

Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data in brief on CO₂ absorption-desorption of aqueous-based amino acid solvents with phase change behaviour

Masood S. Alivand ^{a, b}, Omid Mazaheri ^{a, c}, Yue Wu ^{a, b}, Geoffrey W. Stevens ^{a, b}, Colin A. Scholes ^{a, b}, Kathryn A. Mumford ^{a, b, *}

^a Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia

^b Peter Cook Centre for CCS Research, The University of Melbourne, Parkville, Victoria, 3010, Australia

^c School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of

Melbourne, Parkville, Victoria, 3010, Australia

ARTICLE INFO

Article history: Received 7 October 2019 Accepted 28 October 2019 Available online 4 November 2019

Keywords: Amino acid Phase change solvent Anti-solvent CO₂ absorption Energy-efficiency

ABSTRACT

The data presented in this paper are related to the published research article "Development of aqueous-based phase change amino acid solvents for energy-efficient CO_2 capture: The role of antisolvent" [1]. The raw and analyzed data include the equilibrium and kinetics of CO_2 absorption, the density and concentration of different CO_2 -containing species at upper and lower liquid phases, and particle size distribution of solid particles precipitated during CO_2 absorption of aqueous and aqueous-based amino acid solvents. In addition, the SEM images of solid precipitates at the end of CO_2 absorption are presented. The detailed values of this phase change amino acid solvent are crucial for large-scale implementation of CO_2 capture systems with phase change behavior.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: mumfordk@unimelb.edu.au (K.A. Mumford).

https://doi.org/10.1016/j.dib.2019.104741

^{*} Corresponding author. Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.

^{2352-3409/© 2019} The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

Specifications Table

Subject	Energy and environmental engineering
Specific subject area	Phase separation and precipitation analysis
Type of data	Text
	Table
	Figure
	Image
How data were acquired	Equilibrium CO ₂ absorption test rig
	Dynamic CO ₂ absorption-desorption test rig
	Focused Beam Reflectance Measurement (FBRM) probe (ParticleTrack G400, Mettler
	Toledo)
	SEM (FlexSem 1000, Hitachi)
Data format	Raw and analyzed data
Parameters for data collection	The aqueous-based amino acid solvent was prepared at different volume ratios of DMF
	as anti-solvent
Description of data collection	Herein, the data was collected using equilibrium and dynamic CO_2 capture rigs. For
	equilibrium CO ₂ absorption rig, pure CO ₂ with a known initial pressure was injected into
	the solvent and final equilibrium pressure was recorded. For dynamic CO2 absorption-
	desorption rig, a mixture of N2 and CO2 was injected into the solvent at a constant flow
	rate and the concentration of CO_2 was monitored at both inlet and outlet streams.
	Moreover, the solid particle precipitation was recorded during dynamic CO ₂ absorption.
Data source location	Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria
	3010, Australia.
Data accessibility	Data is available in this article
Related research article	M.S. Alivand, O. Mazaheri, Y. Wu, G.W. Stevens, C.A. Scholes, K.A. Mumford,
	Development of aqueous-based phase change amino acid solvents for energy-efficient
	CO ₂ capture: The role of antisolvent, Appl. Energ. 256 (2019) 113911. https://doi.org/10.
	1016/j.apenergy.2019.113911

Value of the Data

• The dataset can be used in future studies and analysis of phase change solvents with new amino acids and anti-solvents.

- These data will be crucial for researchers and engineers to design/improve large-scale phase change amino acid solvents with high energy-efficiency.
- It provides a new insight into the role of anti-solvent in phase change amino acid solvents and can be effectively employed in future works to find appropriate anti-solvents.
- This dataset can be used for other similar systems and provide applicable information for large-scale implementation of energy-efficient CO₂ capture systems.

1. Data

The data presented in this article are associated with the research article (M.S. Alivand et al., 2019 [1]) which were acquired using CO₂ absorption-desorption rigs of the University of Melbourne. Fig. 1 shows the CO₂ absorption-desorption rig for measuring dynamic CO₂ absorption capacity, monitoring solid particle precipitation and highly-accurate heat transfer calorimetry analysis. Fig. 2a and b shows the effect of potassium hydroxide (KOH)/potassium glycinate (GlyK) ratio on the pH value and dynamic CO₂ absorption capacity of aqueous 3 M potassium glycinate solvent at 40 °C, respectively. Figs. 3 and 4 demonstrate the number of precipitated solid particles and particle size distribution for different initial GlyK and anti-solvent concentrations during dynamic CO₂ absorption. The density, CO₂ absorption capacity, carbamate and carbonate/bicarbonate concentration of prepared aqueous and aqueous-based GlyK solvents are presented in Tables 1 and 2. The spontaneous liquid-liquid phase separation of aqueous-based GlyK-70 and GlyK-80 solvents before CO₂ absorption is illustrated in Fig. 5. Fig. 6 shows the SEM images of solid precipitated particles at the end of CO₂ absorption for aqueous-based GlyK-65 solvents.

