 days at 625 ppm concentration as compared to control while in the
Table 1. GC-MS analysis of Palam Samridhi (PS) for isothiocyanates and glucosinolat

Peak Retention Time Area%

1 6.178 0.18%

3 13.287 1.53%

4 16.871 0.66%

Table 2. GC-MS analysis of Palam Vicihitra (PV) for isothiocyanates and glucosinolat

Peak Retention Time Area% Iso

3 13.299 1.10% Eru

4 13.716 0.07% 2-P

6 16.887 0.23% Su
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highest concentration of 3125 ppm, it again decreased (Table 4). On the
other hand, the PV incorporated diet decreased the total development
period as compared to control but the decrease was concentration in-
dependent (Table 4).
3.3. Nutritional assays

The RGR, ECI, and ECDwere significantly reduced in the larvae fed on
PS and PV incorporated diet when compared to control (Figures 3, 4, and
5). As compared to control, RGR decreased by 31.21% at 3125 ppm for
PS and by 12.67% at 3125 ppm in case of PV. The RCR too was signifi-
cantly reduced in larvae treated with PS but in larvae fed on diet having
PV, the RCR initially decreased by 14.46% up to 25 ppm but then again
increased up to 77.17% at 3125 ppm as compared to control (Figure 6).
In response to PV amended diet, AD of the larvae showed a maximum of
16.66% increase at 125 ppm and about 15.46% increase at 3125 ppm as
compared to control (Figure 7). Although, AD was found to be increased
with PS diets but the results were statistically non-significant (Figure 7).

4. Discussion

Larval mortality was increased while adult emergence was reduced
with both the cultivars however the results varied with respect to culti-
vars. Broccoli like other plants of the Brassicaceae family is rich in glu-
cosinolates which carry diverse functions such as growth inhibitors,
toxins or feeding deterrents against a large number of herbivores ranging
from phloem-feeding aphids to leaf chewing lepidopterans’ larvae
(Poelman et al., 2008; Hopkins et al., 2009). S. litura is a generalist insect
pest which feeds on a wide range of crops. Generalist insect pests fed on
glucosinolates and isothiocyanate (ITC) incoporated diets commonly
suffer inhibition of growth and development (Jeschke et al., 2015, 2016,
2017). In larvae of many generalist lepidopteran insects, including the
cotton leafworm, S. littoralis Boisduval, the predominant glucosinolate
hydrolysis derived products, ITCs, at low concentration are detoxified to
some level by conjugation to GSH in the midgut and the subsequent
excretion with the faeces (Wadleigh and Simon, 1988; Schramm et al.,
2012; Zalucki et al., 2021). As a result of such metabolic adaptations to
the toxic effects of glucosinolates present in the plant extracts, S. litura
larvae might be able to prevent mortality to some extent but could not
prevent glucosinolates and their hydrolysis products from disturbing and
delaying their growth and development (Jeschke et al., 2017). Glucosi-
nolates may still serve as potential defenses as the increase in develop-
ment time increases the risk of predatory attacks (Jeschke et al., 2017).
After feeding on PS incorporated diet, both the larval period and total
development period of S. litura larvae were prolonged. It has already
been reported that glucosinolates significantly influence the duration of
the developmental stages (Smallegange et al., 2007). A negative effect of
glucosinolates on eggs was detected for brassica pod midge, Dasineura
es hydrolytic products.

Isothiocyanates Mass spectra

3-Butenyl isothiocyanate 113 [M],85,72,60,55,53

Erucin 161 [M], 146, 115, 100, 85,72,61, 55, 53

Sulforaphane 177 [M],160,114,85,72,64,55

es hydrolytic products.

thiocyanates Mass spectra

cin 161 [M], 146, 115, 100, 85,72,61, 55, 53

henylethyl isothiocyanate 163 [M], 105, 91, 77, 72,65, 50

lforaphane 177 [M],160,114,85,72,64,55



Table 3. Larval mortality (%) and adult emergence (%) of S.litura after ad-libitum feeding given to second instar larvae on Palam Samridhi (PS) and Palam Vichitra (PV)
incorporated artificial diet.

Concentrations (ppm) Larval mortality (%)
Mean � S.E. (PS)

Larval mortality (%)
Mean � S.E. (PV)

Adult emergence (%)
Mean � S.E. (PS)

Adult emergence (%)
Mean � S.E. (PV)

Control 20.00 � 0.00a 33.33 � 2.98a 73.33 � 8.43a 76.67 � 8.03a

5 26.67 � 4.22a 33.33 � 2.98a 50.00 � 6.83abc 30.00 � 6.83b

25 20.00 � 0.00a 20.00 � 0.00b 76.67 � 8.03ab 50.00 � 3.65ab

125 35.00 � 6.06ab 20.00 � 0.00b 56.70 � 10.9abc 43.33 � 6.15b

625 32.00 � 6.53ab 20.00 � 0.00b 40.00 � 8.94bc 40.00 � 10.3b

3125 46.66 � 2.98b 46.7 � 11.2ab 36.00 � 3.27c 32.00 � 4.00b

F- value 5.86** 4.99** 4.35** 6.10**

** ¼ Significant at 1%. Means within a column followed by the same letter are not significantly different, p � 0.05; based on Tukey's test.

Table 4. Larval period (days) and total development period (days) of S. litura after ad-libitum feeding given to second instar larvae on Palam Samridhi (PS) and Palam
Vichitra (PV) incorporated artificial diet.

