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Abstract

Wolbachia is an obligatory intracellular bacterium which often manipulates the reproduction of its insect and isopod hosts.
In contrast, Wolbachia is an essential symbiont in filarial nematodes. Lately, Wolbachia has been implicated in genomic
imprinting of host DNA through cytosine methylation. The importance of DNA methylation in cell fate and biology calls for
in depth studing of putative methylation-related genes. We present a molecular and phylogenetic analysis of a putative
DNA adenine methyltransferase encoded by a prophage in the Wolbachia genome. Two slightly different copies of the
gene, met1 and met2, exhibit a different distribution over various Wolbachia strains. The met2 gene is present in the majority
of strains, in wAu, however, it contains a frameshift caused by a 2 bp deletion. Phylogenetic analysis of the met2 DNA
sequences suggests a long association of the gene with the Wolbachia host strains. In addition, our analysis provides
evidence for previously unnoticed multiple infections, the detection of which is critical for the molecular elucidation of
modification and/or rescue mechanism of cytoplasmic incompatibility.
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Introduction

Wolbachia pipientis is an obligate intracellular symbiont belonging

to the a-proteobacteria. It is thought to be present in an estimated

66% of all insect species, including disease vectors of animals and

plants [1]. It has also been found in terrestrial isopods, spiders,

mites, springtails and nematodes. Some Wolbachia strains can

modify host reproduction and distort sex ratio by inducing

parthenogenesis, feminisation, male killing or cytoplasmic incom-

patibility (CI) (reviewed in [2]).

Wolbachia phage particles were first observed by Wright et al.

[3]. Masui et al. [4] described prophage WO, a genetic element in

Wolbachia strain wTai, containing about 26 open reading frames

(ORFs) in 25 kb. The phage genome includes ORFs coding for

capsid proteins, baseplate assembly proteins, integrase genes,

several ankyrin-like proteins, as well as a potential methyltrans-

ferase. Further studies resulted in the isolation and characteriza-

tion of the bacteriophage WO from the Wolbachia strain wCauB

[5–7]. The genome of the purified phage is linear double-stranded

DNA of about 43 kb, containing 47 ORFs (wCauB2) and 45 kb

and 46 ORFs (wCauB3) [7]. Sequence analysis indicated that this

phage genome includes ORFs coding for a DNA packaging

protein, capsid proteins, baseplate assembly proteins, tail structural

proteins and for several putative toxin-like secretory proteins [6,7].

The Drosophila melanogaster wMel genome was released in 2004

[8]. Since then, three other Wolbachia genomes have become

available [9–11] and a number of other sequencing projects are

currently in progress. Two divergent prophage WO families, WO-

A and WO-B have been identified. Family WO-B can be divided

into three clades [4,12]. Distribution surveys indicate that WO-B

homologs occur in at least 89% of the two main lineages of

Wolbachia that infect arthropods [12,13]. Five WO-B-like pro-

phage regions are present in the wPip genome, with some genes

identical or highly similar between prophage copies, while other

genes are unique. It seems likely that extensive recombination,

duplication and insertion events have occurred between copies

[10,14]. In the highly recombining wRi genome, 4 prophage

segments have been detected [11], while no prophage elements

could be identified in the mutualistic wBm strain of the filarial

nematode Brugia malayi [9]. Insertion sequences (IS) are frequently

found in WO genomes and are considered to be a major factor

driving phage recombination [8,10,11].

Since prophage regions have been found only in Wolbachia

strains having a parasitic relationship with their hosts, it has been

hypothesized that they contribute to the CI phenotype [4].

However, a study in different Culex pipiens strains detected no

correlation between prophage orf7 gene type and CI [15]. Another

survey showed that phage associated protein Gp15 is similar to a

bacterial virulence factor. This gene was partially correlated with

CI expression, suggesting that it could be linked to a CI gene [16].

