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Abstract
Background: Chronic inflammation is a well-known corollary of the aging process and is believed
to significantly contribute to morbidity and mortality of many age-associated chronic diseases.
However, the mechanisms that cause age-associated inflammatory changes are not well
understood. Particularly, the contribution of cell stress responses to age-associated inflammation
in 'non-inflammatory' cells remains poorly defined. The present cross-sectional study focused on
differences in molecular signatures indicative of inflammatory states associated with biological aging
of human fibroblasts from donors aged 22 to 92 years.

Results: Gene expression profiling revealed elevated steady-state transcript levels consistent with
a chronic inflammatory state in fibroblast cell-strains obtained from older donors. We also
observed enhanced NF-κB DNA binding activity in a subset of strains, and the NF-κB profile
correlated with mRNA expression levels characteristic of inflammatory processes, which include
transcripts coding for cytokines, chemokines, components of the complement cascade and MHC
molecules. This intrinsic low-grade inflammatory state, as it relates to aging, occurs in cultured cells
irrespective of the presence of other cell types or the in vivo context.

Conclusion: Our results are consistent with the view that constitutive activation of inflammatory
pathways is a phenomenon prevalent in aged fibroblasts. It is possibly part of a cellular survival
process in response to compromised mitochondrial function. Importantly, the inflammatory gene
expression signature described here is cell autonomous, i.e. occurs in the absence of prototypical
immune or pro-inflammatory cells, growth factors, or other inflammatory mediators.

Background
Chronic inflammation associated with the aging process
has been implicated in a host of degenerative disease
states including osteoarthritis, atherosclerosis, type-2 dia-

betes and even cancer [1-3]. Age-associated chronic
inflammatory states are distinct from inflammation trig-
gered by infection. It is presently unclear to what extent
chronic inflammatory states in older individuals represent
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autoimmune processes caused by deregulation of the
immune system [4,5]. Alternatively, these states may arise
as a consequence of an increased cell stress response in old
cells triggered by molecular damage incurred over a life-
time. In support of cell autonomous causes for age-associ-
ated inflammation, expression of inflammatory markers,
such as cytokines, has been observed in cells subjected to
replicative senescence in vitro caused by serial passaging
[6-9]. However, molecular events observed during replica-
tive senescence in vitro do not necessarily mirror events
that occur in human aging, which is of a dramatically dif-
ferent time frame. This consideration motivated the
present investigation of age-associated changes in prolif-
erating fibroblasts derived from donors at different bio-
logical ages. Only few reports using fibroblasts aged in vivo
have been published and these reports largely focused on
age-associated changes in cell cycle progression of divid-
ing cells [10,11].

In contrast, in the present study we focused on 'inflamma-
tory signatures', i.e. changes in gene expression patterns
previously implicated in inflammatory states. Further-
more, we considered that determination of cell states
associated with the aging process should be performed in
quiescence rather than exponentially growing fibroblast
cultures. This was based on the consideration that, under
physiological conditions in tissues in vivo, the majority of
fibroblasts neither proliferate nor have achieved replica-
tive senescence akin to that of cultured fibroblasts. There-
fore, we investigated differences in gene expression
profiles of primary human fibroblasts derived from
donors at different biological ages and rendered quiescent
by growth factor starvation [12]. We report that expres-
sion of mRNA transcripts encoding proteins with roles in
inflammation is elevated in fibroblasts derived from older
individuals. This gene expression signature is associated
with increased DNA binding of transcription factor
nuclear factor kappa B (NF-κB) in a subset of aged cells
and plays a role in mediating inflammatory responses.

Methods
Cell Lines and Culture Procedures
Human fibroblast cultures, established from skin samples
derived from young and old donors, were obtained from
the NIA Aging Cell Repository (Coriell Institute for Medi-
cal Research, Camden, NJ). All cell lines originated from 2
mm punch biopsies taken from the medial aspect of the
upper arm. The donors were members of the Baltimore
Longitudinal Study of Aging (BLSA) where they were char-
acterized as "healthy" indviduals. The cell lines investi-
gated had normal karyotypes. Coriell catalog numbers of
these cell lines for the group of young donors were
AG10803 (22 yrs), AG0454B (29 yrs), AG04441 (29-II
yrs), AG13153 (30 yrs) and AG04438 (33 yrs), for the
group of middle-age donors AG04456 (49 yrs), AG04659