Fig. 1. Dynamic CO₂ absorption-desorption rig equipped with Focused Beam Reflectance Measurement (FBRM) probe for online monitoring solid precipitation and HFCal probe for quantitative heat flow calorimetry analysis.

2. Experimental design, materials, and methods

2.1. Dynamic CO₂ absorption/desorption experiments

The rate of dynamic CO_2 absorption in the loaded solution can be computed by the total mass balance of CO_2 :

$$Q_{\rm CO_2} = n_{\rm CO_2}^{in} - n_{\rm CO_2}^{out} \tag{1}$$

where Q_{CO_2} is the rate of CO₂ absorption; $n_{CO_2}^{in}$ is the CO₂ molar flowrate at inlet stream; $n_{CO_2}^{out}$ is the CO₂ molar flowrate at outlet stream.

The recorded CO₂ concentration at outlet streams can be defined as:

$$x_{CO_2}^{out} = \frac{n_{CO_2}^{out}}{n_{CO_2}^{out} + n_{N_2}^{out}}$$
(2)

where $x_{CO_2}^{out}$ is the volume fraction of CO₂ at outlet stream; $n_{N_2}^{out}$ is the N₂ flowrate at outlet stream. Equation (2) can be represented by:

Fig. 2. (a) pH value of potassium glycinate solution at different KOH/Gly molar ratios and (b) dynamic CO_2 absorption capacity of aqueous 3 M GlyK-0 solvent at 40 °C.

Fig. 3. Total number of precipitated solid particles and the amount of added DMF to the aqueous solution during CO_2 absorption time.

Fig. 4. The number of precipitated solid particles for different initial GlyK concentrations ($C_o = 1, 2 \text{ and } 3 \text{ M}$) and DMF to H_2O volume ratios (R = 0.3, 0.5 and 1) during CO_2 absorption. The particles with an average chord length less than 10, 10–50 and 50–150 μ m are presented by red, black and blue lines, respectively.

$$n_{CO_2}^{out} = \frac{x_{CO_2}^{out}}{1 - x_{CO_2}^{out}} n_{N_2}^{out}$$
(3)

Using both Equation (1) and Equation (3), the rate of CO₂ absorption is calculated by:

$$Q_{CO_2} = n_{CO_2}^{in} - \frac{x_{CO_2}^{out}}{1 - x_{CO_2}^{out}} n_{N_2}^{out}$$
(4)

The amount of absorbed CO_2 over a given time, *t*, is computed by:

$$N_{\rm CO_2} = \int_0^t Q_{\rm CO_2} dt$$
 (5)

ble	1
	ble

The density values of aqueous and aqueous-based GlyK-X solvents after CO₂ absorption.

Solvent	Density (mg/L)			
	Upper liquid phase	Lower liquid phase		
GlyK-0	1.2867	_		
GlyK-10	1.2868	_		
GlyK-25	1.2930	_		
GlyK-40	1.1326	1.3216		
GlyK-50	1.1281	1.3604		
GlyK-55	1.0894	1.4236		
GlyK-60	1.0815	1.4475		
GlyK-65	1.0798	1.4719		

Table 2

The CO₂ absorption capacity and CO₂-containing species distribution of different aqueous and aqueous-based GlyK-X solvents.

Solvent	CO ₂ loading		Carbamate		Carbonate/bicarbonate	
	Equilibrium	Dynamic (after 7 hr)				
	Mol _{CO2} /mol _{GlyK}	Mol _{CO2} /L _{Solvent}	mg/g _{Solvent}	%	mg/g _{Solvent}	%
GlyK-0	0.433	1.489	94.60	62.89	55.81	37.10
GlyK-10	0.435	1.492	97.33	64.42	53.75	35.58
GlyK-25	0.448	1.491	123.80	77.39	36.16	22.61
GlyK-40	0.483	1.456	152.72	48.49	162.26	51.51
GlyK-50	0.513	1.521	237.44	58.61	167.66	41.39
GlyK-55	0.539	1.621	340.41	61.98	208.81	38.02
GlyK-60	0.546	1.712	413.25	64.23	230.15	35.77
GlyK-65	0.551	1.719	426.06	65.59	223.49	34.41

GlyK-70

Fig. 5. The picture of aqueous-based (a) GlyK-70 and (b) GlyK-80 solvents before CO₂ absorption.