However, sequence analyses found no phylogenetic clustering of

phage genotypes congruent with the four major Wolbachia-induced
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sexual alterations [13]. In Nasonia vitripennis, 12% of Wolbachia cells

were found to show lytic phage development. The density of the

bacteriophage correlated inversely with the density of Wolbachia

bacteria [17]. While density is one of the most critical

determinants of penetrance of Wolbachia-induced phenotypes

[18–20], only virion-free Wolbachia were observed to contact the

host spermatids [17]. These observations led to the Phage Density

Model hypothesis, which suggests that lytic phages negatively

control Wolbachia densities and expression of symbiont functions

(reviewed in [21]).

Both WO-A and WO-B prophages in wMel carry a gene that

encodes a putative DNA adenine methyltransferase. Methyltrans-

ferase genes are carried by many bacteriophages [22–24], and

modified bases are common in phage genomes [25,26]. It is thus

quite possible that a WO prophage methyltransferase has a phage-

specific function or acts on the bacterial genome. Virulence and

lysogeny of many pathogenic bacteria such as Escherichia,

Salmonella, Yersinia, Vibrio, Haemophilus, Pasteurella, Aeromonas, Actino-

bacillus, Klebsiella, Brucella and Rickettsia are subject to control by

adenine methylation [23,27–29]. In some strains, methylation is

essential for viability of the pathogen [30,31]. Adenine methylation

is also involved in cell-cycle regulation of bacteria [32]. In all these

cases, methylation is performed by solitary or ‘‘orphan’’

methyltransferases, i.e. those that are not part of a restriction-

modification (R-M) system. R-M systems protect bacteria against

foreign DNA or act as selfish elements [33]. Negri et al. [34]

provided the first evidence that a feminizing strain of Wolbachia

interferes with host genetic imprinting through cytosine methyl-

ation of leafhopper DNA.

In the context of the fact that Wolbachia modifies the genome of

its host insects, the presence of a DNA methyltransferase gene in

its genome becomes even more intriguing. We therefore used

molecular and phylogenetic approaches to detect and characterize

the Wolbachia-phage embedded gene which encodes a putative

DNA methyltransferase in a number of different Wolbachia strains

of known CI properties. The ability of these strains to induce (mod

status) and rescue CI (resc status) has previously been characterized

[18,35–38]. The potential involvement of this methyltransferase-

like protein in host-Wolbachia symbiosis and in the induction of

reproductive alterations is discussed.

Results

Sequence and distribution of the phage
methyltransferase ORFs in different Wolbachia strains

Different Wolbachia strains of known CI phenotype (Table 1)

were screened for the presence of the WO methyltransferase-like

genes in order to test for a possible correlation with the CI

phenotype. Degenerate and specific primers were designed for

each of the two wMel methyltransferase genes (Table 2) and used

to amplify DNA from a number of different Wolbachia-infected

Drosophila strains. Wolbachia strains wMel, wMelCS, wAu and wHa

contain both methyltransferase ORFs. In contrast, strains wRi,

wNo, wYak, wTei and wSan only have one of the two ORFs (met2),

while wMa and wMau do not contain any of the two

methyltransferase ORFs. This was confirmed by Southern blot

analysis using the two wMel methyltransferase ORFs as probes

(Fig. 1). The wHa met ORFs were not further characterized.

The met1 ORFs are more closely related to each other than to

the respective met2 ORFs. ORF met2_wAu contains a 2 bp GC

deletion after codon 92, leading to a truncated ORF lacking the C-

teminal methyltransferase domain.

Further PCR analysis using met_102F/met_269R primers

indicated the presence of three PCR products in wTei: While

the first was of the expected size for a met2 product, the other two

were about 500 and 900 bp larger (Fig. 2A). Sequencing of the

largest product revealed the presence of ISWpi1, a Wolbachia-

specific insertion sequence belonging to the IS5 family [39], in met2

gene. The intermediate sized PCR product could not be cloned in

several attempts, probably because of the presence of unstable

repeat sequences. Surprisingly, when PCR with the same primers

was performed using DNA from D. simulans STCP flies

transinfected with wTei [38], only two PCR products were

detected, with a striking difference in the intensity ratio (Fig. 2A).

