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Abstract

Motivation: Metagenomics characterizes microbial communities by random shotgun sequencing

of DNA isolated directly from an environment of interest. An essential step in computational meta-

genome analysis is taxonomic sequence assignment, which allows identifying the sequenced com-

munity members and reconstructing taxonomic bins with sequence data for the individual taxa.

For the massive datasets generated by next-generation sequencing technologies, this cannot be

performed with de-novo phylogenetic inference methods. We describe an algorithm and the ac-

companying software, taxator-tk, which performs taxonomic sequence assignment by fast approxi-

mate determination of evolutionary neighbors from sequence similarities.

Results: Taxator-tk was precise in its taxonomic assignment across all ranks and taxa for a range of

evolutionary distances and for short as well as for long sequences. In addition to the taxonomic

binning of metagenomes, it is well suited for profiling microbial communities from metagenome

samples because it identifies bacterial, archaeal and eukaryotic community members without

being affected by varying primer binding strengths, as in marker gene amplification, or copy

number variations of marker genes across different taxa. Taxator-tk has an efficient, parallelized

implementation that allows the assignment of 6 Gb of sequence data per day on a standard multi-

processor system with 10 CPU cores and microbial RefSeq as the genomic reference data.

Availability and implementation: Taxator-tk source and binary program files are publicly available

at http://algbio.cs.uni-duesseldorf.de/software/.

Contact: Alice.McHardy@uni-duesseldorf.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metagenomics allows us to study microbial communities from nat-

ural environments without the need to obtain pure cultures of the in-

dividual member species (Hugenholtz, 2002; Riesenfeld et al.,

2004). The shotgun sequencing of microbial community DNA with

current techniques generates reads that range from less than 100 to

several thousand nucleotides (Dröge and McHardy, 2012; Klumpp

et al., 2012). By computational analyses of metagenome sequence

samples, we can estimate the abundances of different taxa for the

sampled communities, known as taxonomic profiling, characterize

their functional and metabolic potential based on the predicted pro-

teins and resolve the contributions of individual taxa to the latter by

reconstructing ‘bins’ of unassembled or assembled sequences that

originate from the same taxon.
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A taxonomic profile of a microbial community can be inferred

by either targeted amplification and sequencing of taxonomic

marker genes or from metagenome shotgun datasets (Lindner and

Renard, 2013; Sunagawa et al., 2013; Silva et al., 2014). Most meta-

genome profiling methods classify reads based on predefined taxon-

specific (Segata et al., 2012) or ‘universal’ marker genes (Darling

et al., 2014), or directly estimate a taxonomic profile for the under-

lying microbial community from their k-mer composition (Koslicki

et al., 2013). Frequently used phylogenetic placement programs

within such frameworks are pplacer (Matsen et al., 2010) or EPA/

RAxML (Berger et al., 2011), which both operate in a probabilistic

framework to place a query gene sequence in a pre-computed refer-

ence phylogeny of a particular gene family. If this gene tree is an ap-

proximate representation of the respective species tree—or reference

taxonomy—this can be used to assign a taxon identifier (ID) to the

query sequence (Stark et al., 2010; Matsen and Gallagher, 2012).

Taxon abundances are then derived from the individual read counts

or gene frequencies within each taxonomic group.

Binning methods place the sequences of a shotgun metagenome

sample into bins representing the different taxa of the sampled mi-

crobial community. If a bin represents a low-ranking taxon, such as

species, then the set of reads or contigs of an individual taxonomic

bin serves as a draft-genome reconstruction for a community mem-

ber (Pope et al., 2011). Binning methods are either based on cluster-

ing or classification. Clustering methods group sequences into bins

without consideration of external reference sequences or taxonomic

information. Instead, bins are inferred based on similarities in GC

content, oligomer frequencies, the abundance of genes or contig

coverage within one or multiple samples (Baran and Halperin,

2012; Albertsen et al., 2013; Carr et al., 2013; Alneberg et al.,

2014), or by using a combination of these (Iverson et al., 2012).

This allows draft genome recovery from deep lineages for sequences

of sufficient length. Taxonomic binning, like profiling, uses the re-

semblance of a sequence to known taxa in either global sequence

composition or local sequence similarity to assign a taxon ID. For

the human gut microbiome, extensive genome sequencing of isolate

cultures allowed species-level taxonomic binning for a substantial

portion (�40%) of a metagenome sample (Schloissnig et al., 2013)

by mapping the reads to isolate genome sequences, which exist for

many abundant species (Sunagawa et al., 2013). However, this pro-

cedure is not suitable for environments in which most species are

from deep-branching lineages without available reference genome

sequences. Taxonomic binning of these requires more sophisticated

similarity-based or composition-based taxonomic assignment meth-

ods (McHardy et al., 2007; Brady and Salzberg, 2011; Huson et al.,

2011). Taxonomic binning by sequence composition also allows

draft genome recovery from deep-branching lineages, based on lim-

ited amounts of sequences for the individual taxa (McHardy et al.,

2007). Composition-based programs achieve linear classification

times regarding metagenome sample size, whereas similarity-based

binning methods require considerably more computational resources

for sequence similarity searches in large reference sequence collec-

tions. Programs with a focus on processing large amounts of raw

sequencing reads, such as Kraken (Wood and Salzberg, 2014), im-

plement the fastest search strategies. Similarity-based programs are

more accurate for the assignment of sequences shorter than 1 kb

(Patil et al., 2011).