(65 yrs), AG13369 (68-I yrs) and AG14251 (68-II yrs),
and for the group of old donors AG11243 (74 yrs),
AG09156 (81 yrs), AG13349 (86 yrs), AG13129 (89 yrs)
and AG04064 (92 yrs). AG04456 (49 yrs) and AG14251
(68 yrs) were isogenic. Cells were grown in medium con-
sisting of EMEM (Mediatech, Herndon, VA) supple-
mented with 2 mM L-glutamine and 15% FBS without
antibiotics at 37°C and 5% CO2 according to Coriell's
standard procedures. To avoid the influence of replicative
senescence, cell lines selected for our cultures had under-
gone no more than half of the maximum population dou-
blings at which previously determined senescence would
occur. Twenty four hours prior to RNA collection, cells
were placed in growth factor-free medium (MEM supple-
mented with 0.2% Bovine Serum Albumin/BSA). The pro-
tocol to prepare cells for microarray gene expression
analysis was as follows: (Day 1) Cells were plated at
9000–12000 cells per cm2 in regular growth medium;
(Day 2) Cell culture medium was changed to growth-fac-
tor-free medium (EMEM with 0.2% BSA and 1% L-
glutamine); (Day 3) Cells were washed with ice cold phos-
phate-buffered saline (PBS). Qiagen lysis buffer (RLT) was
used to prepare cell lysates which were stored at -80°C.
Cell cycle distribution was determined by PI staining fol-
lowed by FACS analysis. Percentage of cells in S-phase
before starvation was generally >10% and after mitogen
starvation <1%.

Microarray Analysis
RNA was isolated from the cell lysate using Qiagen RNe-
asy mini kit according to the manufacturer's instructions.
Gene expression analysis was performed using the Code-
link human bioarray containing single-stranded 30-mer
oligonucleotide probes (Applied Microarrays, Tempe, AZ)
and chips were run in duplicate. Details of this platform
are available on the vendor's homepage website. Charac-
teristics of the Codelink platform have been evaluated by
us [13] and as part of the microarray quality control
(MAQC) assessment [14]. Sample preparation and
hybridization followed procedures described by Young et
al [13]. Slides were scanned at 5 μm resolution with a
ScanArray 4000 × l (Perkin Elmer, Waltham, Ma) and ana-
lyzed with the CodeLink Analysis Software, providing an
integrated optical density (IOD) value for each hybridiza-
tion spot, which is a measurement of an integrated back-
ground intensity value subtracted from the total pixel
intensities within the area of the spot. Replicate readouts
were averaged and normalized for differences between
chips and outliers were detected. Expressions of character-
ized genes related to immunity and inflammation were
identified and differential expressions determined. A vari-
ance filter trimmed the resulting list (p < 0.15). We used a
correlative approach to search for similarities between the
NF-κB profile and expression of genes related to inflam-
mation. In modification of previously used rank correla-
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tion for template matching of phenotypical markers
[15,16], we used Pearson correlation as a measure of sim-
ilarity because the NF-κB values of the samples from
young donors were close and within error margins, which
can lead to low correlation values if ranked wrongly.
Finally, the data was clustered by a dendrogram, using
complete linkage analysis and a Canberra distance metric
(J-Express, Molmine AS, Norway).

NF-κB DNA Binding Activity Assay
We analyzed the DNA binding activity of NF-κB p65/
RelA, a major component of the heterodimeric p50/RelA
complex, with a chemiluminescent DNA binding assay in
nuclear fractions. Cells were plated at subconfluency in
regular growth medium. Twenty-four hours later, normal
growth medium was replaced with a growth factor-free
base medium for another 24 hours. On the day of sample
collection, the cells (1.5 to 2 × 106/sample) were washed
once with PBS and trypsinized. They were centrifuged at
200–300 × g for 10 minutes and cell pellets were col-
lected. The nuclear cell fractions were prepared using NE-
PER® Nuclear and Cytoplasmic Extraction Reagents
(Pierce Biotechnology, Product No. 78833, Rockford, IL)
according to the manufacturer's instructions. 10 μg of the
nuclear cell fractions were used from each cell-line and
their NF-κB p65 DNA binding activity was determined
using the EZ-Detect NF-κB p65 Transcription Factor Kit
(Pierce Biotechnology, Product No. 89859, Rockford, IL)
according to the manufacturer's protocol. Two biological
replicates of each sample were prepared and the signal of
four readouts with a Veritas Microplate Luminometer was
averaged.