Table 1. Insect lines and Wolbachia strains used in the
present study.

Host species Host strain Wolbachia strain Reference

D. mauritiana Bloomington # 31 wMau [72]

D. melanogaster yw67C23 wMel [18,62]

D. melanogaster Canton-S wMelCS [73]

D. melanogaster Popcorn 3221 wMelPop [74]

D. santomea STO9, Africa wSan [37]

D. simulans Coffs Harbour wAu [36]

D. simulans Riverside wRi [42]

D. simulans Hawaii wHa [35]

D. simulans Noumea wNo [35]

D. simulans KY203 wMa [75]

D. teissieri Bloomington # 1015 wTei [37]

D. yakuba SA3, Africa wYak [37]

D. simulans STCP line 2 wTei [38]

D. simulans STCP line 4 wTei [38]

D. simulans STCP line 1 wSan [38]

D. simulans STCP line 14 wYak [38]

doi:10.1371/journal.pone.0019708.t001

Table 2. PCR primers used in the present study.

Primer Sequence (59R39) Tm

wMeth12_ext_F CTTCTYYAGCGTCAGASRTWTTTT 54

wMeth12_ext_R CTCTTGCCCATTCYGTYTGYGTGA 54

wMeth12_int_F ATGAAYTTAGCAAYMCACTAC 54

wMeth12_int_R CTTCTTGAATTTSKGCAAA 54

meth2_F2 CTTCTTTAGCGTCAGAGATA 56

meth2_R2 GCCCATTCCGTTTGTGTGAT 60

meth2_F1 TTCAGCCAGAATGGCGGATT 60

meth2_R1 ACATATTGATTTGAAACTCC 52

meth1-F ACATAGCAATTTAATACACTA 52

meth1-R GTCTGCGTGATTTTTCCTCC 60

met_102F CAGGGAATTTGGCTTTCGTA 58

met_269R GATTTGCCAGTAACCGAAAA 56

met_102F CAGGGAATTTGGCTTTCGTA 58

met_1024R CCCCAGGTCTGCTGCTATTA 62

TeiB_1024R CTCCTGATCTGCTGCTGTTT 60

doi:10.1371/journal.pone.0019708.t002

Wolbachia Prophage DNA Adenine Methyltransferase
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Cloning and sequencing of the methyltransferase ORFs from the

closely related wSan, wTei and wYak strains also detected two

different met2 ORFs; one closely related to the met2 sequences of

supergroup A Wolbachia strains (met2_wTeiA for wTei), while the

other is closely related to B supergroup strains (met2_wTeiB for wTei).

Specific reverse primers were designed to anneal only to the A-group-

like met2 (met_1024R; Fig. 2B) or the B-group-like met2 (TeiB_1024R;

Fig. 2C). PCR reactions with these primers revealed that strains

wSan, wTei and wYak bear a copy of the B-group-like met2; these

genes were successfully transferred by microinjections into D. simulans

STCP lines by Zabalou et al. [38] (Fig. 2C). The ISWpi1-disrupted

met2 ORF of wTei was also transferred together with wTei into

STCP, but not the intact copy of met2_wTeiA (Fig. 2B).

Phylogenetic Analysis
All methods used to reconstruct phylogenies yielded similar

results. The three methods, distance, parsimony and maximum-

likelihood (ML), make different evolutionary assumptions, thus

their congruence provides strong support for the deduced

phylogeny. We show only the tree derived by ML estimation

(Fig. 3). The phylogenetic clustering of the met2 ORFs is similar to

the currently accepted clustering of the respective Wolbachia

strains: all met2 gene sequences coming from supergroup A strains

cluster together (wMel, wMelCS, wRi, wAu, wTei, wYak and wSan

strains). The met2 gene sequences from supergroup B strains also

form a cluster and are distantly related to the supergroup A gene

sequences. This suggests a long association of the methyltransfer-

ase genes, and consequently of the phages harbouring them, with

the respective Wolbachia strains.