A common aim in taxonomic profiling and taxonomic binning is

the identification of known taxa from a sample. A taxonomic pro-

filer estimates a taxonomic abundance profile for the entire sample,

which can be inferred by analyzing a smaller number of marker

genes, though one needs to account for variations in gene copy

numbers for taxon-specific markers (Lindner and Renard, 2013).

Taxonomic binning assigns taxon IDs to a large portion of the sam-

ple sequences for subsequent functional and metabolic analyses of

individual taxon bins. In addition, one can generate a taxonomic

profile by quantifying the assigned reads, based on read counts or

coverage for each individual bin.

From a methodological standpoint, the differences between the

phylogenetic-placement-based methods for profiling and alignment-

score-based methods for taxonomic binning and profiling, such as

MEGAN (Huson et al., 2011), CARMA3 (Gerlach and Stoye, 2011)

or SOrT-ITEMS (Monzoorul Haque et al., 2009) are that the latter

lack a well-motivated evolutionary framework. However, they have

the advantages of being computationally lightweight and applicable

to arbitrary genes, which is a necessity for taxonomic binning.

Phylogenetic-placement-based methods cannot currently be used for

binning, because the de-novo inference of trees for gene families on

a metagenome-wide scale is computationally too demanding, par-

ticularly for next-generation sequencing (NGS) data.

Our taxator toolkit (taxator-tk) is a software package for the

taxonomic sequence assignment in shotgun metagenomics with ap-

plications to both profiling and binning. Conceptually, it lies be-

tween sequence similarity-based programs which use local sequence

alignment scores and those using trees. Taxator-tk extends the align-

ment score-based approach by approximating phylogenetic gene

trees and thereby provides more accurate taxonomic assignments,

without assuming universal, rank or clade-specific gene conservation

levels as parameters. We improve in terms of applicability to large

datasets compared with phylogenetic methods by assigning genomic

sequences without the computationally demanding steps of de-novo

multiple sequence alignment (MSA) and tree inference. Taxator-tk

determines a subset of homologs, which represent the approximate

evolutionary neighbors for a query sequence, by a linear number of

pairwise sequence comparisons with regard to the number of con-

sidered homologs and then assigns a taxon ID using a reference tax-

onomy based on the taxonomic IDs of these neighbors. We have

furthermore reduced the run-time by limiting the analysis to distinct

homology-supported regions of the query sequence, which we

termed query segmentation. Our open-source (GPLv3) software can

be applied to arbitrary nucleotide sequences, such as reads, contigs,

scaffolds and complete genomes sequences. It can be downloaded

from http://algbio.cs.uni-duesseldorf.de/software/.

2 Methods

2.1 Taxator-tk’s workflow for taxonomic assignment
The workflow for the taxonomic assignment of a nucleotide query

sequence comprises three stages (Fig. 1a–c). The first stage uses a

local sequence aligner to identify similar regions from a reference se-

quence collection, such as microbial RefSeq (mRefSeq) (Sayers et al.,

2009). The implemented workflows currently use BLASTþ
(Camacho et al., 2009) version 2.2.28þ using any of the blastn,

megablast or tblastx algorithms and nucleotide LAST (Frith et al.,

2010) version 320. Other aligners can be used via conversion to a

TAB-separated format, if found to be more appropriate. We discuss

our choice of the aligner in the Supplementary Material (‘IX.

Sequence homology search via local alignment’). At the beginning of

the taxator algorithm in Stage 2, overlapping regions on the

query, each defined by local alignment to a nucleotide reference se-

quence, are merged into larger subsequences called segments

(Supplementary Fig. S1). These query segments are flanked by regions

without similarity to any reference data (Supplementary Fig. S2) and
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are not considered further. This step reduces the overall number of

positions in the following alignment computations and improves the

taxonomic assignment of queries that have undergone genome re-

arrangements, resulting in a different order of these segments. The ref-

erence sequence regions corresponding to the local alignments are

extended at both sides by the missing number of nucleotides to match

to the corresponding query segment with respect to its length and we

refer to these as reference segments. Each independent set of homolo-

gous segments is the input to the core algorithm in the program taxa-

tor in Stage 2 (Fig. 1b), which calculates independent taxon IDs for

every corresponding query segment.