Results
Previous efforts to identify age-associated changes in cel-
lular homeostasis have largely relied on cells senesced in
vitro or on the investigation of fast proliferating cells. In
the present investigation, we focus on differences in qui-
escent fibroblasts derived from donors of different biolog-
ical ages. Steady-state mRNA expression levels were
determined by microarray analysis, as well as the NF-κB
p65/RelA DNA binding assay in nuclear fractions. The NF-
κB assay (Figure 1) revealed significantly higher binding
activity in the middle-age (49–68 yrs) donors compared
to the young (22–33 yrs) donors (p = 0.012, independent
one-tailed test) as well as higher binding activity in the old
age (72–92 yrs) donors compared to the young (p =
0.0039). However, the difference between the middle-age
and old group was not significant (p = 0.34) and the com-
bination of middle-age and old groups combined if com-
pared to the young group gave a significant result (p =
0.004). The activity of the samples from the 68 and 86
year old donors were comparably low, and both of their
gene expression profiles were different from those of the
other older donors (Figure 2). The binding activity of NF-

κB in middle-age and old donors was significantly higher
than young donors and was considered to be moderate in
comparison to the positive control (TNFα treated HeLa
cells) (Figure 1).

In the microarray analysis, thirty-four genes, listed in table
1 and sorted by their similarity to the NF-κB activity, con-
stituted an inflammatory signature in middle-age and
older cells. Of these genes, 17 have a correlation factor R
> 0.3 with the NF-κB profile. Genes representing a strong
correlation with NF-κB included inflammatory genes such
as FOS-like antigen 1 (FOSL1), antimicrobial peptide
defensin beta one (DEFB1), T and B lymphocyte growth
factor interleukin 2 (IL2), leukocyte modulator chemok-
ine ligand 20 (CCL20) and cell adhesion molecule sialyl-
transferase 8A (SIAT8A). Elevated expression levels in cells
from older individuals were observed for inflammatory
cytokines including interleukin 1 receptor antagonist
(IL1RN), interferon, omega 1 (IFNW1), interleukin 2
(IL2), interleukin 1 alpha (IL1A), interferon induced
transmembrane protein 1 (9–27) (IFITM1), interferon
regulatory factor 7 (IRF7), and interferon induced trans-
membrane protein 1 (IFITM1) (9–27). Expression of
mRNA encoding proteins involved in the immune
responses in vivo was elevated including leukocyte recep-
tor cluster (LRC) member 4 (LENG4), D component of
complement, adipsin (DF), tumor necrosis factor super-
family, member 13b (TNFSF13B), and Fc fragment of IgG,
low affinity IIIb, receptor for CD16 (FCGR3B). A subset of
cell strains contained higher message levels of inflamma-
tory related genes such as matrix metalloproteinase-13
(MMP-13), integrin beta 6 gene (ITGB6), a cell surface
receptor mediating cell-adhesion, a sialidase enzyme
(NEU-4) and a MHC class I related gene (HLA-G) with
roles in antigen presentation, and, potentially, autoim-
munity [17-20]. A remarkable group of genes with roles in
the inflammatory response were elements of both the
classical and alternative complement cascades, including
complement component 4 binding protein, beta
(C4BPB), complement component 1, r subcomponent
(C1R), and D component of complement, adipsin (DF),
which recognize, initiate, and execute the destruction of
antigenic molecules. Furthermore, elevated transcripts of
several chemokine ligands were found (CXCL2, CXCL9,
CXCL14, CXCL20) and chemokine ligand 6/granulocyte
chemotactic protein 2 (CXCL6), consistent with the
potential of aged fibroblasts to chemoattract leukocytes as
well as other inflammatory-related molecules modulating
the immune response.

Discussion
Activation of the latent transcription factor NF-κB plays a
key role in mediating inflammatory responses and gene
expression patterns [21]. It has also been demonstrated
that genetically blocking NF-κB in the skin of aged mice
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reverses the gene expression pattern seen in aged cells as
well as reverts the appearance of tissues to that of younger
skin samples, illustrating the critical role of NF-κB in the
aging phenotype [22,23]. Here we show that in human
aging NF-κB becomes constitutively active, mediating
enhanced transcription of inflammatory markers.
Cytokines, chemokines, and components of the comple-
ment cascade dominated the upregulated genes. This is
the first report to demonstrate that a low-grade inflamma-
tory state, as it relates to aging, occurs in cell lines irrespec-
tive of the presence of other cell types or the in vivo
context, which highlights that this inflammatory state is
intrinsic and cell autonomous. While NF-κB appears to be
an important regulator, the profile of inflammatory genes
expressing at higher levels is still specific for each sample
investigated and not all genes are regulated by NF-κB, sug-

gesting that additional factors may play a role mediating
the profile.