RT-PCR analysis
Transcriptional analysis of met2 genes was performed by RT-

PCR on cDNA samples prepared from young adult male and

female flies. Met2 transcripts were detected in all samples tested

(Fig. 4). The met2 copy of wTei, which is disrupted by ISWpi1, was

found to be transcriptionally silent (data not shown).

Discussion

The release of the first Wolbachia genome (wMel strain) revealed

that it contains two DNA methyltransferase genes met1 and met2,

encoded by two prophages, WO-A and WO-B respectively [8].

Figure 1. Southern blot analysis of met genes using genomic DNA from different Wolbachia infected species. The blot was hybridized
with a probe corresponding to the full length met1 (A) and met2 (B) genes from wMel.
doi:10.1371/journal.pone.0019708.g001

Wolbachia Prophage DNA Adenine Methyltransferase
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This finding is intriguing in the light of the fact that Wolbachia-

induced CI involves modification of the insect host chromosome

[40]. The presence of phage-like particles in Wolbachia-infected

hosts [3,5,17,41] suggests an active role of the phage in Wolbachia

biology. Thus, it is tempting to speculate that, beyond controlling

lysogeny of the phage, the methyltransferases might be involved in

triggering reproductive alterations imposed by Wolbachia on its

host. We therefore undertook a survey of Wolbachia strains of

known CI status for the presence of the methyltransferases,

determined their sequences and reconstructed their phylogeny.

The met1 gene is only present in a few of the tested strains; there

is no correlation with CI. Wolbachia strains wMel, wRi, wNo and

wPip induce CI in permissive hosts [35,42–44], and they all

contain at least one functional copy of the met2 gene. In contrast,

strain wAu [36] does not induce or rescue CI and its only met2

ORF is disrupted. Wolbachia strains wMau and wMa do not

contain the met2 gene and also do not induce CI in their hosts

[43,45,46]. On the other hand, wYak, wTei and wSan have

recently been shown to fully rescue the wRi modification, while

they are unable to induce CI in their native hosts [37]. wTei is,

however, able to induce 100% CI after transfer into the permissive

host D. simulans [38]. In this context, it is interesting to note that

our data suggest a double or multiple infection of the original host

of wTei, of which not all Wolbachia strain(s) were transferred upon

transinfection of D. simulans (Fig. 2). Cloning and sequencing of

PCR products, using different methyltransferase primer sets,

supports the presence of a hidden double infection of D. teissieri.

This could explain the phenotypic shift in CI properties that is

observed between the natural host and the engineered strains.

When the rescue properties of all A group strains are examined,

resc2 strains lack a functional A-group-like met2 gene, which is

always present in resc+ strains (Table 3); a possible correlation

between met2 and CI rescue should therefore be considered. B

group strains (wNo, wMa, wMau) are all resc+, nevertheless they do

not possess an A-group-like met2 gene. The genomes of these

strains have not been sequenced and the presence or absence of

prophage copies has not yet been documented. While wMa and

wMau do not contain any met gene, wNo has a B-group-like met2

ORF; this could reflect a different mechanism regulating CI in B

group Wolbachia strains.

Transgenic expression of wMel met2 (WD0594) in D. melanogaster

was recently reported using the UAS/GAL4 system [47]. This

study revealed no modification of phenotype in flies expressing

met2 ubiquitously and, similarly, when expressed specifically in the

Figure 2. PCR analysis of met2 copies in Wolbachia strain wTei. PCR was performed using primers met_102F and met_269R (A), met_1024R (B)
or TeiB_1024R (C). Primers met_102F and met_269R detect both A-group- and B-group-like met2, met_1024R detects only A-group-like met2, while
TeiB_1024R detects only B-group-like met2. M: 100 base pair molecular weight DNA marker (New England Biolabs).
doi:10.1371/journal.pone.0019708.g002

Wolbachia Prophage DNA Adenine Methyltransferase
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ovaries, no rescue phenotype was apparent in CI crosses. Although

these data suggest that constitutive expression of the met2 gene

does not alone drive the CI phenotype, it is still unclear what type

of regulation met2 or any of the phage-related genes are subject to

and how this affects the mechanism of CI.