In the third stage (Fig. 1c), multiple segments belonging to the

same query are considered and their IDs are combined in the pro-

gram binner, to derive a consensus taxon ID. The corresponding al-

gorithm weights the individual segment assignments by the number

of identical bases to the closest reference sequence and assigns to the

entire query the taxon ID supported by the majority (default¼70%

identical bases) of weighted assignments with a minimum number of

identical bases (default¼50 bp) (Supplementary Material, ‘II.

Consensus binning algorithm’). Binner has the optional parameters

minimum sequence identity and minimum sample abundance, but

these were not applied in our analysis. If the taxonomic information

is limited or contradictory, taxator and binner assign identifiers to

higher ranking taxa in a conservative fashion to obtain the most reli-

able taxonomic assignments.

2.2 The taxonomic assignment algorithm (taxator)
The input to the algorithm is a segment q of the original query

sequence from an (unknown) taxon Q and a set of homologous

segments with known taxon IDs. The term ‘segment’ refers to a

gap-less subsequence of either the query or a reference sequence.

Given that for the set of homologs we know the correct underlying

species tree of taxa (Fig. 2a), we can see that for our query taxon Q,

the closest evolutionary neighbors would be A, B and S. If we simply

assign X, the parental taxon of A, B and S, as a taxon identifier, this

would be inaccurate, as A, B and S are more closely related to each

other than to Q. Instead, the correct taxonomic assignment would

be a parent of X and Q, and of at least one additional outgroup

taxon (O) in the reference tree, such that Q also becomes a descend-

ant of the identified parent (R in Fig. 2a). If we therefore identify the

taxa A, B, S and O in the reference tree, we can determine the taxon

ID of R as the lowest common ancestor (LCA) of these taxa and as-

sign it to Q (and q).

Assuming that the underlying segment tree for a set of homologs

is similar to the species tree, a natural procedure to identify the seg-

ments corresponding to the leaf taxa within R among the homologs

would be to construct a MSA for the segment and a phylogenetic

tree with a corresponding subtree as in Figure 2a. However, the

computational effort for this approach is superlinear with respect to

the number of homologs being compared and substantial for all the

query segments in a large sample, even using fast techniques for

MSA construction and tree inference. The taxator algorithm at-

tempts to identify these segments with a linear number of pairwise

Fig. 1. Workflow diagram for the taxonomic assignment of a nucleotide query

sequence with taxator-tk. Taxonomic assignment with taxator-tk includes

three steps. (a) Homology search for query sequence in reference collection

using a nucleotide local alignment program. (b) Program taxator splits the

query into distinct segments and determines a taxon ID for each using the

corresponding homologs. (c) Program binner determines a taxon ID for the

entire query based on the taxonomic assignments of the individual segments

Fig. 2. Algorithm for taxonomic labeling of query segments (realignment

placement algorithm/RPA). The RPA assigns a taxon ID to a query segment q.

(a) Species reference tree with query taxon Q and reference taxa A, B, C, D, O

and S. This will be approximated by the segment phylogenetic tree for the

query segment and homologous segments of reference taxa. (b)

Approximate graph representing pairwise distances between the taxa. The

subgraph for clade X is highlighted. (c and d) The two alignment passes

which add segment taxa to an (empty) set M. Segment s is the segment with

the smallest local alignment score (distance) to q in the initial similarity

search. (c) First, all segments are aligned to segment s. The resulting dis-

tances are ordered and the taxa with equal or smaller distances than dis-

tance(s,q) are added to M. The outgroup segment, here o, is the next most

similar segment to s after q, with distance(o,s)>distance(s,q). (d) All seg-

ments are aligned to o. From the ranked distances, taxa with distances

smaller than distance(o,q) are also added to M. Thus, M includes all the near-

est evolutionary neighbors for the query segment q (the taxa corresponding

to segments a, b, c, d, o and s). The taxon ID then assigned to q is the lowest

common ancestor in the reference species tree (reference taxonomy) of these

taxa in M. (e) Partially resolved segment subtree at node R that is implied by

distances obtained in (c) and (d), where the exact position of some segments

(a, b, c and d; dashed branches) is left unresolved by the RPA
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segment comparisons. Let us consider an undirected graph in which

nodes represent the segments (tree leaves) and edge lengths the evo-

lutionary distances between pairs of segments within the underlying

tree (Fig. 2b). In this graph, a monophyletic group in the species tree

is a subgraph. For all pairs of subgraph nodes, the following inequal-

ity is true, given that the segments have evolved with a constant rate

of evolution (i.e. the segment tree is ultrametric): The distance be-

tween any two subgraph nodes is smaller than that to any other

node outside the subgraph. The relationship becomes clearer when

thinking of the evolutionary distance between two nodes as the

divergence time from their most recent ancestor. Members of a

monophyletic group derive from a single common ancestor and thus

there is a maximum distance for all possible pairs. If one member’s

distance to an outside node is smaller than this maximum, both

must share a more recent common ancestor and the corresponding

group is not monophyletic by definition. The stated inequality can

be used to augment an incomplete group or corresponding subgraph

iteratively by taking an internal distance, ideally close to the max-

imum, as a threshold and adding outside nodes to the group which

have a smaller distance to some internal node.