It was reported that protein abundance of inflammatory
markers parallels gene expression [24]; therefore it can be
assumed that most inflammatory markers shown here
would indeed contribute to the activation of the immune
system, giving rise to a chronic inflammatory state in vivo.
Specifically, fibroblasts acting as 'immune-competent'
cells show higher levels of activity of molecules involved
in antigen recognition, presentation and destruction such
as FGR3B, DF and C1R. Essentially, aging cells send a
destructive 'non-self' message to the immune system, for
which rheumatoid arthritis is a prime example. The pro-
duction of cytokines may establish a positive feedback
loop since these markers can also activate NF-κB, and

NF-κB activityFigure 1
NF-κB activity. Shown are the results of a DNA binding assay of the NF-κB p65 transcription factor, using two biological 
replicates and four readouts for each sample. NF-κB activity, a key mediator of inflammation, is elevated in the nuclear frac-
tions of fibroblasts from the group of older donors compared to young donors (p < 0.005). The DNA binding activity corre-
sponds to a "low-grade" inflammatory state compared to the TNFα treated positive control.
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herewith increase and prolong chronic inflammation
[25]. Similarly, interferons, known to be produced by syn-
ovial fibroblasts, have been associated with prolonged T
cell survival in rheumatic joints [26].

Multiple factors can contribute to the activation and post-
translational modification of NF-κB [21,27], but as it
relates to aging, cell-intrinsic factors can be traced back to

mitochondrial dysfunction. It has been recognized that
mitochondrial deficiency accompanies the aging process,
albeit the exact mechanisms for mitochondrial dysfunc-
tion discussed, for example mtDNA mutations in verte-
brates, remain controversial [28-31]. Since we did not find
indications for increased levels of reactive oxygen species
(ROS) and related expression of scavenger molecules
(data not shown), we hypothesize that activating mecha-
nisms of NF-κB, as a consequence of mitochondrial dys-
function, may include other mechanisms such as
accumulation of oxidized proteins and lipids in aged
fibroblasts [32] or disturbances of intracellular calcium
homeostasis [33,34]. Further, intracellular NADH abun-
dance that has been related to defects in mitochondrial
respiration is accompanied by inactivation of phos-
phatase and tensin homolg gene (PTEN). PTEN is a nega-
tive regulator of the Akt pathway [35,36], while Akt is
known to converge with NF-κB signaling [35]. Insofar,
NF-κB may participate in a retrograde response and cross-
talk between dysfunctional mitochondria and nuclear
genes as a cellular pro-survival mechanism. This would
also explain why anti-inflammatory treatment regimes
lead only to a temporary relief of symptoms, but would
not correct for the primary cause of inflammation, which
has its roots in cellular aging.

This study is a cross-sectional, rather a longitudinal study
and the definition of age-groups follows the available
samples in fulfillment of the stringent criteria set forth in
the Method section. Variability as seen here is rooted in
the process of biological aging, which is different from
chronological age, and in cell selectivity during the initial
establishment of cell cultures from biopsies. We also rec-
ognize that a study in vitro cannot capture the more com-
plex interactions in vivo, involving other cellular
participants and components of the immune system,
which provoke, mediate, and amplify the primary cellular
response. However, chronic inflammation has been
implicated in many aging-associated conditions [1,37],
and inflammatory markers described here have been
reported in other age-related studies in which gene expres-
sion analysis was performed such as in brain [38], lung
[39], liver [40], kidney [41] and coronary arteries [42].
Moreover, consensual findings show upregulation of NF-
κB activity as a pivotal mediator of aging related inflam-
mation in rodent and human tissues [22], including
mouse brain, muscle [43-46] and human endothelial tis-
sues [47], which suggests that similar processes as those
observed here play a role in many other cell types and tis-
sues.

Conclusion
Overall this study provides evidence for a cell-intrinsic
activation of NF-κB and related upregulation of inflam-
matory markers. While inflammation is a protective host

Heatmap of gene-expression of inflammatory markersFigure 2
Heatmap of gene-expression of inflammatory mark-
ers. Green indicates repressed mRNA levels and red ele-
vated levels. Intensities are normalized for each gene in each 
row. Samples and genes are grouped according to their simi-
larity in profile, included is Nf-κB activity in the first row. The 
dendrogram reveals distinct clusters preferentially grouping 
cytokines, chemokines and interferon related molecules, spe-
cifically expressed in each cell strain. Samples of young 
donors are distinct from the group of older donors, and the 
samples of the 68 and 86 old donors are distinct within the 
group of older donors.
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response against harmful external stimuli, in the context
of biological aging this once beneficial response becomes
constitutively active, potentially as a consequence of mito-
chondrial dysfunction. This may in turn mediate suscepti-
bility to age-related diseases in tissues since aberrant
expression of inflammatory markers plays a key role in
pathogenesis and tumorgenesis. Our study may provide a
preliminary diagnostic tool to profile aging at the cellular
level.
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