Southern blot analysis indicates the presence of a met-like gene

also in the Wolbachia strain wUni, which is known to induce

parthenogenesis in the parasitic wasp Muscidifurax uniraptor (data

not shown). The distribution of the met gene in parthenogenesis-

inducing Wolbachia strains remains to be investigated. Interestingly,

the mutualistic Wolbachia strain, which is present in the filarial

nematode Brugia malayi, neither induces reproductive alterations

nor carries a copy of the DNA methyltransferase genes.

Additionally, and important for any interpretation of the role of

met2, we demonstrated expression of the gene in all Wolbachia

strains with RT-PCR (Fig. 4). The Wolbachia phage DNA

methyltransferase may be involved in the methylation of phage,

bacterial, insect host genes or a combination of them. Although

Drosophila had for a long time been considered to be free of DNA

methylation, both the presence of methyltransferase genes in its

genome [48,49], and of 5-methylcytosine residues in the early

stages of embryonic development [50,51] have been demonstrat-

ed. Interestingly, a Dam-like methyltransferase has been implicat-

ed in male sterility in plants [52].

Base modification in bacterial genomes is performed by two

classes of DNA methyltransferases: (i) those associated with

restriction-modification systems, and (ii) solitary methyltransferases

that do not have a restriction enzyme counterpart. Examples of the

latter are the N6-adenine methyltransferases Dam and CcrM

[53,54]. In a-Proteobacteria, CcrM methylation regulates the cell

cycle in Caulobacter crescentus, Rhizobium meliloti and Agrobacterium

tumefaciens and plays a role in Brucella abortus infection (reviewed in

[55]). Overexpression of CcrM in these bacteria results in the

accumulation of multiple chromosomes, indicative of overinitia-

Figure 4. RT-PCR analysis of met2 genes. RNA samples were prepared from young male/female adult flies from different Drosophila/Wolbachia
associations. The bottom panel presents the control samples for the presence of genomic contamination.
doi:10.1371/journal.pone.0019708.g004

Figure 3. Phylogenetic tree of Wolbachia based on met gene sequences. The tree was constructed by Maximum Likelihood analysis. Numbers
on the nodes indicate bootstrap values.
doi:10.1371/journal.pone.0019708.g003

Wolbachia Prophage DNA Adenine Methyltransferase
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tion of DNA replication [56,57]. Wolbachia prophage methyltrans-

ferase could regulate several aspects of the symbiont’s cell cycle by

imposing a specific epigenetic signal.

In silico analysis of Wolbachia prophage methyltransferase has

predicted an N-terminal ParB-like nuclease domain (data not

shown) similar to the ParB of the parCBA operon in E. coli, which is

important for plasmid stability and resolving dimeric or multimeric

plasmids. ParB nucleases have also been reported in several other

plasmid genomes. ParB nucleases are Ca++ dependent endonu-

cleases with 59 -39 exonuclease activity [58,59].

The methyltransferase genes, met1 and met2, are closely related

(Fig. 5). The phylogenetic clustering of the methyltransferase

genes, in particular of the met2 gene, is similar to the currently

accepted clustering of the arthropod Wolbachia strains, both on the

level of the major division of the Wolbachia strains into two

supergroups, A and B, as well as on the lower level of clades and

strains. Specifically, the met2-based tree is similar to the respective

wsp-based tree (data not shown). This suggests a long association of

the methyltransferases, and consequently of the phages carrying

them, with the harbouring Wolbachia chromosomes (Fig. 3).

However, translocation of met2 gene from the phage genome to

Wolbachia chromosome cannot be excluded for any of the strains

studied; such an event could explain why met2 phylogeny

correlates with Wolbachia phylogeny.