In this manner, taxator searches for the leaf node taxa of clade R

among all segments based on a linear number of sequence comparisons

between the input segments and adds them to an empty working set M:

0. A ranking by alignment scores from the input local alignments is

used at the beginning to identify the reference segment s that is

most similar to the query q.

The working set M is then augmented in two passes:

1. In the first pass, all segments are aligned to s using fast nucleo-

tide alignment and the edit distance. These scores in the follow-

ing serve to approximate the evolutionary distances in the

underlying segment phylogeny. All segment taxa with a distance

less than or equal to the threshold distance(s,q) are added to M

(Fig. 2c).

2. The outgroup segment o is determined as the first segment for

which distance(s,o) is larger than distance(s,q). In the second

pass, all segments are then aligned to o and segment taxa with

distances smaller than or equal to distance(o,q) are added to M

as well (Fig. 2d).

This procedure requires approximately 2n alignments, where n is

the number of reference segments.

3. The resulting set M of taxa (implicit in the partially resolved tree

in Fig. 2e) is used to determine the taxon ID for q, corresponding

to the LCA of these taxa in a reference taxonomy, such as the

NCBI taxonomy.

If no outgroup could be determined or if M is so diverse that the

LCA corresponds to the taxonomy root, q is left unassigned. The al-

gorithm requires at least two homologous segments (s and o) to de-

termine a meaningful taxon ID. The taxa in M become more diverse

if the alignment scores are inaccurate ultrametric distance estimates,

if the species subtree’s topology deviates from the respective part of

the taxonomy or if the gene tree’s topology deviates from the species

tree, for instance due to varying rates of evolution or the inclusion

of non-homologous segments in the analysis. The robustness of the

algorithm in avoiding incorrect assignments under these circum-

stances relies on the number of taxa in M and the subsequent LCA

operation. Further details relating to the robustness of the imple-

mentation are given in the Supplementary Materials, ‘I. Taxonomic

assignment of sequence segments’.

2.3 Evaluation procedures
Before evaluating any method, we removed the smallest predicted

bins (1%) as likely errors. We used the macro-precision and macro-

recall as measures of assignment performance (Supplementary

Materials, ‘Performance measures’). The macro-precision specifies

the fraction of correct assignments per predicted bin (precision),

averaged over all such bins, whereas the macro-recall measures the

fraction of correctly recovered sequence data per truly existing bin

(recall), averaged over all such bins. To account for strong differ-

ences in bin size, we also pooled the species, genus and family as-

signments, and reported the overall precision for these ranks as the

total fraction of correct assignments. We tested the assignment per-

formance of different methods using three simulated short read

datasets, simulated 16S rRNA data, three simulated metagenome

contig datasets and using assembled cow rumen metagenome

contigs. For every simulated dataset, we performed seven

cross-validation experiments (Supplementary Materials, ‘VII.

Cross-validation’). In each experiment, we simulated a specific

minimum taxonomic distance between a query sequence and the

reference sequences. For the first experiment, all reference data,

including the species genome data from which the query had been

sampled, were made available to the method for assigning a single

query sequence as an idealized test case. In the other six scenarios,

all reference data belonging to the species, genus, family, order, class

or phylum of the query sequence, respectively, were made inaccess-

ible for the method in leave-one-taxon-out cross-validation experi-

ments. We summarized the sequence assignments from these

experiments to characterize a method’s assignment performance

across the entire range of taxonomic distances. For evaluation with

the cow rumen metagenome sample, for which no true taxonomic

labels were known, we divided the assembled contigs into multiple

sequence ‘chunks’ and characterized the consistency of taxonomic

assignments for chunks originating from same contig

(Supplementary Material, ‘VIII. Consistency analysis’).

3 Results

3.1 Evaluation with unassembled data
We first evaluated the performance of taxator-tk for classification of

the most widely used taxonomic marker in bacterial diversity stud-

ies—the 16S rRNA gene (Supplementary Fig. S3). This served as a

proof of concept, as taxator-tk classifies arbitrary sequence regions

including taxonomic marker genes. We did not expect it to perform

better than sophisticated phylogenetic models for this task, but

wanted to confirm a satisfactory performance. The macro-precision

for the taxonomic assignment of 7176 16S rRNA genes

(Supplementary Fig. S4) was constantly above 92% (Supplementary

Fig. S3a) in the combined cross-validation (Methods), using the

whole-genome reference sequences in mRefSeq47 (Supplementary

Fig. S5), not just the 16S genes. More precisely, the average error

rate per bin (one minus precision) was 7.4% at the species level and

4.6% at the order level.