Concentrations (ppm) Larval period
Mean�S.E. (PS)

Larval period
Mean � S.E. (PV)

Total development period
Mean � S.E. (PS)

Total development period
Mean � S.E. (PV)

Control 13.58 � 0.25a 15.91 � 0.21a 20.68 � 0.28a 26.54 � 0.82a

5 13.03 � 0.13c 15.12 � 0.48a 22.40 � 0.49ab 25.00 � 0.52ab

25 13.79 � 0.10a 15.24 � 0.25a 22.55 � 0.27ab 24.95 � 0.31ab

125 14.41 � 0.33abc 14.99 � 0.13a 23.58 � 0.28b 26.19 � 0.41a

625 14.00 � 0.21ab 15.54 � 0.17a 23.75 � 0.80b 25.28 � 0.29ab

3125 13.33 � 0.11bc 16.26 � 0.85a 21.60 � 0.23a 24.00 � 0.43b

F- value 5.49** N.S. 6.86** 3.43*

** ¼ Significant at 1%, * ¼ Significant at 5% and N.S. ¼ Non-significant. Means within a column followed by the same letter are not significantly different, p � 0.05;
based on Tukey's test.

Figure 3. RGR (mg/mg/day) of S. litura after the larvae were fed on Palam
Samridhi (PS) and Palam Vichitra (PV) incorporated artificial diet.

Figure 4. ECI (%) of S. litura after the larvae fed on Palam Samridhi (PS) and
Palam Vicihitra (PV) incorporated artificial diet.

Figure 5. ECD (%) of S. litura after the larvae fed on Palam Samridhi (PS) and
Palam Vicihitra (PV) incorporated artificial diet.

Figure 6. RCR (mg/mg/day) of S. litura after the larvae were fed on Palam
Samridhi (PS) and Palam Vichitra (PV) incorporated artificial diet.
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Figure 7. AD (%) of S. litura after the larvae fed on Palam Samridhi (PS) and
Palam Vicihitra (PV) incorporated artificial diet.
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brassicae (Wim) (Åhman, 1985; Bj€orkman et al., 2011) and on the feeding
of rape beetle, Meligethes aeneus (Fabricius) (Cook et al., 2007).

Also, it was noticed that the toxic effect of PS on the insect pest was
more than PV as per the results obtained for larval mortality, larval
period and total development period. This could be due to variations in
the glucosinolates content in the two species of broccoli or due to the
ability of the insects to detoxify, sequester or excrete different plant
defensive compounds. The glucosinolates content varies between indi-
vidual plant species (Moyes et al., 2000; Chaplin-Kramer et al., 2011),
between organs of the same plant species and between the develop-
mental stages of individual plant species (De Villena et al., 2007; Cartea
and Velasco, 2008). This suggests that the glucosinolate concentration
may differentially influence the insect pests. Moreover, Jeschke et al.
(2017) reported that glucosinolates affect insects by deterrence, growth
inhibition and increasing susceptibility to predation as a result of delayed
development time.

Incorporation of the extracts of two cultivars of broccoli was found to
significantly affect the various nutritional parameters of S. litura larvae.
The analysis of nutritional indices of S. litura larvae revealed that the RCR
of S. litura larvae fed on PV incorporated diet was more as compared to
control. But the RCR of larvae fed on PS diet was lesser than control. This
could account for the prolonged development time of the larvae of
S. litura fed on PS incorporated diet.

The ECI and ECD decreased in the larvae of S. litura when fed on both
species of broccoli incorporated diet. ECI is a measure of the insect's
capability to utilize the food it ingests for growth. Decreased ECI is an
indication of more food being metabolized for energy to perform
defensive functions or to detoxify the toxic effect of the diets and less
energy being converted into body mass. The low ECI values as compared
to control in the larvae of S. litura could be due to the energetic cost for
detoxification or due to impaired metabolism (Yazdani et al., 2013;
Aljabr et al., 2017). The latter can have an adverse effect on insect's
conversion efficiency (Scriber and Slansky, 1981). Decrease in ECD
values usually results from either the presence of toxins in the diet or due
to the lack or unsuitability of food constituents required by the insects for
proper growth (Koul et al., 2004). Low ECI and ECD probably account for
low RGR of S. litura larvae. AD increased in the S. litura larvae when fed
on diet amended with the two species of broccoli. This increased AD
possibly serves to fulfil the increased demand for nutrients (Koul et al.,
2003) and to compensate for the reduction in food stuff conversion
resulting from lowered ECI and ECD, probably by switching biomass
production towards detoxification process (Wheeler and Isman, 2001).
Our results are in accordance with the findings of Datta et al. (2019) who
also reported a significant decline in nutritional parameters viz. RGR,
RCR, ECI and ECD in S. litura larvae in response to crude plant extracts.
Punia et al. (2020) also reported similar anti-nutritional effect of plant
secondary metabolite against S. litura. A disturbed feeding pattern in the
cotton bollworm, Helicoverpa armigera Hübner larvae while feeding on
leaves of A. Thaliana, has already been reported (Shroff et al., 2008). The
5

larvae avoided the glucosinolate-enriched parts especially, midvein and
the edge of the leaf demonstrating deterrent activity of glucosinolates
(Shroff et al., 2008).

5. Conclusion

The present findings revealed toxic or deterrent effects of the two
broccoli varieties on the insect pest, S. litura. These studies can provide
the baseline data for further exploration of bioactive compounds from
broccoli which can be used by plant breeders for enhancing their
expression through transgenic plants so as to confer resistance against the
insect pests.
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