Similarly, for regeneration, the amount of desorbed CO₂ over a given time, *t*, can be obtained by:

$$N_{\rm CO_2} = \int_0^t \frac{x_{\rm CO_2}^{out}}{1 - x_{\rm CO_2}^{out}} n_{N_2}^{out} dt \tag{6}$$

Fig. 6. The SEM analysis of solid precipitates of GlyK-55, GlyK-60 and GlyK-65 solvents at different magnifications.

2.2. CO₂ vapor-liquid equilibrium (VLE) experiments

The solubility of CO_2 in aqueous/aqueous-based solutions was measured by an in-house rig. Initially, inlet valve opened and the CO_2 container was pressurized by pure CO_2 to a desired pressure. Then, the inlet valve closed and the pressure of container was recorded (P₁). Afterward, the outlet valve was opened for 2–3 sec, while inlet valves were still closed, and pure CO_2 was injected into the equilibrium reactor. As a result, the pressure of CO_2 container decreased and reached a new pressure (P₂). Total moles of CO_2 molecules injected into the equilibrium reactor was calculated by:

$$n_{\rm CO_2} = \frac{V_c}{RT_a} \left(\frac{P_1}{Z_1} - \frac{P_2}{Z_2} \right) \tag{7}$$

Fig. 7. The equilibrium CO₂ absorption capacity of 5 M MEA solution compared with literature data [1].

where V_c is the total volume of CO₂ container; P_1 and P_2 are the initial and final pressure of CO₂ container, respectively; Z_1 and Z_2 are gas compressibility factors associated to the initial (P_1) and final pressure (P_2) of CO₂ container; R is the universal gas constant; T_a is ambient temperature. To calculate the compressibility factors Soave-Redlich-Kwong (SRK) was employed:

$$Z^{3} - Z^{2} + \left(\frac{aP - b^{2}P^{2}}{R^{2}T^{2}} - \frac{bP}{RT}\right)Z = \frac{abP^{2}}{R^{3}T^{3}}$$
(8)

All *a*, *b* and *m* coefficients can be calculated by:

$$a = 0.4274 \frac{R^2 T_c^2}{P_c} \left(1 + m \left(1 - \sqrt{T_r} \right) \right)^2$$
(9)

$$b = 0.0866 \frac{RT_c}{P_c} \tag{10}$$

$$m = 0.48 + 1.574\omega - 0.176\omega^2 \tag{11}$$

where T_c is the critical temperature; T_r is the reduced temperature; ω is the acentric factor. The equilibrium pressure of CO₂ in reactor is represented as:

$$P_{\rm CO_2} = P_R - P_V \tag{12}$$

where P_R is the reactor pressure recorded by pressure transmitter and P_V is the vapor pressure of solution.

The total number of CO_2 moles in the gaseous part of equilibrium reactor was calculated by:

$$n_{CO_2}^{g} = \frac{V_g P_{CO_2}}{Z_{CO_2} R T_R}$$
(13)

where V_g is the volume of gaseous part in the equilibrium reactor (total volume of equilibrium reactor minus the volume of loaded solution); T_R is the reactor temperature; Z_{CO_2} is the CO₂ compressibility factor at T_R and P_{CO_2} . Thus, the amount of absorbed CO_2 in liquid phase was obtained by:

$$n_{\rm CO_2}^l = n_{\rm CO_2} - n_{\rm CO_2}^{\rm g} \tag{14}$$

The final amount of absorbed CO₂ into the loaded solution was computed by:

$$m_{CO_2} = \frac{n_{CO_2}^{\prime}}{w_{sol}}$$
(15)

where w_{sol} is the weight of loaded solvent.

2.3. Validation and measurement accuracy

In order to validate the accuracy of VLE rig and calculation procedure (Equations (7)–(15)), the equilibrium CO₂ absorption capacity of 5 mol/L (M) MEA solution at 40 °C was compared with the previously reported data [2] and the results are illustrated in Fig. 7. As it can be seen, there is an excellent agreement between experimental data and the reported values which represent the good reliability of CO₂ VLE rig.

Acknowledgments

The authors would like to acknowledge the University of Melbourne for the Melbourne Research Scholarship, Particulate Fluids Processing Centre (PFPC) for infrastructural support and Peter Cook Centre for financial resources provided for this project.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- M.S. Alivand, O. Mazaheri, Y. Wu, G.W. Stevens, C.A. Scholes, K.A. Mumford, Development of aqueous-based phase change amino acid solvents for energy-efficient CO₂ capture: the role of antisolvent, Appl. Energy 256 (2019) 113911, https://doi. org/10.1016/j.apenergy.2019.113911.
- [2] F.Y. Jou, A.E. Mather, F.D. Otto, The solubility of CO₂ in a 30 mass percent monoethanolamine solution, Can. J. Chem. Eng. 73 (1995) 140–147.