Next, we simulated 100 000 reads at 100, 500 and 1000 bp by

subsampling randomly from 1729 species in mRefSeq47 and eval-

uated taxator-tk with these three datasets using the (combined)

cross-validation experiments. The performance was very similar for

the different fragment sizes (Supplementary Figs S6–S8a). Overall,

taxator-tk showed high precision in simulated read assignment: the

macro-precision for all short read lengths remained above 74% and

was 82–99% for the genus to kingdom ranks, about 10% lower on

average than for the 16S data. This was still good for the assignment
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of short sequence fragments from arbitrary genomic regions com-

pared with a marker gene. At genus level, the macro-recall was

19–23% (�33% genera recovered) if genome sequences of the same

species as the query sequence were provided in the reference

(Supplementary Figs S6–S8b) and as low as 5–7% (�16% genera

recovered) otherwise (Supplementary Figs S6–S8c). The macro-recall

depends on the availability of related reference data at the respective

ranks. It decreases when removing reference data for cross-valid-

ation. For example, if all reference data at genus level are removed,

then no correct assignments to the genus rank are possible. For

lower taxonomic ranks, the macro-recall was also low due to the

large number of sample taxa and their uneven representation caused

by the taxonomic bias toward a few abundant phyla in mRefSeq47.

The longer reads had a slightly higher macro-recall than the shorter

ones. Since longer sequences yield better recall and because overlap-

ping reads contain redundant information, leading to more align-

ment computations, we recommend applying taxator-tk to

(partially) assembled data. For longer query sequences, we were

more likely to find segments for processing and therefore to assign a

larger portion of the sample.

3.2 Evaluation with simulated metagenome contigs
For our tests on three simulated contig samples, we compared taxa-

tor-tk to CARMA3 and MEGAN4/5 using the same taxonomy and

the same nucleotide alignments against mRefSeq54 (Supplementary

Fig. S9). Additionally, we applied these three methods to two

datasets using protein-level alignments which we inferred using

BLASTþ/tblastx. When doing so, we used the programs recom-

mended parameter settings (Supplementary Material, ‘X. Program

parameters and versions’) and cross-validation, as before

(Supplementary Material, ‘V. Cross-validation’).

We created a simulated NGS metagenome dataset (simArt49e,

composition in Supplementary Fig. S10) for our evaluation. This

sample includes 49 equally abundant species (51 strains) and was

created by Illumina paired read simulation with pIRS (Hu et al.,

2012), followed by SOAPdenovo version 1.05 (Luo et al., 2012) as-

sembly. Around 160 Mb or 267 178 contigs remained after removal

of 0.03% chimeric sequences. In the combined cross-validation with

this dataset (Supplementary Figs S11–S13a), taxator-tk produced

substantially fewer errors: sequence assignments to species, genus

and family were 91% correct for taxator-tk, compared with 52%

for CARMA3 and 59% for MEGAN4. Accordingly, taxator-tk

showed the highest macro-precision of all methods, e.g. 61% at the

species level, compared with 3% (CARMA3) and 5% (MEGAN4).

The low macro-precision observed for CARMA3 and MEGAN4 is

largely due to the prediction of many small bins with many false as-

signments (Supplementary Material, ‘V. Performance measures’).

The majority of assignments were to bacteria, archaea or undeter-

mined in the case of CARMA3, because we restricted the availability

of similar reference sequences in each of the individual cross-valid-

ations, which we then jointly assessed.

When only the sequences from the corresponding species and

genus were removed from the reference (new genus scenario,

Supplementary Figs S11–S13d), taxator-tk was also the most precise,

though it had a lower recall than the other methods (taxator-tk:

56% family macro-precision, 60% overall precision for species to

family, 10% family macro-recall; CARMA3: 13%, 27% and 20%;

MEGAN4: 22%, 27% and 31%). Differences in assignment preci-

sion were also evident in the number of predicted taxon bins: for

instance, when simulating novel families (Supplementary Figs

S11–S13e), many more species bins were predicted by CARMA3

(1672) and MEGAN4 (824) than by taxator-tk (65), with 49 species

being present in the sample. Similarly, MEGAN4 predicted 69

orders, CARMA3 81 and taxator-tk 27, compared with the existing

32 orders in simArt49e (Fig. 3). Overall, taxonomic assignments of

taxator-tk were more rarely to false taxa at low ranks than with the

other methods, and instead were to higher-ranking correct taxa. The

other two methods assigned a substantial amount of sequence data

incorrectly to bins at the family level or below. This can be seriously

misleading if the results were to be used to estimate species diversity

or to reconstruct genomes. Therefore, taxator-tk is better suited for

taxonomic profiling in addition to its primary task—the recovery of

individual taxonomic sequence bins from shotgun datasets.

To investigate the reason for the observed differences between

overall and macro-precision, which reflect variations in assignment

precision for bins of different sizes, we plotted the per-bin precision

at the family level in the combined cross-validation, as a function of

predicted bin size with a k-nearest-neighbor (kNN) estimate of

macro-precision (Fig. 4; see Supplementary Fig. S14 for all ranks).