Wolbachia exhibits a fascinating array of host manipulations. The

elucidation of the molecular basis of the host-symbiont interaction

will allow insight in the regulation of fundamental cell biological

processes. Future studies will address any potential direct or

indirect effect of the methyltransferase(s) in the establishment of

symbiosis and/or the induction of reproductive manipulations.

Materials and Methods

Insect lines
Insect lines and Wolbachia strains used in the present study are

listed in Table 1. Flies were routinely grown at 25uC on standard

cornmeal medium in uncrowded vials. The Drosophila simulans

STCP lines were produced by Zabalou et al. [38] who transferred

Wolbachia wYak, wTei, wSan strains into the same host background

using embryonic cytoplasmic injections.

PCR analysis
DNA was extracted from adult flies using the NucleoSpin Tissue

kit (Macherey-Nagel) or the CTAB protocol, as previously

described [60]. The DNA was used as template for PCR reactions

and Southern blot analysis. About 50 to 100 ng total DNA from

adult flies were used as template in PCR reactions of Wolbachia

targets. The presence of Wolbachia was initially determined using

Wolbachia-specific 16S rDNA primers [61]. The primers used to

amplify methyltransferase gene sequences are listed in Table 2.

Standard PCR analysis was performed using GoTaqH Flexi DNA

polymerase (Promega). To generate DNA templates for sequenc-

ing, PCR reactions were done using the Elongase Amplification

System (Invitrogen, Glasgow, UK). The PCR products were A-

tailed, cloned into the pGEM-T Easy vector (Promega, Wisconsin,

USA) and transformed into competent E. coli XL1-Blue MRF cells

Table 3. Distribution of phage methyltransferases in resc+ and resc2 Wolbachia strains.

Wolbachia strain CI rescue met1 A group-like met2 B group-like met2 Disrupted met2

wMel + + + 2 2

wMelCS + + + 2 2

wTei + 2 + + by ISWpi1

wYak + 2 + + 2

wSan + 2 + + 2

wRi + 2 + 2 2

wAu 2 + 2 2 stop codon

wTei (STCP) 2 2 2 + by ISWpi1

doi:10.1371/journal.pone.0019708.t003

Figure 5. Amino acid alignment of Met1 and Met2 proteins of Wolbachia strain wMel. Black highlight indicates amino acid identity; grey
highlight indicates amino acid similarity.
doi:10.1371/journal.pone.0019708.g005

Wolbachia Prophage DNA Adenine Methyltransferase
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(Stratagene, Amsterdam, The Netherlands). Plasmid DNA was

extracted using the Nucleospin Plasmid kit (Macherey-Nagel).

Sequencing reactions were performed with the SequiThermTM

Excel Long ReadTM DNA sequencing Kit-LC (Epicentre

Technologies) and the DNA sequence of the inserts was

determined at the laboratory of Microchemistry, FoRTH,

Heraklion (Greece) on a LiCor 4200 DNA sequencer. Three to

six clones were sequenced from each individual. The methyl-

transferase gene sequences of this study have been deposited in the

EMBL database under the accession numbers AJ851152 to

AJ851164 and FR796473, and in the GenBank database under

the accession number JF288559.

Southern blot analysis
Genomic DNA was prepared as reported previously [62] and

digested with HaeIII. Agarose gel electrophoresis of DNA and

blotting to nylon membranes were carried out using standard

procedures [63]. DNA probes were prepared by random

hexanucleotide priming [64]. Hybridization of 32P-labelled probes

to blotted DNA was performed using standard procedures [63].

RT-PCR analysis
For each of the tested Wolbachia-Drosophila associations, total

RNA from young male and female adult flies was extracted using

TRIzol (Invitrogen) and treated with RNase-free DNase (Invitro-

gen). First-strand cDNA was synthesized from 5 mg of total RNA

using reverse transcriptase (SuperScript III; Invitrogen) and

random primers (Promega) and the reactions were treated with

RNase H. RNA integrity was assessed using the universal

Wolbachia wsp 81F/691R primers [65]. All RNA samples were

tested for genomic DNA contamination by performing PCR using

wsp 81F/691R primers in DNaseI-treated RNA samples which

were not reverse transcribed. Transcription of met2 was detected

using GoTaqH Flexi DNA polymerase (Promega).