Overall, the bins predicted by taxator-tk were smaller, more precise

and much more likely to represent truly existing taxa than those pre-

dicted by the other programs although larger bins tended to be more

accurate for all methods. CARMA3 and MEGAN4 predicted a sub-

stantial number of mostly smaller-sized incorrect bins. Although the

size-dependent kNN precision curves at large bin sizes is unaffected

by these small bins, the curves remained below 70% (CARMA3) or

80% (MEGAN4), whereas the taxator-tk curve reached almost

100%. For the smallest bins, taxator-tk’s kNN precision was ap-

proximately 20% whereas bins below 500 kb for CARMA3 and

MEGAN4 were practically indistinguishable from noise. This shows

that the high macro-precision with taxator-tk is not only due to a

lower frequency of falsely predicted bins, but also due to a substan-

tially higher precision for the large bins.

Next, we performed cross-validation on the FAMeS

(Mavromatis et al., 2007) SimMC/AMD (�17 Mb/7307 contigs)

and SimHC/soil (�1 Mb/578 contigs) simulated metagenome

datasets. These contigs were assembled from simulated Sanger (not

NGS) reads and represent considerably smaller samples than those

which are generated with the current NGS technologies (Dröge and

McHardy, 2012). We also measured the methods’ performance on

these data for a direct comparison to previous works. As before, tax-

ator-tk had the highest macro-precision and the most realistic num-

ber of predicted taxon bins (Supplementary Figs S15–S20;

Supplementary Material ‘XII. FAMeS cross-validation’).

For the contig assignments of the composition-based program

PhyloPythiaS (Patil et al., 2011), we could not apply cross-valid-

ation, due to the computational effort of training many models.

Therefore, we adopted the published evaluation scenario from Patil

et al (2011), in which all genome sequences of the SimMC genera

were removed from the reference genome sequence before classify-

ing the contigs. All programs were provided with the remaining

sequenced genomes and an additional 100 kb of reference data for

each of the three dominant strains. The latter could be used by

PhyloPythiaS to infer a corresponding species model, but were less

helpful for the similarity-based classifiers. We generated assignments

with taxator-tk, CARMA3 and MEGAN4/5 under equivalent condi-

tions, once with nucleotide and once separately with protein local

alignments, and compared them with both Kraken and the pub-

lished PhyloPythiaS assignments (Supplementary Fig. S21). The per-

formance and error distributions for the similarity-based programs

(Supplementary Fig. S21c and d) were consistent with our previous

evaluations with SimMC. MEGAN4 and MEGAN5 produced al-

most identical results. Using protein local alignments, we observed a
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moderate increase in overall species to family precision for

MEGAN5 and CARMA3, while taxator-tk improved in macro-re-

call. Notably, taxator-tk showed the best macro-precision of all

similarity-based programs and all ranks, regardless of which align-

ment kind was used. Kraken produced most errors and the lowest

macro-precision, because it assigned almost exclusively at species

level. This would make it generally unsuitable in situations where se-

quences of closely related genomes are unavailable. However, it had

a comparatively high macro-recall up to the order level.

Assignment with PhyloPythiaS showed that composition-based

classification, when supplied with limited amounts of additional

training data from the relevant species, correctly assigned most data

at the genus and family levels (species assignments were not assessed

in the original publication), which were either rarely assigned by

taxator-tk or mostly incorrectly assigned by CARMA3, MEGAN

and Kraken. However, PhyloPythiaS predicted only 6 families com-

pared with 29 underlying families, versus 43 (Kraken), 14/18 (taxa-

tor-tk), 50/32 (CARMA3) and 17/18 (MEGAN5) with nucleotide or

protein alignments, respectively. PhyloPythiaS had the highest

macro-recall. The macro-precision (�50% for genus, family and

order level) was also higher than for Kraken (�4–13%), MEGAN

(�7–31%) or CARMA3 (�7–48%) but less than for taxator-tk

(�32–68%). However, unlike for the other programs, the modeled

taxa for PhyloPythiaS should be specified a priori to achieve optimal

performance. It is therefore best applied when the taxonomic com-

position of a microbial community has already been determined and

sufficient training data are available for the identified taxa.

3.3 Evaluation with real metagenome contigs
For microbial communities in many environments, only distantly

related reference genome sequences are available. We analyzed a

medium complex metagenome sample of such a microbial commu-

nity from cow rumen (Hess et al., 2011) with taxator-tk, CARMA3,

MEGAN4/5 and PhyloPythiaS (the general model with the 100

most abundant species among sequenced prokaryotes). We con-

sidered scaffolds to be less reliable than contigs, which we recon-

structed by splitting the available scaffolds at gaps of more than 200

positions (A.Sczyrba, personal communication). We subsequently

divided contigs longer than 10 kb into sequence ‘chunks’ of 2 kb, re-

sulting in a 319-Mb dataset, which we used to assess the assignment

consistency for chunks originating from the same contig. The chunk

sequences were assigned with taxator-tk, CARMA3, MEGAN

(given identical nucleotide/protein alignments), Kraken and

PhyloPythiaS. As the standard of truth for each contig, we deter-

mined the taxon minimizing the inconsistency between all corres-

ponding chunk assignments (Gregor et al., 2014; unpublished data)

for each method independently. A chunk assignment was considered

consistent, if it was to the same taxon as the assignment of the entire

contig, and inconsistent otherwise. The consistency of a taxonomic

bin is the fraction of chunk sequences with matching contig assign-

ments and the macro-consistency is the consistency averaged over

all predicted taxa, similar to the macro-precision.

In agreement with the results for the simulated metagenome

datasets, the taxator-tk results were the most consistent among all

Fig. 3. Comparison of three classifiers for a novel-family simulation using a

simulated metagenome sample (simArt49e) with 49 species. CARMA3,

MEGAN4 and taxator-tk: the outer ring with red background shading shows

family-level assignments for all orders included in the simulated dataset.

These are all false in the chosen evaluation scenario, as no data from the fam-

ilies of the query sequences were included in the reference collection in the

leave-one-taxon-out cross-validation experiments. Clearly, taxator-tk had the

fewest assignments at family level, demonstrating its high precision in as-

signments. Assignments at inner rings, gray background shading, can be cor-

rect in principle, demonstrating at which taxonomic ranks the different

methods tend to make their assignments, with taxator-tk tending toward pro-

ducing higher ranking assignments, as a trade-off for the high precision

(a) (b)

(c) (d)

Fig. 4. Family-level bin precision for the simulated metagenome sample with

49 species (simArt49e). (a–c) Each family bin’s assignment precision related

to logarithmic bin size for seven cross-validation experiments with

simArt49e. The results of the single experiments were added to assess the

taxonomic assignment performance across a range of evolutionary distances

between the query and the reference sequences, excluding the least abun-

dant bins (1% of total basepairs). We calculated the precision values for (a)

CARMA3, (b) MEGAN4 and (c) taxator-tk, counting assignments to lower-

ranking taxa at the family level, and added a smoothed k-nearest-neighbor es-

timate of the mean precision in R using wapply (width¼0.3) followed by

smooth.spline (df¼10). CARMA3 and MEGAN4 incorrectly identified many

small taxonomic bins, substantially more than taxator-tk. (d) The amount of

correct, false and undetermined family-level assignments for the different

classifiers with simArt49e
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tested methods, regardless of the alignment type (Supplementary

Fig. S22): 76–89% macro-consistency at species-to-order level, in

comparison to MEGAN (34–40%), CARMA (0–55%), Kraken

(32–35%) and PhyloPythiaS (56–65%). The overall consistency

(analogous to overall precision) for species-to-family levels was

97%/97% with taxator-tk, 39%/48% with CARMA3, 62%/64%

with MEGAN (nucleotide/protein-level), 42% with Kraken and

82% with PhyloPythiaS. Likewise, taxator-tk assigned less data at

species-to-family level, with a total of 13/12 Mb being consistent

compared with CARMA3 (8/26 Mb), MEGAN (42/47 Mb), Kraken

(19 Mb) or PhyloPythiaS (14 Mb). The different methods again

determined different numbers of taxa: CARMA3 predicted 572/611

genera with a macro-consistency of 53%/31%, MEGAN 264/203

genera (34%/37%), Kraken 661 (32%), PhyloPythiaS 33 (63%)

and taxator-tk found 110/27 genera (76%/81%). The high consist-

ency values observed for taxator-tk indicate that it is a precise taxo-

nomic classifier for real metagenomic contigs.

3.4 Run-time analyses
The run-time for the taxonomic metagenome assignment was meas-

ured as the time to find homologs and to assign taxon IDs to all se-

quences. We evaluated the run-times of all methods using the same

set of alignments generated with either BLAST or LAST. Thus, the

run-time for the initial similarity search was identical for all meth-

ods. We determined the time for the taxonomic assignment of

simArt49e for all methods when performing a cross-validation with

families present in the test dataset removed from the reference data

(Fig. 3). This took 2 min with Kraken (single CPU core and

�100 GiB RAM), 1 h for MEGAN4 (interactive mode), 6 h for taxa-

tor-tk (�10 CPU cores) and almost a week for CARMA3 (�20 CPU

cores). The parallelization of taxator-tk led to a linear decrease in

time with the number of CPU cores for up to 15 cores, which be-

came sublinear for 20 cores or more (Supplementary Fig. S23). To

provide a more specific estimate of the throughput of taxator-tk, we

aligned �1 Gb of cow rumen sequence data with BLAST against

mRefSeq54 and assigned the data with taxator-tk on 10 CPU cores

(AMD Opteron 6386 SE). We measured an average throughput of

5.9 Gb per day for the combined alignment and taxonomic assign-

ment steps with this dataset. We also determined how our imple-

mentation scaled for increasing input sequence lengths and reference

exclusion scenarios (Supplementary Fig. S24a). The run-time scaled

approximately linearly except when the same or very similar species

were among the reference genome sequences. In general, the greater

the number of similar sequences in the reference data, the longer

taxator-tk’s run-time was for the alignment of longer sequence

stretches with more homologs. Simultaneously, we investigated the

impact of the query segmentation on taxator-tk’s run-time

(Supplementary Fig. S24b) and found that it reduced the total run-

time by up to 30%.