Alignment and Model Selection
Wolbachia adenine methyltransferase nucleotide and amino acid

sequences were aligned using the ClustalW Multiple Alignment

algorithm implemented in Geneious v.5.3.3. [66]. The appropriate

evolutionary model JTT+ C was selected by the Akaike

Information Criterion (AIC) using ProtTest v.2.4 [67]. Models

of substitution for nucleotide alignments were selected using AIC

in jModeltest v.0.1.1. [68]. The appropriate evolutionary model

was TPM1uf+I+C.

Phylogenetic analysis
The evolutionary history was inferred by maximum likelihood

criterion using PAUP* v.4.0b10 for the nucleotide alignment and

PHYML for the protein alignment [69,70]. Phylogenetic trees

were generated using ML bootstrap analysis in PAUP (100

pseudoreplicates of heuristic search with 10 random sequence).

The maximum likelihood method conducted using PHYML was

performed using 100 bootstrap replicates, a fixed proportion of

invariable sites, an estimated gamma distribution parameter and

optimized topology, branch lengths and rate parameters. ML trees

generated are midpoint rooted using Archaeopteryx v. 0.957b

[71].

Methyltransferase nomenclature
The methyltransferase gene sequences were named based on

the following system. Each methyltransferase gene name is

composed of ‘‘met’’ (in italics) denoting methyltransferase, followed

by the numbers 1 or 2, indicating their origin from phage WO-A

or WO-B, respectively (phage nomenclature according to [8]) and

concluded by the name of the Wolbachia strain harbouring the

methyltransferase gene (eg wRi, wMel, etc). Using this nomencla-

ture, the two methyltransferase genes present in the wMel strain

are named met1_wMel and met2_wMel.
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mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans.

Proc Natl Acad Sci U S A 106: 5725–5730.

12. Bordenstein SR, Wernegreen JJ (2004) Bacteriophage flux in endosymbionts

(Wolbachia): infection frequency, lateral transfer, and recombination rates. Mol

Biol Evol 21: 1981–1991.

13. Gavotte L, Henri H, Stouthamer R, Charif D, Charlat S, et al. (2007) A survey

of the bacteriophage WO in the endosymbiotic bacteria Wolbachia. Mol Biol Evol

24: 427–435.

14. Ishmael N, Dunning Hotopp JC, Ioannidis P, Biber S, Sakamoto J, et al. (2009)

Extensive genomic diversity of closely related Wolbachia strains. Microbiology

155: 2211–2222.

15. Sanogo YO, Eitam A, Dobson SL (2005) No evidence for bacteriophage WO

orf7 correlation with Wolbachia-induced cytoplasmic incompatibility in the Culex

pipiens complex (Culicidae: Diptera). J Med Entomol 42: 789–794.

16. Duron O, Bernard C, Unal S, Berthomieu A, Berticat C, et al. (2006) Tracking

factors modulating cytoplasmic incompatibilities in the mosquito Culex pipiens.

Mol Ecol 15: 3061–3071.

Wolbachia Prophage DNA Adenine Methyltransferase

PLoS ONE | www.plosone.org 7 May 2011 | Volume 6 | Issue 5 | e19708



17. Bordenstein SR, Marshall ML, Fry AJ, Kim U, Wernegreen JJ (2006) The

tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS
Pathog 2: e43.

18. Bourtzis K, Nirgianaki A, Markakis G, Savakis C (1996) Wolbachia infection and

cytoplasmic incompatibility in Drosophila species. Genetics 144: 1063–1073.
19. Poinsot D, Bourtzis K, Markakis G, Savakis C, Merçot H (1998) Wolbachia
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