4 Discussion

Taxator-tk is a taxonomic assignment software package which gen-

erates very precise taxonomic assignments with few errors for meta-

genome shotgun sequences. To provide a fair comparison, we

invested extensive effort into ensuring that we evaluated all methods

under identical conditions with the same reference sequences, test

datasets and background taxonomies, using their recommended set-

tings. We evaluated taxator-tk on 16S gene sequences, on simulated

short reads, with simulated assembled contigs and with 2 kb contig

fragments from a real cow rumen metagenome. For each simulated

sample, we evaluated a wide range of evolutionary distances be-

tween the query and reference sequences using leave-one-taxon-out

cross-validation. Taxator-tk was the most precise of all tested meth-

ods with the most realistic number of identified taxa overall. This

property was very pronounced for lower taxonomic ranks from spe-

cies-to-family level. However, taxator-tk assigned fewer data overall

than other methods from species to family. For the small assembled

SimMC dataset, it assigned fewer data, particularly in comparison

to the composition-based classifier PhyloPythiaS, when 100 kb of

data were provided for individual community members to train spe-

cies-level models. For the real cow rumen dataset, taxator-tk was the

most consistent in terms of classifying multiple pieces of one contig.

Our results consistently indicate that taxator-tk’s strength is its high

precision of assignments, which allows us to confidently assign a

core of sample sequences and thereby to infer the taxonomic com-

position of the community. In comparison to assignments based on

marker genes, it has the advantages that it makes assignments across

all domains of life and that corresponding abundance estimates

from shotgun sequences are less affected by copy number variations

of individual genes. Such shotgun estimates are also unaffected by

PCR primer amplification biases, unlike marker gene sequencing

techniques, and do not require high-quality reference gene phyloge-

nies for marker genes. We confirmed this by in depth analysis of six

15 Gb shotgun samples from the barley rhizosphere, where we

applied taxator-tk to characterize the taxonomic composition of

bacteria, archaea and eukaryotes, which correlated with results

from 16S rRNA profiling and showed the most notable deviations

for taxa known to be affected by primer biases or having multiple

copies of the 16S rRNA gene (Bulgarelli et al., unpublished data).

To target draft genome reconstructions, the data assigned to individ-

ual taxonomic bins by taxator-tk can be used as training data for

complementary approaches, such as composition-based methods, or

as independent information in combination with recently proposed

clustering methods using the abundance of genes or contigs across

multiple samples.

From a methodological point of view, we have introduced a

method for the fast approximation of the evolutionary neighbor-

hood of a query sequence with a run-time that increases linearly

with the number of homologs. In de-novo phylogenetic inference

methods, the run-time increases at least log-linearly with the number

of homologs or they rely on time-consuming optimizations of par-

ameter-rich phylogenetic models, which generates excessive compu-

tational requirements for the analysis of Gb-sized NGS samples.

Our software provides an easy to use and scalable alternative to

taxonomic classification of marker genes that is applicable to any

nucleotide fragment. Unlike other similarity-based taxonomic classi-

fiers for shotgun data, our algorithm handles different degrees of se-

quence conservation without preset or user-specified parameters

such as alignment scores (overall or per gene family) and without

being restricted to the analysis of a number of high-quality homo-

logs with a minimal length. At the same time, the inferred evolution-

ary neighborhood is extended by the identification of an outgroup,

leading to more precise taxonomic assignments, while regions with-

out detectable taxonomic signal are instantly discarded. We post-

process independent taxonomic assignments of query segments to

infer an assignment for the entire query and do this using a majority

vote algorithm with a few robust default parameters. This computa-

tionally lightweight step can be quickly repeated with other values

for the majority and minimum support parameters, if required. In

addition to the algorithmic considerations and other run-time opti-

mizations, we implemented query sequence segmentation and pro-

gram parallelization, which allow large-scale data analysis with a
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throughput of several Gbs per day on a standard multiprocessor

system.

The program’s scope is also not limited to the taxonomic assign-

ment of metagenomes: It can be applied to any DNA or RNA se-

quence. For instance, another successful in-house application is the

detection of contaminations in isolate sequencing data.

Furthermore, the program taxator within taxator-tk provides taxo-

nomic information for individual query segments (Supplementary

Figs S2 and S25), which could be used to identify assembly errors or

regions acquired by lateral gene transfer.
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